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ABSTRACT

Revenue management is the collection of strategies and
tactics firms use to scientifically manage demand for their
products and services. The practice has grown from its
origins in airlines to its status today as a mainstream busi-
ness practice in a wide range of industry areas, including
hospitality, energy, fashion retail, and manufacturing. This
article provides an introduction to this increasingly impor-
tant subfield of operations research, with an emphasis on
use of simulation. Some of the contents are based on ex-
cerpts from the book The Theory and Practice of Revenue
Management (Talluri and van Ryzin 2004a), written by the
first two authors of this article.

1 INTRODUCTION

Every seller of a product or service faces a number of
fundamental decisions. You want to sell at a time when
market conditions are most favorable, but who knows what
the future might hold? You want the price to be right—not
so high that you put off potential buyers and not so low that
you lose out on potential profits. You would like to know
how much buyers value your product, but more often than
not you must just guess at this number. Businesses face
even more complex selling decisions. For example, how
can a firm segment buyers by providing different conditions
and terms of trade that profitably exploit their different
buying behavior or willingness to pay? How can a firm
design products to prevent cannibalization across segments
and channels? Once it segments customers, what prices

should it charge each segment? If the firm sells in different
channels, should it use the same price in each channel?
How should prices be adjusted over time based on seasonal
factors and the observed demand to date for each product? If
a product is in short supply, to which segments and channels
should it allocate the products? How should a firm manage
the pricing and allocation decisions for products that are
complements (seats on two connecting airline flights) or
substitutes (different car categories for rentals)?

Revenue management (RM) is concerned with the
methodology and systems required to make demand-
management decisions, which can be categorized into

(i) Structural decisions: Which selling format to use
(such as posted prices, negotiations or auctions); which
segmentation or differentiation mechanisms to use (if any);
which terms of trade to offer (including volume discounts
and cancelation or refund options); how to bundle products;
and so on.

(ii) Price decisions: How to set posted prices, individual-
offer prices, and reserve prices (in auctions); how to price
across product categories; how to price over time; how to
markdown (discount) over the product lifetime; and so on.

(iii) Quantity decisions: Whether to accept or reject an
offer to buy; how to allocate output or capacity to different
segments, products or channels; when to withhold a product
from the market and sale at later points in time; and so on.

Which of these decisions is most important in any
given business depends on the context. The timescale of
the decisions varies as well. Structural decisions about which
mechanism to use for selling and how to segment and bundle
products are normally strategic decisions taken relatively
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infrequently. Firms may also have to commit to certain
price or quantity decisions, for example, by advertising
prices in advance or deploying capacity in advance, which
can limit their ability to adjust price or quantities on a
tactical level. The ability to adjust quantities may also be a
function of the technology of production—the flexibility of
the supply process and the costs of reallocating capacity and
inventory. For example, the use of capacity controls as a
tactic in airlines stems largely from the fact that the different
“products” an airline sells (different ticket types sold at
different times and under different terms) are all supplied
using the same, homogeneous seat capacity. This gives
airlines tremendous quantity flexibility, so quantity control
is a natural tactic in this industry. Retailers, in contrast,
often commit to quantities (initial stocking decisions) but
have more flexibility to adjust prices over time.

We qualify RM as being either quantity-based RM or
price-based RM if it uses (inventory- or) capacity-allocation
decisions or prices as the primary tactical tool respectively for
managing demand. Both the theory and practice of RM differ
depending on which control variable is used. The number
of topics the field spans is too large to cover adequately in a
single article like this. The book, The Theory and Practice
of Revenue Management (Talluri and van Ryzin 2004a)
provides in depth coverage of both quantity and price-based
RM as well as supporting topics such as demand modeling,
economics, forecasting, and system implementation. Here,
we only introduce quantity-based RM and discuss the use
of simulation in this area.

2 SINGLE-RESOURCE CAPACITY CONTROL

In this section, we examine some basic results on the problem
of quantity-based RM for a single resource; specifically, op-
timally allocating capacity of a resource to different classes
of demand. Two prototypical examples are controlling the
sale of different fare classes on a single flight leg of an air-
line and the sale of hotel rooms for a given date at different
rate classes. This is to be contrasted with the multiple-
resource—or network—problems of Section 3, in which
customers require a bundle of different resources (such as
two connecting flights or a sequence of nights at the same
hotel).

We assume that the firm sells its capacity in n distinct
classes (in the case of airlines, these are called fare classes)
that require the same resource. Classes are ranked from 1
to n in decreasing order of their revenue values, with r 1 >
r2 > · · ·> rn. In the airline and hotel context, these classes
represent different discount levels with differentiated sale
conditions and restrictions. The units of capacity are
assumed homogeneous, and customers demand a single
unit of capacity for the resource. The central problem of
this section is how to optimally allocate the capacity of the
resource to the various classes. This allocation must be done

dynamically as demand materializes and with considerable
uncertainty about the quantity or composition of future
demand.

2.1 Types of Controls

In the travel industry, reservation systems provide different
mechanisms for controlling availability. These mechanisms
are usually deeply embedded in the software logic of the
reservation system and, as a result, can be quite expensive
and difficult to change. Therefore, the control mechanisms
chosen for a given implementation are often dictated by the
reservation system.

The first type of control are booking limits that ration
the amount of capacity that can be sold to any particular
class at a given point in time. For example, a booking
limit of 18 on class 2 indicates that at most 18 units of
capacity can be sold to customers in class 2. Beyond this
limit, the class would be “closed” to additional class 2
customers. This limit of 18 may be less than the physical
capacity, for example, when we protect capacity for future
demand from class 1 customers. Booking limits are either
partitioned or nested: A partitioned booking limit divides
the available capacity into separate blocks (or buckets)—
one for each class—that can be sold only to the designated
class. With a nested booking limit, the capacity available
to different classes overlaps in a hierarchical manner—
with higher-ranked classes having access to all the capacity
reserved for lower-ranked classes (and perhaps more). Let
the nested booking limit for class j be denoted b j. Then
b j is the maximum number of units of capacity we are
willing to sell to classes j to n. So, naturally, b1 is equal to
the capacity. Effectively, nesting logic simply allows any
capacity “left over” after selling to classes of lower ranks to
become available for sale to classes of higher rank. Nesting
booking limits in this way avoids the problem of capacity
being simultaneously unavailable for a higher-ranked class
yet available for lower-ranked classes. Most reservations
systems that use booking-limit controls quite sensibly use
nested rather than partitioned booking limits for this reason.

