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ABSTRACT

Suppose one wishes to compare two closely related systems
via stochastic simulation. Common random numbers (CRN)
involves using the same streams of uniform random variates
as inputs for both systems to sharpen the comparison. One
can view CRN as a particular choice of copula that gives the
joint distribution of the inputs of both systems. We discuss
the possibility of using more general copulae, including
simple examples that show how this can outperform CRN.

1 INTRODUCTION

Let X and Y be random variables quantifying the perfor-
mance of two systems. Consider the problem of determining
which of these systems has greater mean performance. A
typical stochastic simulation approach to this problem is
to generate an IID sequence (Xj , Yj : j = 1, . . . , n) of

pairs of random variables where Xj
d= X and Yj

d= Y ,
j = 1, . . . , n, and estimate

E(X − Y ) ≈ 1
n

n∑
j=1

(Xj − Yj).

The sign of the resulting estimator indicates which of the
two systems is preferable.

It is crucial that the random vectors (Xj , Yj) be IID in
order for the usual limit theorems to hold. However, there
is no reason that Xj and Yj must be independent for fixed
j. Indeed, it may be helpful to induce such dependence; if
cov (Xj , Yj) > 0, then

var (Xj − Yj) < var X + var Y.

The right-hand side, above, is the variance that would be
achieved if Xj and Yj were sampled independently.

A particularly simple method for inducing positive de-
pendence between X and Y is common random number

(CRN) sampling (e.g., Kelton 2006), discussed in §2. Our
purpose in this paper is to propose a more general tech-
nique for introducing such dependence; the technique has a
quite similar flavor to CRN sampling, and indeed has CRN
sampling as a special case.

The outline of the paper is as follows. Section 2
establishes notation, defines CRN sampling, and introduces
our new method. Section 3 discusses earlier work on the
subject, especially on known conditions under which CRN
is optimal (in a sense to be defined). Section 4 proposes
using a particular class of copula, the Gaussian copula, and
shows its effectiveness in several toy examples. Section 5
discusses two algorithms for computing an optimal Gaussian
copula. In §6 we prove a key property of the set of optimal
Gaussian copulae in a particularly simple case. Section 7
offers concluding remarks and directions for further research.

In the sequel, we drop the subscript j and make reference
to the joint distribution of the random vecctor (X, Y ).

2 COMMON RANDOM NUMBERS

Common random number sampling entails using identical
sequences UX = UY = U = (U1, U2, . . .) of pseudoran-
dom variates to compute both X and Y . This can often
be accomplished by resetting a seed for a pseudorandom
number generator to a common value s for simulating both
X and Y . If the ways in which X and Y are computed in
terms of U are fairly similar, we may hope that this tech-
nique induces the positive dependence, and hence variance
reduction, discussed in the previous section.

We shall ignore the fact that U is actually deterministic
and treat it as random for the remainder of this paper. Under
this convention, U is treated as a sequence of IID uniform
[0,1] random numbers. In fact, we will assume further
that U has finite dimension d, i.e., U = (U1, . . . , Ud).
Technically this is without loss of generality; in fact, we
could even assume d = 1 since there exists a bijection
between [0, 1] and [0, 1]∞. But practically speaking, such a
bijection is not particularly useful. Hence, the assumption
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of finite dimensionality may limit the situations in which
the approach we discuss below is applicable.

Let us make the dependence of X and Y on U explicit
by defining functions fU , gU : [0, 1]d → R so that X =
fU (UX) and Y = gU (UY ), for UX ,UY ∼ U([0, 1]d).
Notice that if X or Y depends on j < d uniform random
variables, then the function fU or gU will simply depend
on the first j components of UX or UY .

Standard, or IID, sampling consists of sampling the
random vector (UX ,UY ) according to the uniform proba-
bility measure on [0, 1]2d. We denote this measure by Piid.
In contrast, CRN sampling consists of sampling under the
probability measure PCRN where

1. UX and UY are each uniform on [0, 1]d, and
2. UX = UY PCRN-almost surely.

Both probability measures described above are examples
of copulae on [0, 1]2d. That is, they are distributions on
this hypercube having uniform marginals. In this paper, we
consider the possibility of using other copulae that satisfy
Condition 1. We say that a copula on [0, 1]2d satisfying
Condition 1 is admissible, and we denote by C the set of all
such copulae. Within any given class of copulae, a copula
minimizing var (X − Y ) is called optimal in that class. If
var (X − Y ) = 0 is achieved, the copula is called perfect.
Of course, var X and var Y are unaffected by the choice
of admissible copula. This implies that we cannot expect
to find a perfect copula except possibly in the case where
var X = var Y .

