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ABSTRACT

Information superiority is considered a critical capability for
future joint forces. As advances in technology continue to
boost our ability to communicate in new and different ways,
military forces are restructuring to incorporate these tech-
nologies. Yet we are still limited in our ability to measure
the contributions made by information networks. We de-
scribe three recent studies at the Naval Postgraduate School
that involve information networks. First, we examine a
simulation model expanded from a two-person, zero-sum
game to explore how information superiority contributes
to battlefield results and how sensitive it is to information
quality. Second, we examine how network-enabled com-
munications affect the logistics operations in a centralized
receiving and shipping point. The results are intended to
provide operational insights for terminal node operations
within a sustainment base. Third, we explore how social
networks might be incorporated into agent-based models
representing civilian populations in stability operations.

1 INTRODUCTION

For many decades, Department of Defense (DoD) and other
national defense analysts have studied potential large-scale
warfare between states. The results of these analyses often
inform decisions on how nations should build, organize,
maintain, and, if necessary, employ their military and se-
curity forces. Since, happily, there is a dearth of such
conflicts, most of this analysis has been and is being done
via experimentation. Because of the expense and other

constraints associated with live experimentation, much of
this experimentation is done with simulation. With the in-
creasing reliance on new technologies and network-enabled
operations, incorporating information networks into the sim-
ulation models used to support these decisions is important.

In this paper, we describe three recent studies at the
Naval Postgraduate School that involve information net-
works. The three examples are quite different in how they
model aspects of information networks, as well is in the
application areas. Yet one commonality to all these studies
is that they do not build a single, baseline model and stop.
Instead, they use efficient experimental designs to conduct
a broad exploration of the simulation models’ behaviors
under various conditions.

2 ASSESSING THE VALUE OF INFORMATION
SUPERIORITY

Proponents view information superiority as a force multi-
plier; given forces of equal size and ability, the one that
possesses information superiority can achieve superior re-
sults to those of the other. Research suggests that this is,
in fact, the case. Yet, what are the risks associated with
units relying on information superiority? How can we mea-
sure the degree of superiority that an information advantage
provides? How much is enough? In a world constrained
by budgets, these questions must be addressed so a proper
balance can be made between equipment meant to destroy
our adversaries and equipment that facilitates information
superiority. It has been aptly pointed out by General Howell
M. Estes III, USAF, a former commander of Space Com-
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mand that, “you can’t take out an enemy tank with just
information” (Washburn 2001).

Unfortunately, attacking this type of problem has proven
difficult for the operations research community. As Wash-
burn (2001) says, “There is a crisis for military OR, centered
on the role of information on the battlefield. It is clear to mil-
itary professionals that information is becoming increasingly
important, but unfortunately the OR profession’s ability to
measure its contribution is still primitive.”

We do not attempt to make a breakthrough in these
“primitive” measures, but, instead, creatively apply several
methods to address the following questions:

• How do varying degrees of information superiority
affect battlefield outcomes?

• How sensitive are these outcomes to the quality of
information used to obtain information superiority?

• Given a certain level of success achieved through
information superiority, what increase in force size
is required to achieve similar results if information
superiority is taken away?

The link between information superiority and a decision
maker is key. Information superiority is the “advantage
gained by the ability to collect, process, and disseminate
an uninterrupted flow of information while exploiting or
denying an adversary’s ability to do the same” (Joint Chiefs
of Staff 2006), but this advantage is turned into improved
battlefield success through the decision-making process.

We implement a decision model based on a two-person
zero sum (TPZS) game (Bracken and Darilek 1998; Wash-
burn 2003). These games are an excellent abstraction of
military conflict since they involve two opposing sides, each
of whom must choose from an array of strategies in order
to achieve the most desirable result.

2.1 Structure of the Game

We describe the decision model with the help of Figure 1,
which we refer to as the game board. There are two sides
(red and blue), and three objectives (rectangles between
columns four and five) that represent locations where red
and blue will encounter one another.

On the game board, both red and blue begin with all their
forces at their respective start locations. Red will advance
one column per move until it reaches column 4. Blue will
deploy its forces over time into column five. Blue has the
opportunity to use a sensor placement strategy to collect
information about red movement. Red wins an encounter
in a given row when their forces in column four of that row
outnumber the blue forces in column five of the same row.

For a particular instance of game play, the value vi
associated with the objective in row i depends on the num-
ber of red and blue forces present in rows four and five,
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Figure 1: Graphic depiction of the game board (adapted
from Jackson 2008).

respectively, when the engagement occurs. Let Ri and Bi
denote these values for objective i. The total red score is
∑

3
i=1[Ri −Bi]+, where y+ = max(y,0). Red tries to maxi-

mize this score by attacking the objectives, while blue tries
to minimize it by defending the objectives.