The second type of control are protection levels that
specify an amount of capacity to reserve (protect) for a
particular class or set of classes. Again, protection levels
can be nested or partitioned. A partitioned protection level
is trivially equivalent to a partitioned booking limit. In
the nested case, protection levels are again defined for sets
of classes—ordered in a hierarchical manner according to
class order. The protection level j, denoted y j, is defined
as the amount of capacity to save for classes j, j−1, . . . ,1
combined. The booking limit for class j, b j is simply the
capacity minus the protection level for classes j− 1 and
higher. That is,

b j = C− y j−1, j = 2, . . . ,n,
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where C is the capacity. For convenience, we define b1 = C
(the highest class has a booking limit equal to the capacity)
and yn = C (all classes combined have a protection level
equal to capacity).

The third type of controls are bid-price controls. What
distinguishes bid-price controls from both booking limits
and protection levels is that they are revenue-based rather
than class-based controls. Specifically, a bid-price control
sets a threshold price (which may depend on variables such
as the remaining capacity or time), such that a request
is accepted if its revenue exceeds the threshold price and
rejected if its revenue is less than the threshold price. Bid-
price controls are, in principle, simpler than booking-limit or
protection-level controls because they require only storing
a single threshold value at any point in time—rather than
a set of capacity numbers, one for each class. But to be
effective, bid prices must be updated after each sale—and
possibly also with time as well—and this typically requires
storing a table of bid price values indexed by the current
available capacity, current time, or both.

2.2 Static Models

In this section, we examine one of the first models for
quantity-based RM, the so-called static single-resource
model. The static model makes several simplifying assump-
tions that are worth examining in some detail. The first is that
demand for the different classes arrives in nonoverlapping
intervals in the order of increasing prices of the classes.
This could be justified by the observation that advance-
purchase discount demand typically arrives before full-fare
coach demand in the airline case. Moreover, the optimal
controls that emerge from the model can be applied—at
least heuristically—even when demand comes in arbitrary
order. As for the strict low-before-high assumption, this
represents something of a worst-case scenario; for instance,
if high-revenue demand arrives before low-revenue demand,
the problem is trivial because we simply accept demand
first come, first serve.

The second main assumption is that the demands for
different classes are independent random variables. Largely,
this assumption is made for analytical convenience because
dealing with dependence in the demand structure would
require introducing complex state variables on the history
of observed demand. A third assumption is that demand
for a given class does not depend on the capacity controls;
in particular, it does not depend on the availability of other
classes. However, in practice, customers in a high revenue
class may buy down to a lower class if the latter is available,
and customers in a lower class may buy up to a higher class
if the lower class is closed.

A fourth assumption in the static model is that it sup-
presses many details about the demand and control process
within each of the periods. However, the form of the op-

timal control is not sensitive to this assumption. A fifth
assumption of the model is that either there are no groups, or
if there are group bookings, they can be partially accepted.

Finally, the static models assume risk-neutrality. This is
a reasonable assumption in practice, since a firm implement-
ing RM typically makes such decisions for a large number
of products sold repeatedly (for example, daily flights or
daily hotel room stays). Maximizing the average revenue,
therefore, is what matters in the end. While we do not cover
this case here, some researchers have recently analyzed the
single-resource problem with risk-averse decision makers
or using worst-case analysis, for example, Lan et al. (2007).

We start with the simple two-class model in order to
build some basic intuition and then examine the more general
n-class case.

2.2.1 Littlewood’s Two-Class Model

The earliest single-resource model for quantity-based RM
is due to Littlewood (1972). The model assumes two prod-
uct classes, with associated prices r1 > r2. The available
capacity is C. Demand for class j is denoted D j, and its
distribution is denoted by Fj(·). Demand for class 2 arrives
first. The problem is to decide how much class 2 demand
to accept before seeing the realization of class 1 demand.

The optimal decision for this two-class problem can
be derived informally using a simple marginal analysis:
Suppose that we have x units of capacity remaining and we
receive a request from class 2. If we accept the request, we
collect revenues of r2. If we do not accept it, we will sell
unit x (the marginal unit) at r1 if and only if demand for
class 1 is x or higher. That is, if and only if D1 ≥ x. Thus,
the expected gain from reserving the x th unit for class 1
(the expected marginal value) is r1P(D1 ≥ x). Therefore, it
makes sense to accept a class 2 request as long as its price
exceeds this marginal value, or equivalently, if and only if

r2 ≥ r1P(D1 ≥ x). (1)

Note the right-hand side of (1) is decreasing in x. Therefore,
there will be an optimal protection level, denoted y∗1, such
that we accept class 2 if the remaining capacity exceeds y∗1
and reject it if the remaining capacity is y∗1 or less. Formally,
y∗1 satisfies

r2 < r1P(D1 ≥ y∗1) and r2 ≥ r1P(D1 ≥ y∗1 + 1).

If a continuous distribution F1(x) is used to model demand
(as is often the case), then the optimal protection level y∗1
is given by the simpler expressions

r2 = r1P(D1 > y∗1), equivalently, y∗1 = F−1
1 (1− r2

r1
), (2)

147



Karaesmen et al.

which is known as Littlewood’s rule. Setting a protection
level of y∗1 for class 1 according to Littlewood’s rule is
an optimal policy. Equivalently, setting a booking limit of
b∗2 = C− y∗1 on class 2 demand is optimal. Alternatively,
we can use a bid-price control with the bid price set at
π(x) = r1P(D1 > x).