3 PREVIOUS WORK

At its essence, our work involves a computational approach
to constructing a coupling between two stochastic systems.
For excellent reviews of coupling see Lindvall (1992) and
Thorisson (2000). Schmeiser and Kachitvichyanukul (1986)
described a number of approaches for coupling two random
variables based on generation methods other than inversion.
Devroye (1990) developed various couplings between two
random vectors that attempts to maximize the number of
components that are identical. Glasserman and Yao (1992)
consider the question of when common random numbers is
optimal for a class of performance measures that includes
the variance of the difference between two random vari-
ables as considered here. As noted there, this question is
poorly defined without further structure, which they impose
in various ways. Glasserman and Yao (2004) provide a
characterization of optimal couplings using a property they
call the “nonintersection” property.

Throughout the remainder of the paper we will make
considerable use of standard methods from linear algebra.
The necessary background can be found in many books,
e.g., Horn and Johnson (1985).

4 GAUSSIAN COPULAE

We now restrict our attention to a smaller class of copulae
than C , the class G of Gaussian copulae that are admissible.
In our setting, a Gaussian copula on [0, 1]2d is a probability
measure P such that the random vector (ZX ,ZY ), defined
componentwise by

ZX [i] = Φ−1(UX [i]),

ZY [i] = Φ−1(UY [i]),

for i = 1, . . . , d, has a multivariate normal distribution with
standard marginals under P . Here, Φ denotes the standard
normal cdf.

Let

Σ =
[
ΣXX ΣXY

ΣT
XY ΣY Y

]
be the covariance matrix of (ZX ,ZY ), where the blocks are
d× d matrices. In order for UX and UY to be uniform on
[0, 1]d (Condition 1 of §2) we must have ΣXX = ΣY Y = Id,
the d × d identity matrix. Therefore we consider only
covariance matrices of the form

Σ =
[

Id ΣXY

ΣT
XY Id

]
. (1)

A positive semidefinite matrix of the form (1) will be called
admissible, and we denote by Sd the set of all such matrices.
We denote by PΣ the copula on [0, 1]2d associated with the
covariance matrix Σ.

It is immediate that both Piid and PCRN are elements of
G . IID sampling corresponds to Σ = I2d, or in other words
ΣXY = 0d, the d × d zero matrix. On the other hand,
Condition 2 of §2 describing CRN sampling corresponds
to ΣXY = ΣY X = Id.

We can consider X and Y to depend on the Gaussian
random vector (ZX ,ZY ) directly. Thus, in order to simplify
notation, we introduce functions f, g : R2d → R given by

f(z) = fU (Φ−1(z[1]), . . . ,Φ−1(z[d])),

g(z) = gU (Φ−1(z[1]), . . . ,Φ−1(z[d])).

Examples 1 and 2, below, are simple cases where a
Gaussian copula outperforms both CRN and independent
sampling.

Example 1. Take d = 2, f(ZX) = (ZX [1] +
ZX [2])/

√
2, and g(ZY ) = ZY [1]. Here X and Y have

linear relationships to ZX and ZY , respectively. The ran-
dom variable X depends on ZX through both its com-
ponents equally, whereas Y depends only upon the first
component of ZY . The admissible covariance matrix with
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ΣXY = 1√
2

[
1 1
1 −1

]
defines an optimal, and in fact a

perfect, Gaussian copula for this problem; this covariance
matrix corresponds to setting ZY [1] = (ZX [1]+ZX [2])/

√
2

and ZY [2] = (ZX [1]− ZX [2])/
√

2, so that X = Y .
Observe that the columns of ΣXY have L2 norm 1.

We may interpret this fact to mean that the optimal copula
results in perfect correlation between the appropriate linear
functions of ZX and ZY . This copula is strongly related to
CRN sampling in that UY is a deterministic transformation
of UX . We prove that this happens whenever f and g are
linear in §6.