2.1.1 General Conditions

Both red and blue understand the rules of the game. Red
knows the number of blues and the restrictions of move-
ment that pertain to blue, but will not be given any other
information. Specifically, red will not find out whether are
present during the course of play.

Blue understands the restrictions on red movement, but
does not necessarily have accurate knowledge about the total
number of red units. Blue does not know what strategy
red will employ, but will try to determine this based on
information obtained from sensors. This allows blue to
adjust its strategy as time progresses, so blue will want to
remain as flexible as possible within the rules of the game.

2.1.2 Red Strategy

In a TPZS game with information parity (i.e., where neither
side has information as to how the other will behave),
the optimal action for each side is to play their respective
strategies with the proportion that guarantees the maximum
expected value, regardless of the strategy the adversary
selects. This is known as the optimal mixed strategy, and
serves as the baseline. In this game, the optimal mixed
strategy for red can be found by solving a linear programming
problem. The optimal mixed strategy involves moving all
of red’s forces to a single row in column four, yielding three
optimal courses of action.

2.1.3 Red Movement Restrictions

During its first turn, red must move all of its units from its
start point to any positions desired in column one. During
subsequent turns, it must adhere to three important rules
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governing its movement: 1) during each turn all red units
must move out of one column and into another, higher-
numbered column; 2) red can move at most one unit across
dotted (red) paths; and 3) red can move up to the maximum
number of reds present in the previous location in each of
the respective rows across solid (black) paths.

2.1.4 Blue Movement Restrictions

Blue can move as many units into column five as desired in
blue’s initial deployment, but no units can return to the start
location once deployed. For each subsequent turn, blue can
move at most three units out of its start location; blue can
also move at most one unit across each dotted (blue) path
between adjacent rows in column five. In practice, blue will
hold back some units in order to maintain the maximum
level of flexibility, in the hopes that its sensors will provide
useful information about where red units will attack.

2.1.5 Basic Game Play Sequence

The game progresses after the number of red, number of
blue, and number of sensors have been assigned.

1. Red randomly selects an optimal course of action,
without knowing blue’s disposition. Red’s move-
ments can then be predetermined since red will not
make any decisions based on the progression of the
game. There is an additional stochastic component
to the actual movement patterns, since there are
many different ways that the red units can disperse
but meet up at the final objective.

2. Blue uses a sensor decision algorithm (described
in Section 2.1.6) to place sensors on the game
board. Only one sensor can be placed per location
in columns one through three on the game board.

3. Blue uses a movement decision algorithm (de-
scribed in Section 2.1.7) to determine the initial
deployment of blue units into column five.

4. Red moves into column one according to its prede-
termined plan, and blue makes its initial movements
into column five according to step (3).

5. Blue information is updated (if appropriate); this
information may lead to blue adjusting its units in
column five subject to its movement restrictions.

6. Play continues—with red using its predetermined
movements, and blue using its movement decision
algorithm—until the red units are in column four.
The red score is calculated and the game ends.

2.1.6 Blue Sensor Decision Algorithm

Ideally, blue will use its sensors to maximize its informa-
tional advantage. However, determining an optimal sensor

array when there are more nodes than sensors proved an
intractable task, even when the information was perfect (i.e.,
no delay and no erroneous information). We attempted to
determine if, for a given number of red, blue, and blue
sensors, an optimal sensor array could be found using sim-
ulation, but did not converge to an optimal sensor array
even after conducting a very large number of replications.
Therefore, we chose to set up a smaller simulation within
the overarching model to select a sensor array for blue that
seemed reasonable, even though it may not be optimal. This
smaller simulation works similarly to the larger simulation.
For a given number of red, blue, and blue sensors, a specific
game is played varying the probability of time delay and the
accuracy stochastically, while conducting 50 replications of
every possible sensor configuration available to blue.

2.1.7 Blue Movement Decision Algorithm

The procedure for determining how blue will move into
column five is the most complex process, and involves nu-
merous comparisons and updates. The idea is to not commit
forces before it is necessary. Blue always elects to keep
the maximum number of units at the start location as long
as possible, provided none are left there at the end of each
game. For future deployments of blue units, blue will look
to update its information concerning red’s intentions. To do
this, blue keeps track of two pieces of information about
red: 1) the maximum number of reds possible at each ob-
jective, and 2) the minimum number of reds required at
each objective. These two values are based on red’s move-
ment restrictions. Blue evaluates the differences between
the maximum number possible at a particular objective, and
the current number of blues deployed to that objective, and
seeks to balance the differences evenly across the objectives.