2.2.2 n-Class Models

We next consider the general case of n > 2 classes. Again,
we assume that demand for the n classes arrives in n stages,
one for each class, with classes arriving in increasing order
of their revenue values. Hence, class n (the lowest price)
demand arrives in the first stage (stage n), and the highest
price class (class 1) arrives in the last stage (stage 1). Since
there is a one-to-one correspondence between stages and
classes, we index both by j. Demand and capacity are most
often assumed to be discrete, but occasionally we model
them as continuous variables when it helps simplify the
analysis and optimality conditions.

Dynamic Programming Formulation: This problem can
be formulated as a dynamic program in the stages (equiv-
alently, classes), with the remaining capacity x being the
state variable. At the start of each stage j, the demand
D j,D j−1, . . . ,D1 has not been realized. Within stage j, the
model assumes that the following sequence of events occurs:

1. The realization of the demand D j occurs, and we
observe its value.

2. We decide on a quantity u of this demand to accept.
The amount accepted must be less than the capacity
remaining, so u ≤ x. The optimal control u∗ is
therefore a function of the stage j, the capacity x,
and the demand D j, u∗ = u∗( j,x,D j), though we
often suppress this explicit dependence on j,x and
D j in what follows.

3. The revenue r ju is collected, and we proceed to
the start of stage j−1 with a remaining capacity
of x−u.

This sequence of events is assumed for analytical conve-
nience; we derive the optimal control u∗ “as if” the decision
on the amount to accept is made after knowing the value of
demand D j. In reality, of course, demand arrives sequen-
tially over time, and the control decision has to be made
before observing all the demand D j. However, it turns out
that optimal decisions do not use the prior knowledge of
D j as we show below. Hence, the assumption that D j is
known is not restrictive.

Let Vj(x) denote the value function at the start of stage
j. Once the value D j is observed, the value of u is chosen
to maximize the current stage j revenue plus the revenue

to go, or

r ju+Vj−1(x−u),

subject to the constraint 0 ≤ u ≤ min{D j,x}. The value
function entering stage j, V j(x), is then the expected value
of this optimization with respect to the demand D j. Hence,
the Bellman equation is

Vj(x) = E

[
max

0≤u≤min{D j ,x}
{r ju+Vj−1(x−u)}

]
, (3)

with boundary conditions

V0(x) = 0, x = 0,1, . . . ,C.

Note that the Bellman equation is of the form E[max{·}] and
not maxE[·] as in many standard texts. But essentially, the
maxE[·] form can be recovered by considering the demand
D j to be a state variable along with x. While the two forms
can be shown to be equivalent, the E[max{·}] is simpler to
work with in many RM problems. In our case, this leads
to the modeling assumption that we optimize “as if” we
observed D j. The values u∗ that maximize the right-hand
side of (3) for each j and x form an optimal control policy
for this model.

Optimal Policy with Discrete Demand and Capacity:
We first consider the case where demand and capacity are
discrete. To analyze the form of the optimal control in this
case, define

ΔVj(x)≡Vj(x)−Vj(x−1).

ΔVj(x) is the expected marginal value of capacity at stage
j—the expected incremental value of the x th unit of capacity.
A key result concerns how these marginal values change
with capacity x and the stage j:

Proposition 1 The marginal values ΔV j(x) of the
value function Vj(x) defined by (3) satisfy ∀x, j: (i) ΔVj(x+
1)≤ ΔVj(x), and (ii) ΔVj+1(x)≥ ΔVj(x).

That is, at a given stage j the marginal value is de-
creasing in the remaining capacity, and at a given capacity
level x the marginal value increases in the number of stages
remaining. These two properties are intuitive and greatly
simplify the control. The resulting optimal control can
be expressed in terms of optimal protection levels y∗j for
j, j−1, . . . ,1 (class j and higher in the revenue order) by

y∗j ≡max{x : r j+1 < ΔVj(x)}, j = 1, . . . ,n−1. (4)

(Recall the optimal protection level y∗n ≡C by convention.)
The optimal control at stage j+1 is then u∗( j+1,x,D j+1) =
min{(x− y∗j)

+,D j+1}, where the notation z+ = max{0,x}
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denotes the positive part of z. The quantity (x−y∗j)+ is the
remaining capacity in excess of the protection level, which
is the maximum capacity we are willing to sell to class
j + 1.

In practice, we can simply post the protection level y∗j
in a reservation system and accept requests first come, first
serve until the capacity threshold y∗j is reached or the stage
ends, whichever comes first. Thus, the optimal protection-
level control at stage j + 1 requires no information about
the demand D j+1, yet it produces the same optimal decision
“as if” we knew D j+1 exactly at the start of stage j+1. The
reason for this is that knowledge of D j+1 does not affect the
future value of capacity, V j(x). Deciding to accept or reject
each request simply involves comparing current revenues
to the marginal value of capacity, and this comparison does
not depend on how many stage-( j+1) requests there are in
total.

Proposition 1(ii) implies the nested protection structure

y∗1 ≤ y∗2 ≤ ·· · ≤ y∗n.

One can also use booking limits in place of protection
levels to achieve the same control. Optimal nested booking
limits are defined by

b∗j ≡C− y∗j−1, j = 2, . . . ,n, (5)

with b∗1 ≡C. The optimal control in stage j + 1 is then to
accept

u∗( j + 1,x,D j+1) = min{(b j+1− (C− x))+,D j+1}.

Note that C− x is the total capacity sold prior to stage
j + 1 and b j+1 is the booking limit for class j + 1, so
(b j+1− (C− x))+ is the remaining capacity available for
class j + 1.

Finally, the optimal control can also be implemented
through a table of bid prices. Indeed, if we define the stage
j + 1 bid price by

π j+1(x)≡ ΔVj(x), (6)

then the optimal control is

u∗( j + 1,x,D j+1)

=
{

0 if r j+1 < π j+1(x)
max{z : r j+1 ≥ π j+1(x− z)} otherwise.