Example 2. Take d = 1, fU (UX) = χ[.5,.6](UX), and
gU (UY ) = χ[.7,.8](UY ). Here, χA denotes the indicator
function (characteristic function) of the set A. In order to
maximize the covariance of these indicator random variables,
we would like to have the events UX ∈ [.5, .6] and UY ∈
[.7, .8] tend to occur at the same time. In fact, a copula
satisfying UX ∈ [.5, .6] ⇐⇒ UY ∈ [.7, .8] would be perfect.

Unfortunately, there is no Gaussian copula satisfying
this condition. The optimal Gaussian copula, in contrast,

is given by the covariance matrix Σ =
[
1 ρ
ρ 1

]
, where

ρ is chosen to maximize the probability of (ZX , ZY ) ∈
[Φ−1(.5),Φ−1(.6)]× [Φ−1(.7),Φ−1(.8)]. It is easy to see
that ρ = 1 sets this probability to zero, so clearly ρ = 1 is
not optimal. On the other hand, it is intuitive that ρ > 0
is desirable since we want ZX and ZY to tend to have the
same sign. Figure 1 shows that the optimal value of ρ is
about .97. This value yields var (X − Y ) ≈ .15. Contrast
this result with Example 1, where the optimal Gaussian
copula had every column of ΣXY having norm 1.
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Figure 1: P [X = Y ] as a function of ρ.

5 FINDING AN OPTIMAL GAUSSIAN COPULA

The primary reason we have restricted attention to Gaussian
copulae is that they are easily parameterized by a covariance
matrix. This allows us to perform a numerical search for
a locally optimal copula. We formulate the optimization
problem in two distinct ways. Both involve maximizing
the covariance between X and Y , but the underlying space
over which the optimization is performed differs.

The first formulation is a nonlinear semidefinite program
(NLP-SDP) (e.g., Kočvara and Stingl 2003). The decision
variable in the optimization problem is the covariance matrix
Σ of the Gaussian copula, which varies over the feasible
region of admissible covariance matrices Sd as defined in
(1). Let Z be a 2d-dimensional standard multivariate normal
random vector. We then wish to maximize Eh(Σ,Z), where

h (Σ,Z) =

f
((

Σ1/2Z
)

[1, . . . , d]
)

g
((

Σ1/2Z
)

[d + 1, . . . , 2d]
)

.

(2)

Here, Σ1/2 denotes the Cholesky factor of Σ.
One can view Σ1/2 as a differentiable function (ad-

mittedly complicated) of Σ, so that (2) is differentiable in
Σ for each fixed Z. One might then apply gradient-based
methods for performing the optimization. Unfortunately, ac-
tually computing the gradient is difficult. One might resort
to some rather complicated approach based on infinitesimal
perturbation, or a more straightforward approach based on
finite differences. In either case there are computational
disadvantages, so we turn to a different formulation that
seems more readily adapted to computation.

In our second formulation, rather than treating the
covariance matrix Σ as the decision variable, we optimize
over the space of all appropriate linear transformations of
Z ∼ N (0, I2d). The key to this formulation is the following
proposition. A matrix M with at least as many rows as
columns is called orthogonal if MT M gives the identity
matrix.

Proposition 1. Let ΣXY and M2 be d × d matrices such
that

M :=
[
ΣXY

M2

]
is orthogonal. Then the covariance matrix of[

ZX

ZY

]
:=

[
Z[1, . . . , d]

MT Z

]
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is given by

Σ =
[

Id ΣXY

ΣT
XY Id

]
.

Conversely, if Σ is admissible then there exists M2 such that[
ΣXY

M2

]
is orthogonal.

Proof. For the first statement, we have

cov
[
ZX ZY

]
= E

[
ZXZT

X ZXZT M
MT ZZT

X MT ZZT M

]

=

 Id

[
Id 0d

]
M

MT

[
Id

0d

]
MT M


= Σ.