Of course, all of these calculations are influenced by the
accuracy and timeliness of information transmission. If there
is a delay in sending information, blue loses the opportunity
to take advantage of that information. However, prior to
the next turn, information about the maximum number of
reds possible at each objective is first updated based on
the delayed information, then it is updated based on the
availability of any new information, and finally blue makes
its next deployment of units. There is no direct resolution
for any potential conflicting or ambiguous information.

2.2 Experiment

The model was implemented in Java with the addition of
LPSolve, which is a freeware linear program/mixed-integer
program (LP/MIP) solver that is compatible with Java.

The model has five parameters: the number of red
(R), number of blue (B), number of blue sensors (SB),
accuracy variation (AV ), and probability of time delay
(PD). We evaluate situations where R = {2, . . . ,25} and
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B = {1, . . . ,b3R−1c}. (Note that if B ≥ 3R, blue can de-
fend each location without any concern that red will score
any points. Thus, it is not important to explore this region.)

The number of blue sensors SB varies from 1 to 9. Only
one sensor can be placed at any of the nine discrete locations
on the game board, located in columns one through three.
Blue is then able to use this information to varying degrees
to adjust its course of action.

The quality of the information may be affected by
the accuracy variation, which has six distinct levels. The
percentages of time that various miscounts of red units occur
area are shown (to the nearest percent) in Table 1.

Table 1: Probabilities of miscounting of the number of red.

Discrepancy in red count
AV ±5 or

Level 0 ±1 ±2 ±3 ±4 more
1 68% 27% 40% <1% <1% <1%
2 38% 30% 18% 9% 3% 2%
3 26% 23% 19% 13% 9% 10%
4 20% 18% 16% 14% 11% 21%
5 16% 15% 14% 12% 11% 32%
6 13% 13% 12% 12% 10% 40%

The final factor in the model is the probability of a
time delay. This ranges from 0.0 to 0.8. A value of 0.5
means that there is a 50% chance that a delay will occur.
The length of the delay is always only a single turn. Thus,
a report that blue expected to receive during its current turn
will not be available until the following turn.

Both the probability of time delay and the accuracy
variation apply uniformly to each sensor being employed
within a specific game (i.e., each sensor will have the
same probability of delay and the same accuracy variation).
This was done primarily for the sake of simplicity, but the
restriction could be relaxed in future studies.

For each specific set of inputs, the game will run for a
predetermined number of replications, which will constitute
one run of the model. For each run, the model will output
a low score, high score, and the average score for red.

A total of 948 combinations of red and blue are ex-
amined; for each of these, 99 combinations of the number
of sensors, the accuracy variation, and probability of delay
are examined, and 50 replications of each of these 93,852
games were conducted.

2.3 Results

Jackson (2008) does a detailed analysis of the results using a
mix of techniques (metamodeling, graphical analysis, etc.).
We provide a few snapshots from his work to summarize
some of the key findings. The baseline of comparison is the
game value (i.e., expected red score) when no sensors are

available and each player uses an optimal mixed strategy;
this baseline game value can be determined mathematically.

First, consider Figure 2. For each combination of red
and blue units, two average values are computed from the
simulation experiment: (i) the game values when no sensors
are available, and (ii) the average red scores when blue has
one or more sensors, averaged across all the variations of
SB, AV , and PD. For all instances where the number of red
units is greater than five, the average red score is lower
when blue has sensors. Observe that the magnitude of the
improvement is greatest when B≈ 1.5R, and sensors provide
the least value when B is near either endpoint of its range
(1 or 3R−1 for a particular R).

Next, for an overview of the impact of using different
numbers of sensors as a function of the number of red and
blue units, see Figure 3. The vertical axis displays the
scaled decrease in the red score, defined as

D∗ = [(Game Value)− (Mean Red Score)]/R. (1)

The patterns in Figures 2 and 3 continue as R rises.
In Table 2 we provide slices of the results when R = 17
for various B to show these ideas more clearly. Results for
SB = 6, 7, and 8 (not shown) are similar to those for SB = 5
and SB = 9.

Table 2: The value of sensor information for various numbers
of blue units (B) and numbers of blue sensors (SB), when
the number of red (R) is 17.