In words, we accept the zth request in stage j + 1 if the
price r j+1 exceeds the bid price value π j+1(x− z) of the zth

unit of capacity that is allocated. In practice, we can store
a table of bid prices and process requests by sequentially

comparing the price of each product to the table values
corresponding to the remaining capacity. We summarize
these results in the following theorem.

Theorem 1 For the static model defined by (3), the
optimal control can be achieved using either (i) nested
protection levels defined by (4), (ii) nested booking limits
defined by (5), or (iii) bid-price tables defined by (6).

Optimality Conditions for Continuous Demand: When
the capacity is continuous and demand at each stage has a
continuous distribution, the dynamic program is still given by
(3); however D j, x, and u are now continuous quantities. The
analysis of the dynamic program is slightly more complex
than it is in the discrete-demand case, but many of the
details are quite similar. Hence, we only briefly describe
the key differences.

The main change is that the marginal value ΔV j(x) is
now replaced by the derivative of V j(x) with respect to x,
∂
∂xVj(x). This derivative is still interpreted as the marginal

expected value of capacity. The marginal value ∂
∂xVj(x) is

shown to be decreasing in x (equivalently, V j(x) is concave
in x). Therefore, the optimal control in stage j + 1 is to
keep increasing u (keep accepting demand) as long as

r j+1 ≥ ∂
∂x

Vj(x−u)

and to stop accepting once this condition is violated or the
demand D j+1 is exhausted, whichever comes first. Again,
this decision rule can be implemented with optimal protec-
tion levels, defined by

y∗j ≡max

{
x : r j+1 <

∂
∂x

Vj(x)
}

, j = 1, . . . ,n−1.

One of the virtues of the continuous model is that it leads to
simplified expressions for the optimal vector of protection
levels y∗ = (y∗1, . . . ,y

∗
n). We state the basic result here; see

Brumelle and McGill (1993) for a proof.
First, for an arbitrary vector of protection levels y and

vector of demands D = (D1, . . . ,Dn), define the following
n−1 fill events

B j(y,D) ≡ {D1 > y1,D1 + D2 > y2,

. . . ,D1 + · · ·+ D j > y j}, j = 1, . . . ,n−1.

B j(y,D) is the event that demand to come in stages 1,2, . . . , j
exceeds the corresponding protection levels. A necessary
and sufficient condition for y∗ to be an optimal vector of
protection levels is that it satisfy the n−1 equations

P(B j(y∗,D)) =
r j+1

r1
, j = 1,2, . . . ,n−1. (7)
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That is, the jth fill event should occur with probability equal
to the ratio of class ( j +1) revenue to class 1 revenue. As
it should, this reduces to Littlewood’s rule (2) in the n = 2
case, since P(B1(y∗,D)) = P(D1 > y∗1) = r2/r1. Note that

B j(y,D) = B j−1(y,D)∩{D1 + · · ·+ D j > y j},

so the event B j(y,D) can occur only if B j−1(y,D) occurs.
Also, if y j = y j−1 then B j(y,D) = B j−1(y,D). Thus, if
r j < r j−1, we must have y∗j > y∗j−1 to satisfy (7). Thus, the
optimal protection levels are strictly increasing in j if the
revenues are strictly decreasing in j.

Computing Optimal Protection Levels: One approach in
computing the optimal protection levels in the n-class static
model is based on using dynamic programming recursion
(3) directly and requires that demand and capacity are
discrete - or in the continuous case that these quantities
can be suitably discretized. A second approach is based
on using (7) together with Monte Carlo integration. This
is most suitable for the case of continuous demand and
capacity, though the discrete case can be computed (at
least heuristically) with this method as well. The idea is
to simulate K demand vectors dk = (dk

1, ...,d
k
n), k = 1, ..,K,

from the forecast distributions for the n classes. We then sort
through these values to find thresholds y that approximately
satisfy (7). Note that

P(B j(y,D)) = P(
j

∑
i=1

Di > y j|B j−1(y,D))P(B j−1(y,D)).

Thus, (7) implies that y∗ must satisfy

P(
j

∑
i=1

Di > y∗j |B j−1(y∗,D)) =
1

P(B j−1(y∗,D))
r j+1

r1
=

r j+1

r j

for j = 1, ...,n−1. The following algorithm, suggested by
Robinson (1995), computes the optimal y∗ approximately
using the empirical conditional probabilities estimated from
the sample of simulated demand data:

STEP 0: Generate and store K random demand vectors
dk = (dk

1, ...,d
k
n). For k = 1, ..,K and j = 1, ...,n−1,

compute the partial sums Sk
j = ∑ j

i=1 dk
i and form

the vector Sk = (Sk
1, ...,S

k
n−1). Initialize a list ϒ =

{1, ...,K} and counter j = 1.
STEP 1: Sort the vectors Sk, k ∈ ϒ by their jth component

values, Sk
j. Let [l] denote the lth element of ϒ in

this sorted list so that

S[1]
j ≤ S[2]

j · · · ≤ S[|ϒ|]
j .

STEP 2: Set l∗ = 	 r j+1
r j
|ϒ|
. Set y j = 1

2 (S[l∗]
j + S[l∗+1]

j ).

STEP 3: Set ϒ← {k ∈ ϒ : Sk
j > y j}, and j ← j + 1. IF

j = n−1 STOP. ELSE GOTO STEP 1.

The complexity of this method is O(nK logK), which
makes it relatively efficient even with large samples.