Conversely, suppose
[
ZX ZY

]
has admissible covariance

matrix Σ. Then

cov
(
ZY −ΣT

XY ZX

)
=

[
−ΣT

XY Id

]
Σ

[
−ΣXY

Id

]
=

[
−ΣT

XY Id

] [
0d

Id −ΣT
XY ΣXY

]
= Id −ΣT

XY ΣXY ,

implying that the matrix on the right is positive semidefi-
nite. Therefore, there exists M2 such that MT

2 M2 = Id −
ΣT

XY ΣXY and hence MT M = ΣT
XY ΣXY + MT

2 M2 =
Id.

Proposition 1 demonstrates that we can compute an
optimal Gaussian copula by solving an optimization problem
on the space V2d,d of 2d × d orthogonal matrices rather
than on Sd. The space of such matrices is an example of a
Stiefel manifold; see Edelman, Arias, and Smith (1999) for
a discussion of the geometry of these and related manifolds,
and of optimization algorithms thereon. In this formulation,
our objective function (2) is replaced by

h(M,Z) = f (ZX) g
(
MT Z

)
. (3)

Again we wish to maximize Eh(M,Z), but this time the
feasible region is M ∈ V2d,d.

It is now straightforward to compute derivatives of
h(·,Z) with respect to M for a fixed Z. We have that

h′ij(M,Z) :=
∂h(M,Z)
∂M[i, j]

= f(ZX)gj

(
MT Z

)
Z[i],

where gj(x) is the partial derivative of g(·) with respect to
the jth component, evaluated at x.

One can use these derivatives in various gradient-based
optimization approaches such as stochastic approximation.
Our optimization approach is based upon Sample Average
Approximation (SAA) (e.g., Shapiro 2004). SAA is a
general method for solving optimization problems of the
form

max
x∈X

Eh(x, ξ)

where ξ is a random object. Initially a small “pilot” sample
ξ1, . . . , ξm is generated. These values are then treated as
fixed, and the optimization problem is replaced by

max
x∈X

1
m

m∑
i=1

h(x, ξi).

Since the sample is fixed, the problem can be viewed as
a deterministic optimization problem, and one can then
employ specialized deterministic optimization algorithms
to solve the problem. We use exactly this approach using
optimization algorithms designed for differentiable functions
over a Stiefel manifold. The solution to the optimization
problem using a sample of size m, say, Z1, . . . ,Zm yields
a matrix M∗

m that defines a copula, which can then be used
in a “production” run to actually compare the systems in
question. Under mild regularity conditions, it is known that
M∗

m will not only be a locally optimal solution for the
sample-average problem, but will also be a nearly locally
optimal solution for the true problem. See Shapiro (2004),
Proposition 7, p. 363 and Bastin, Cirillo, and Toint (2006).

Example 3. We conclude this section with an example
of a stochastic activity network (e.g., Avramidis and Wilson
1993). The network in Figure 2 is an abstraction of a set
of jobs which must be completed. Each arc corresponds to
a job. Nodes represent constraints on the order in which
the jobs must be performed. All the jobs whose arcs enter
a given node must be completed before any job whose
arc leaves that node commences. The arcs are labelled
by random variables corresponding to the length of time
required by each task. Two nodes are distinguished as the
source and the sink, respectively representing the state in
which no tasks have begun and the state in which all tasks
are completed. The total completion time for the set of
all tasks is equal to the maximum length of all paths from
source to sink.

Let us compare two possible configurations of the
stochastic activity network in Figure 2, where the different
configurations correspond to different joint distributions on
the activity times V1, . . . , V4. In Configuration 1, the activ-
ity times are IID exponential with rate 1. In Configuration

248



Ehrlichman and Henderson

V 1

V 4
V 2

V 3

Figure 2: Stochastic Activity Network Example.

2, V1 and V2 are as in Configuration 1, but V3 and V4 are
exponential conditional on V1 and V2 with respective rates
1
2 (1+V2) and 1

2 (1+V1). Let X and Y respectively be the
completion times of Configurations 1 and 2.

The functions connecting the underlying normal random
variates to the service times are given by

f(z) = max(− log Φ(z1)− log Φ(z3),

− log Φ(z2)− log Φ(z4))

g(z) = max
(
− log Φ(z1)−

2
1− log Φ(z2)

log Φ(z3),

− log Φ(z2)−
2

1− log Φ(z1)
log Φ(z4)

)
.

We solved this problem using the Stiefel manifold
formulation with the freely available MATLAB procedure
sgmin (Lippert and Edelman 1999), using the SAA frame-
work sketched above. We solved it over both the spaces
V2d,d and Vd,d and achieved quite similar resulting co-
variance matrices. This strongly suggests that the optimal
Gaussian copula is in fact a change of variables applied to
CRN sampling.

The Gaussian copula returned by the optimization pro-
cedure is defined by (4). We performed longer runs, inde-
pendent from the pilot, under IID sampling, CRN sampling,
and the optimal Gaussian copula. The resulting variance of
(X − Y ) in each case is given in Table 1.

ΣXY =


.958 −.038 .160 .237

−.037 .960 .239 .141
−.158 −.238 .957 −.048
−.239 −.143 −.026 .960

 . (4)

We can see that the optimal covariance matrix defined
(4) returned by the optimization algorithm is quite close to
that of CRN sampling. Although the random variables ZX [i]
and ZY [i], i = 1, . . . , 4, are not identical, they are very
highly correlated. However, the difference in performance
between the two copulae is great, with the optimal Gaussian
copula resulting in more than a 50% reduction in variance.

Table 1: Example 3 results.

Sampling Strategy Variance
IID 5.257

CRN 0.565
OPT 0.280

6 ANALYSIS OF THE LINEAR CASE

The optimal copula given in Example 1 has the property that
ΣXY is itself an orthogonal matrix; equivalently, the lower
d rows of this solution M are all zero. A natural question to
ask is under what conditions we may assume that an optimal
solution of this type exists. Knowledge of such conditions
would allow the optimization problem to be solved on the
smaller space Vd,d. Moreover, the resulting copula can be
sampled from using only d independent normal variates per
sample, as opposed to the 2d normal variates required in
the general case. We do not have a complete answer to
this question at present, although we are able to show that
a sufficient condition is for X and Y to be linear in ZX

and ZY , respectively.

Proposition 2. Let Z be a 2d-dimensional random vector
with mean zero and covariance matrix I2d. Suppose f and g
are functions on Rd given by f(z) = aT z, g(z) = bT z, for
some a,b ∈ Rd. Then

max
M∈V2d,d

Ef(
[
Id 0d

]T
Z)g(MT Z)

= max
ΣXY ∈Vd,d

Ef(
[
Id 0d

]T
Z)g(

[
ΣXY 0d

]T
Z).

Proof. Let LHS and RHS respectively denote the left-
and right-hand sides of the desired equality. The inequal-
ity LHS ≥ RHS follows immediately from the fact that[
ΣXY 0d

]
∈ V2d,d, so we need only prove the converse.

Let M ∈ V2d,d be arbitrary. Let us write[
Z1

Z2

]
and

[
M1

M2

]
for Z and M respectively. Then

Ef(
[
Id 0d

]T
Z)g(MT Z) = EaT Z1bT MT Z

= EaT Z1ZT
1 M1b + EaT Z1ZT

2 M2b = 〈a,M1b〉. (5)
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Now,

〈a,M1b〉2 ≤ ‖a‖2‖M1b‖2

≤ ‖a‖2‖M1‖22‖b‖2

≤ ‖a‖2‖b‖2.
(6)

Here, ‖M1‖2 denotes the spectral norm (greatest absolute
eigenvalue) of M1. The first inequality is Cauchy-Schwartz.
The second inequality is a property of the spectral norm. The
third inequality is proven as follows: if λ is an eigenvalue of
M1 with corresponding eigenvector w, then

1 = ‖w‖2 = wT MT Mw

= wT (MT
1 M1 + MT

2 M2)w

= λ2‖w‖2 + wT MT
2 M2w

≥ λ2,

since MT
2 M2 is positive semidefinite.

Combining (5) with (6) yields LHS ≤ ‖a‖‖b‖. Now
let v = b − ‖b‖

‖a‖a. Let ΣXY be the Householder reflection
induced by v,

ΣXY = Id −
2

‖v‖2
vvT .

It is easy to check that ΣXY ∈ Vd,d and that 〈a,ΣXY b〉2 =
‖a‖2‖b‖2. This implies ‖a‖‖b‖ ≤ RHS, completing the
proof.

7 CONCLUSION

We have shown that it is possible to compute couplings
of two random vectors that have IID components with the
goal of minimizing the variance of the difference between
real-valued functions of the random vectors. We use an
underlying Gaussian copula because it is amenable to com-
putation, although one could certainly consider other copula
families as well. We have given simple examples where the
gains beyond common random numbers are significant.
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