Computing Protection Levels with No Demand Infor-
mation: So far, the models and methods we introduced
assume the probability distribution of demand in each class
is known. However, in many applications, the revenue man-
ager does not know the demand distribution, either because
data is not available, or forecasting is challenging because
data is censored (i.e., represents only sales as opposed to
true demand). In those cases, optimal protection levels
can be computed adaptively, without recourse to the com-
plex cycles of forecasting and optimization. The method
of van Ryzin and McGill (2000) updates booking policy
parameters from one flight to the next, keeping track of the
occurrence of fill events on previous flights. The method
relies on the optimality conditions (7) and works for un-
derlying continuous demand distributions. It is provably
convergent to an optimal policy with repeated application.
This approach can also be used in simulation-based opti-
mization when demand distributions are known because the
main idea is to compute stochastic-gradients of the objec-
tive function. Kunnumkal and Topaloglu (2008) present a
similar stochastic approximation method provably conver-
gent for the case of discrete demand distributions. More
recently, Huh and Rusmevichientong (2007) proposed an-
other adaptive method that uses results from online convex
optimization theory and works directly with the expected
revenue function (3), as opposed to fill events.

2.3 Dynamic Models

Dynamic models relax the assumption that the demand
for classes arrives in a strict low-to-high revenue order.
Instead, they allow for an arbitrary order of arrival, with the
possibility of interspersed arrivals of several classes. While
at first this seems like a strict generalization of the static case,
the dynamic models require the assumption of Markovian
(such as Poisson) arrivals to make them tractable. This
puts restrictions on modeling different levels of variability
in demand. Indeed, this limitation on the distribution of
demand is the main drawback of dynamic models in practice.
In addition, dynamic models require an estimate of the
pattern of arrivals over time (called the booking curve),
which may be difficult to calibrate in certain applications.
Thus, the choice of dynamic versus static models essentially
comes down to a choice of which set of approximations
is more acceptable and what data is available in any given
application.

Retaining the other assumptions of the static model,
one can develop a dynamic programming formulation and
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determine the time-based booking limits, protection levels,
or bid prices to optimally control the capacity of the resource.

3 NETWORK PROBLEMS

We next examine the problem of capacity control on a
network of resources; for example, managing the capacities
of a set of flights in a hub-and-spoke airline network with
connecting and local traffic. The dependence among the
resources in such cases is created by customer demand;
customers may require several resources simultaneously
(e.g. two connecting flights) to satisfy their needs. Thus,
limiting availability of one resource may cause a loss of
demand for complementary resources. This in turn creates
dependencies among the resources that necessitates making
control decisions at the network level. In the airline industry,
network RM is also called “the passenger mix problem” or
“O&D (origin-destination) control”.

Simulation studies of airline hub-and-spoke networks
have shown that there can be significant revenue benefits
from using network methods over single-resource methods;
see Williamson (1992) and Belobaba (2001). In terms of
industrial practice, the potential improvements have been
sufficient to justify significant investments in network RM
systems within the airline industry, hotel industry, and else-
where. However, network RM poses significant implemen-
tation and methodological challenges. On the implementa-
tion side, network RM vastly increases the complexity and
volume of data that one must collect, store and manage. On
the forecasting side, it requires a massive increase in the
scale of the forecasting system, which now must produce
forecasts for each individual itinerary and price-class com-
bination - which we will call a product - at each point in the
booking process. Optimization is more complex as well. In
the case of a single-resource problem there are many exact
optimization methods as we discussed in Section 2, but
in the network case exact optimization is, for all practical
purposes, impossible. Therefore optimization methods nec-
essarily require approximations of various types. Achieving
a good balance between the quality of the approximation
and the efficiency of the resulting algorithms becomes the
primary challenge.

3.1 Types of Controls

As with single-resource problems, in network problems
there are a variety of ways one can control the availability
of capacity. We next look at the major categories of network
controls. Most are network versions of the controls used
for single-resource problems. But others, virtual nesting in
particular, are somewhat unique to the network setting.

3.1.1 Virtual nesting controls

Nested booking limits, of the type we saw in Section 2 for the
single-resource case, are difficult to translate directly into a
network setting. However, the ability of nested controls to
dynamically share the capacity of a resource - and thereby
recover the pooling economies lost in partitioned controls
- is an attractive feature. Thus, it is desirable to have a
control that combines these features.

Virtual nesting control –a hybrid of network and single-
resource controls– provides one solution. This control
scheme was developed by American Airlines beginning in
1983 as a strategy for incorporating some degree of network
control within the single-leg nested allocation structure of
American’s (then leg-based) reservation systems; see Smith,
Leimkuhler and Darrow (1992).

Virtual nesting uses single-resource nested booking con-
trols at each resource in the network. However, the classes
used in these nested allocations are not the fare classes them-
selves. Rather, they are based on a set of virtual classes.
Products are assigned to a virtual class through a process
known as indexing. This indexing could be updated over
time as network demand patterns change, though typically
indexing is not a “real time” process. Nested booking limits
(or protection levels) for each resource are then computed
using these virtual classes.

Virtual nesting has proven to be quite effective and
popular in practice, especially in the airline industry. It
preserves the booking-class control logic of most airline
computer reservation systems (CRS) yet incorporates net-
work displacement cost information. It therefore provides a
nice compromise between leg-level and full network O&D
control.

3.1.2 Bid-price controls

While nested allocations are difficult to extend directly to
networks, network bid-price controls are a simple extension
of their single-resource versions described in Section 2.
In a network setting, a bid-price control sets a threshold
price - or bid-price - for each resource in the network.
Roughly, this bid-price is an estimate of the marginal cost
to the network of consuming the next incremental unit of
the resource’s capacity. When a request for a product comes
in, the revenue of the request is compared to the sum of the
bid prices of the resources required by the product. If the
revenue exceeds the sum of the bid prices, the request is
accepted; if not, it is rejected. We refer the reader to Talluri
and van Ryzin (2004a) for the origins of bid prices controls
and the theoretical properties of bid-price mechanisms.
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3.2 A General Network Model

We begin with a basic model of the network allocation
problem. The network has m resources which can be used
to provide n products. We let ai j = 1 if resource i is used
by product j and ai j = 0 otherwise. Define the incidence
matrix A = [ai j]. Thus, the j-th column of A, denoted A j, is
the incidence vector for product j. We also use the notation
i ∈ A j to indicate that resource i is used by product j.

The state of the network is described by a vector x =
(x1, . . . ,xm) of resource capacities. If product j is sold,
the state of the network changes to x−A j. To simplify
our analysis at this stage, we will ignore cancelations and
no-shows.

Time is discrete, there are T periods and the index t
represents the current time (here, time indices run forwards).
Within each time Period t, we assume that at most one
request for a product can arrive; that is, the discretization
of time is sufficiently fine so that the probability of more
than one request is negligible. This assumption can be
generalized in many of the results below, but is the simplest
case to present. It is analogous to the network version of
the dynamic single-resource model.

To make the notation more compact, demand in Period
t is modeled as the realization of a single random vector
R(t) = (R1(t), . . . ,Rn(t)). If R j(t) = r j > 0, this indicates
a request for product j occurred and that its associated
revenue is R j(t); if R j(t) = 0, this indicates no request for
product j occurred. A realization R(t) = 0 (all components
equal to zero) indicates that no request from any product
occurred at time t. For example, if we have n = 3 products,
then a value R(t) = (0,0,0) indicates no requests arrived,
a value R(t) = (120,0,0) indicates a request for product
1 with revenue of $120. Note by our assumption that at
most one arrival occurs in each time period, at most one
component of R(t) can be positive (as indicated in the
example above). More formally, let En = {e0,e1, . . . ,en},
where e j is the j-th unit n-vector and e0 is the zero n-vector,
and define the set S = {R : R = αe,e ∈ En,α ≥ 0}. Then,
R(t) ∈ S . The revenue R j(t) associated with product j
may be random as well. The sequence {R(t); t ≥ 1} is
assumed to be independent with known joint distributions
in each Period t. When revenues associated with product
j are fixed, we will also denote these by r j . We use the
notation R(t)� for the transpose of the vector R(t).

Given the current time, t, the current remaining capacity
x and the current request R(t), we are faced with a decision:
Do we or do we not accept the current request?

Let an n-vector u(t) denote this decision, where u j(t) =
1 if we accept a request for product j in Period t, and
u j(t) = 0 otherwise. In general, the decision to accept,
u j(t), is a function of the remaining capacity vector x and
the revenue r j of product j, i.e. u j(t) = u j(t,x,r j), and
hence u(t) = u(t,x,r). Since we can accept at most one

request in any period and resources cannot be oversold, if
the current seat inventory is x, then u(t) is restricted to the
set U (x) = {u ∈ En : Au≤ x}.

3.3 The Structure of the Optimal Controls

In order to formulate a dynamic program to determine
optimal decisions u∗(t,x,r), let Vt(x) denote the maximum
expected revenue-to-go given remaining capacity x in Period
t. Then Vt(x) must satisfy the Bellman equation

Vt(x) = E

[
max

u∈U (x)

{
R(t)�u(t,x,R(t))+Vt+1(x−Au)

}]
,

(8)
with the boundary condition VT+1(x) = 0,∀x.

Therefore, a control u∗ is optimal if and only if it
satisfies:

u∗j(t,x,r j) =
{

1 r j ≥Vt+1(x)−Vt+1(x−A j), A j ≤ x
0 otherwise

(9)
The control (9) says that an optimal policy for accepting
requests is of the form: accept revenue r j for product j if
and only if we have sufficient remaining capacity and

r j ≥Vt+1(x)−Vt+1(x−A j),

where R j(t) = r j is the revenue value of the request for
product j. This reflects the rather intuitive notion that we
accept a revenue of r j for product j only when it exceeds
the opportunity cost of the reduction in resource capacities
required to satisfy the request.

One can show that bid prices are not able to achieve
the optimal control (9) in all cases due to the non-additive
nature of the value function; see Talluri and van Ryzin
(1998). At the same time, one can show that bid-price
controls have good asymptotic properties and are in fact
asymptotically optimal as the number of seats sold and the
demand are increased (proportionately), as shown in Talluri
and van Ryzin (1998). However, the real test of network
control methods and models in practice must be determined
through careful simulation testing.

3.4 Approximations Based on Network Models

The formulation (8) cannot be solved exactly for most
networks of realistic size. Instead, one must rely on ap-
proximations of various types. Most approximation methods
proposed to date follow one of two basic (not necessarily
mutually exclusive) strategies: The first, which we look at
in this subsection, is to use a simplified network model.
For example, posing the problem as a static math program.
The second strategy, which we look at in Section 3.5, is
to decompose the network problem into a collection of
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single-resource problems. Whichever method is used, it
is useful to view all such methods as producing different
approximations of the optimal value function. The outputs
from these approximations can be used to construct controls
of various types - bid-price controls, partitioned or nested
allocations, or virtual nesting controls.

Among the most useful information provided by an
approximation method are estimates of displacement (op-
portunity) costs - or bid prices. These are used either directly
in bid-price control mechanisms, or indirectly in other mech-
anisms like virtual nesting. Given an approximation method
M that yields an estimate of the value function V M

t (x), we
can approximate the displacement cost of accepting product
j by

V M
t (x)−V M

t (x−A j)≈ ∇�x V M
t (x)A j,

where ∇xV M
t (x) is the gradient of the value function ap-

proximation V M
t (x), assuming the gradient exists. The bid

prices are then defined by

πM
i (t,x) =

∂
∂xi

V M
t (x)

If the gradient does not exist, then ∇xV M
t (x) is typically

replaced (at least implicitly) by a subgradient of V M
t (x). If

the approximation is discrete, then first differences are used
in place of partial derivatives.

Clearly, one objective for an approximation method is
to produce a good estimate of the value function - and more
importantly, a good estimate of the displacement costs or
bid prices. On the other hand, speed of computation mat-
ters as well. The approximation V M

t (x) may be a static
approximation that must be resolved quite frequently in
practice to account for changes in remaining capacity x and
remaining time t. A static method that is accurate but very
computationally complex will therefore be of little use in
practice. Thus, one should always keep these two criteria -
accuracy and speed - in mind when judging network approx-
imation methods. We introduce two network approximation
methods below.

Deterministic Linear Programming Model: The deter-
ministic linear programming (DLP) method uses the ap-
proximation

V LP
t (x) = max

z
r�z s.t. Az≤ x, 0≤ z≤ E[D] (10)

where recall D = (D1, . . . ,Dn) is the vector of demand-to-
come (demand over the periods t,t + 1, . . . ,T ) for product
j, j = 1, . . . ,n, and r = (r1, ..,rn) is the vector of revenues
associated with the n products. The decision variables
z = (z1, . . . ,zn) represent partitioned allocation of capacity
for each of the n products. The approximation effectively

treats demand as if it were deterministic and equal to its
mean E[D]. Once the DLP is solved, typically its dual
solution, not the primal solution, is used: the optimal dual
variables, πLP, associated with the constraints Az ≤ x are
used as bid prices.

The DLP was among the first models analyzed for
network RM; see the references in Talluri and van Ryzin
(2004a). The main advantage of the DLP model is that it is
computationally very efficient to solve. Due to its simplicity
and speed, it is a popular in practice. The weakness of the
DLP approximation is that it considers only the mean demand
and ignores all other distributional information. Despite this
deficiency, simulation studies have shown that with frequent
reoptimization, the performance of DLP bid prices can be
quite good. In general, the performance of the DLP method
(like many network methods) depends heavily on the type
of network, the order in which fare products arrive and the
frequency of reoptimization.

Randomized Linear Programming Model: Randomized
linear programming (RLP) approach proposes one way of
incorporating stochastic information into the DLP method:
replace the expected value E[D] by the random vector D
itself and the expected value of the resulting optimal solution
then forms an approximation to the value function. That is,
define

Ht(x,D) = max
z

r�z s.t. Az≤ x, 0≤ z≤ D (11)

The optimal value Ht(x,D) is a random variable. Let π(x,D)
denote an optimal vector of dual prices for the set of con-
straints Az ≤ x, and note that π(x,D) is also a random
vector.

Next, consider approximating the value function by the
expected value of Ht(x,D),

V RLP
t (x) = E[Ht(x,D)]. (12)

Note the right hand side corresponds to a “perfect infor-
mation” approximation, because it reflects a case in which
future allocations (and revenues) are based on perfect knowl-
edge of the realized demand D. We then use ∇xE[Ht(x,D)]
as a vector of bid prices.

The RLP approach, proposed by Talluri and van
Ryzin (1999), relies on an efficient method to compute
∇xE[Ht(x,D)]: First, simulate K independent samples
of the demand vector, D(1), . . . ,D(K), and solve (11) for
each sample. Then, estimate the gradient using π RLP =
1
K ∑K

i=1 π(x,D(i)). That is, simply average the dual values
from K perfect-information allocation solutions on ran-
domly generated demands. Hence the name randomized
linear programming.
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3.5 Approximations Based on Decomposition

Another strategy for generating network controls is to de-
compose the problem (approximately) into m single-resource
problems, each of which may incorporate some network
information, but which are nevertheless independent. For-
mally, one can think of such a decomposition method as
follows: an approximation method M decomposes the net-
work problem into m single-resource models, denoted model
i = 1, . . . ,m, with value functions V Mi

t (xi), that depends on
the time-to-go t and the remaining capacity x i of resource
i. These may be constructed by incorporating some static,
network information into the estimates. Then, the total
value function is approximated by

V M
t (x) =

m

∑
i=1

V Mi
t (xi).

Typically, such approximations are discrete and yield bid
prices

πi(t,x) = ΔV Mi
t (xi), i = 1, ..,m.

where ΔV Mi
t (xi) =V Mi

t (xi)−V Mi
t (xi−1) is the usual marginal

expected value produced by model i.
Decomposition approximations have several advantages

relative to network approximations. First, because they are
based on single-resource problems, the displacement costs
and bid prices are typically dynamic and can be represented
as a table of outputs (in the case of dynamic programming
models) or simple formulas (in the case of static approxi-
mations). Thus, it is easy to quickly determine the effect of
changes in both the remaining time t and remaining capacity
x on the resulting bid prices. This should be contrasted
with network models, which must typically be re-solved
to determine the effects of such changes. Second, because
they are often based on simple, single-resource models, de-
composition methods allow for more realistic assumptions,
such as discrete demand and capacity, sequential decision
making over time and stochastic dynamic demand.

The primary disadvantage of decomposition methods is
that in the process of separating the problem by resources,
it can be difficult to retain important network effects in the
approximations. However, hybrids of the two approaches
can be used to try to achieve the benefits of both network
and decomposition methods. We now introduce one of the
decomposition methods commonly used in practice.

Displacement adjusted virtual nesting (DAVN): While
virtual nesting is often viewed as a control strategy - and
indeed is used as such in most cases in practice - it can also
be viewed as a decomposition approximation to the network
value function. Indeed, the marginal values produced by
the virtual nesting approximation can be used in a bid-price

control scheme which avoids the virtual nesting controls
entirely.

DAVN starts with a set of static bid prices - or marginal
value estimate - which we denote by π̄ = (π̄1, . . . , π̄m). These
estimates may be obtained, for example, from one of the
network math programmingmodels presented in Section 3.4.
Given the bid prices π̄ , one then solves a leg-level problem
at each resource i as follows:

First, for all products j that use resource i, a displace-
ment adjusted revenue r̄i j is computed using

r̄i j = r j− ∑
l∈A j,l �=i

π̄l. (13)

That is, the revenue of product j on resource i is reduced
by the static bid-price values of the other resources used
by product j. This adjustment is intended to approximate
the net benefit of accepting product j on resource i. Note
that the displacement adjusted revenue could be negative.
In this case, Produce j is never accepted on resource i, and
typically we either eliminates product j from the problem
on resource i or (equivalently) set the displacement adjusted
revenue value to zero.

The next step is clustering - or indexing. In this step,
the displacement adjusted revenue values on each resource
are clustered into a specified number c̄ of virtual classes - or
buckets - denoted c = 1, .., c̄. The number of virtual classes,
c̄, is a design parameter, but is typically on the order of 10. It
may also vary across resources. The indexing from product
j to Virtual Class c on each resource can be performed using
a variety of clustering algorithms. The particular indexing
method and clustering criteria are also design decisions and
vary from implementation to implementation.

Once the virtual classes are formed, we compute a
representative revenue value for each class - usually the
demand-weighted average revenue. Then, the distribution
of total demand in a virtual class is computed - typically by
adding the means and variances of demand-to-come. Next,
one solves a multi-class, single-resource problem based
on these data. The problem could be solved exactly using
the static single-leg model or approximately using heuristics
such as the expected marginal seat revenue (EMSR) approach
of Belobaba (1989). We call this model DAVNi. This
procedure yields a set of booking limits (or protection
levels) for the virtual classes at each resource i and a value
function estimate V DAVNi

t (xi).
The resulting DAVN approximation can be used in two

basic control strategies. Most often, the control is a booking
limit control on the virtual classes. That is, a request for
product j is converted into a request for the corresponding
virtual class at each resource i required by product j. (Note
the virtual class on each of these resources need not be the
same.) If the virtual class on each resource is available,
the request is accepted. If the virtual class on one or more
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resources is closed, the request is rejected. Thus, once the
indexing from products to virtual classes is performed, the
control logic is an independent, nested allocation class-level
control at each resource in the network. This is the primary
appeal of - and motivation for - the method in the airline
industry, because it produces the sort of booking-class-level
controls that are widely used by CRSs.

However, DAVN can also be used to produce bid-price
controls. The bid price for resource i is simply given by

πDAVN
i (t,x) = ΔV DAVNi

t (xi)

where as usual ΔV DAVNi
t (xi) = V DAVNi

t (xi)−V DAVNi
t (xi−1)

denotes the marginal value generated by model i.
Regardless of the control method, typically the network

model that was used to generate the static bid prices π̄ is
re-solved and the products are re-indexed periodically as
demand conditions change. In the airline industry, for
example, the indexing process is a fairly major change to
the CRS, so often it is only done on a seasonal basis.

Simulation-based optimization to compute optimal con-
trol parameters: Consider optimizing nested protection
levels of a virtual nesting scheme. The idea is to first fix
an indexing scheme and a nesting order on each resource
(for example, using DAVN), and then to set nested protec-
tion levels (or booking limits) for each resource based on
this nesting order. Using a network-level simulation, one
can generate samples of demand and compute stochastic
gradients - “noisy” estimates of the partial derivatives of
the network revenue with respect to the protection level
parameters of the control policy. This gradient information
can then be used in a steepest descent algorithm to search
for a network-optimal (rather than resource-level optimal)
set of protection level parameters. van Ryzin and Vulcano
(2006) propose such a stochastic gradient method assuming
continuous demand and continuous capacity. They show
how the stochastic gradients can be efficiently computed.
Bertsimas and de Boer (2005) focus on the discrete demand,
discrete capacity problem, and their proposed methods relies
on first difference rather than first gradient estimates. We
refer the reader to these two articles for more information.

4 CRITICAL ISSUES: DEMAND MODELS,
OVERBOOKING, MEASURING
EFFECTIVENESS OF RM

Note that the models we introduced above made specific,
possibly unrealistic, assumptions about the demand; see our
discussion in Section 2.2. Recent line of research relaxes the
simplistic demand assumptions of the traditional models,
trying to capture explicitly the choice behavior that customers
display when faced with multiple alternatives (products
or fare classes) in a purchase context. Talluri and van

Ryzin (2004b) develop the choice-based RM theory for the
single-leg case, and van Ryzin and Vulcano (2008) propose
a simulation-based optimization approach that improves an
initial set of network virtual protection levels accounting
for choice behavior effects. Demand modeling remains a
critical decision in all RM applications, with implications
for both forecasting and optimization.

Note that all of the models introduced so far assume
there are no cancelations or no-shows, which, in fact, are
an integral part of the RM problem in travel and hospitality
industries. Cancelations bring an additional layer of com-
plexity, especially to the network RM problem. Typically,
overbooking and booking control decisions are carried out
separately in airlines, and virtual capacities computed in the
overbooking module of a RM system is the main input to
booking control. This reduces the complexity of forecasting
and optimization significantly. We refer the reader to Tal-
luri and van Ryzin (2004a) and Karaesmen and van Ryzin
(2008) for more information. For use of simulation-based
optimization in solving overbooking problems, we refer the
reader to Karaesmen and van Ryzin (2004).

In addition to development of methodology, one critical
issue in RM is measuring effectiveness of RM systems.
Simulation is used to measure the revenue opportunity during
pre-implementation phase and to measure revenue benefits
post-implementation. This latter topic and other issues are
covered in more depth in Talluri and van Ryzin (2004a),
along with a broader range of RM-related problems on
dynamic pricing and auctions that are important in other
business contexts.

5 CONCLUSIONS

RM is now a highly developed scientific and professional
practice in the airline industry. This airline success has lead
to a rapidly growing interest in using RM techniques in
other industries. We have focused our attention on the core
methodology developed for use in the airline industry (and
related industries like hotels) over the last 25 years. We
also tried to give a glimpse of use of simulation in RM.

Current industry adopters of RM include hotels, car
rental companies, shipping companies, television and radio
broadcasters, energy transmission companies, manufactur-
ing, advertising, financial services, and apparel retailers.
With each new industry application, one encounters new
challenges in both modeling, forecasting and optimization,
so research in the area continues to grow. While the details
of RM problems can change significantly from one industry
to the next, the focus is always on making better demand
decisions - and not manually with guess work and intuition
- but rather scientifically with models and technology, all
implemented with disciplined processes and systems.
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