Info. Number of Blue
SB Value 6 10 17 27 40
1 D∗ 0.098 0.133 0.140 0.192 0.157

EB 5.0 6.8 7.2 9.8 8.0
2 D∗ 0.185 0.232 0.258 0.318 0.190

EB 9.5 11.8 13.1 16.2 9.7
3 D∗ 0.190 0.262 0.266 0.305 0.189

EB 9.7 13.3 13.6 15.6 9.6
4 D∗ 0.200 0.275 0.295 0.326 0.195

EB 10.2 14.0 15.0 16.6 10.0
5 D∗ 0.220 0.289 0.322 0.367 0.205

EB 11.2 14.8 16.4 18.7 10.4
9 D∗ 0.217 0.287 0.326 0.367 0.205

EB 11.1 14.6 16.6 18.7 10.5

Regression analysis allows a more detailed investigation
of the how the five factors and their interactions affect the red
score. It reveals that nonlinear relationships exist between
the value of information superiority and both force ratio and
force size. There is an initial minimal force requirement
before information has much value. Additionally, once
force size reaches a certain point, the value of information
superiority begins to decline sharply.
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Figure 2: Comparison of average red scores with sensors to expected red scores without sensors.

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Number of Red Units

Im
pr

ov
ed

 %
 D

ec
re

as
e 1 Sensor

2 Sensors
3 Sensors
4 Sensors
5 Sensors
6 Sensors
7 Sensors
8 Sensors2 3 4 5 6 7 8 9 10 11 12

 

Sc
al

ed
 D

ec
re

as
e

Figure 3: The value of sensor information in terms of the scaled percent decrease in red score.

The experimental results also suggest that decreasing
information quality degrades the value of information su-
periority more uniformly. In this study, poor information
quality is only slightly (at best) mitigated by an increased
number of sensors. Finally, the results show that while there
are risks to relying on information superiority in terms of po-
tential decreases in battlefield performance, there is a much
greater potential for increased battlefield performance.

This study explores the contribution of information in a
practical manner which yields useful insights. Preliminary
results are intriguing, and we feel that this approach has
significant potential for further work.

3 SOCIAL NETWORKS IN A SIMULATION OF
URBAN CULTURAL GEOGRAPHY

Civilian human behavior representation is the most sig-
nificant gap in representing political, military, economic,
social, information and infrastructure (PMESII) aspects of
the operational environment in urban operations. Since hu-
man behavior and societal dynamics are far too complex
to be adequately represented by a single analytic model,
an approach taken by Seitz (2008) and Ferris (2008) is
to combine several different models: three simple analytic
models of specific aspects of human beliefs or behavior,
along with a stochastic simulation model that can capture
some of the richness of the operational environment and
the mutual interactions among diverse sets of agents. They
show that transferring simple analytic models into advanced

simulation software developed for other purposes can bring
unpredictable difficulties.

In this section, we briefly describe some of Seitz’s
findings regarding the incorporation of social network and
attitudinal influence models into an agent-based simulation.
Pythagoras (Northrup Grumman, 2008) was chosen because
it is an existing government-owned, open-source, simulation
modeling platform, which had recently been enhanced by
the developer to remove some of its prior limitations in its
abilities to map certain sorts of human behavior.

The broad topic of representing urban cultural geog-
raphy is an ongoing effort for the U.S. Army Training
& Doctrine Command Analysis Center–Monterey (TRAC-
MTRY). Seitz’s work is but one of several approaches
(including the development of new simulation modeling
platform) that TRAC is investigating, and many other agen-
cies and researchers are seeking ways to gain insights from
other models of stability and support operations.

3.1 Social And Attitudinal Influence

3.1.1 Social Network Structure

A society consists of a great number of social classes.
Members of these classes share the same ideas, thoughts
and beliefs, and are connected within a social network.
The reasons for belonging to a social network can be very
different. They can depend on birth, education, profession,
religion, hobbies, politics, and more. Social network the-
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ory tells us that people influence, and are influenced by,
others within the same network (see, e.g., Friedkin 1990;
Krackhardt 1990).

Social networks are never homogeneous, but contain
different types of members with different connections to
external networks. This allows fluid information exchange
among interconnected networks, so influences on one net-
work can eventually diffuse into the society at large. Mem-
bership in a specific social network can vary over time, as
individuals’ ties to a network weaken and eventually break,
or new individuals are drawn in.

Color is the feature in Pythagoras that expresses the
agent’s affiliation. The attitude toward the host nation (HN)
is expressed as the agent’s “blueness” on a scale of 0 to 255.
A high blue value indicates a positive attitude toward the
HN, and a low value of blue indicates a negative attitude.

In Figure 4, we attempts to portray a minimal set of
social networks that might be needed to model a civilian pop-
ulation for stability, support, and reconstruction operations.
We are not attempting to portray a realistic representation
of a particular region or country, but instead to show how
attitudes might be used to identify the social networks for
a particular individual within a society battling insurgency.
We define several networks in the model; some networks are
disjoint, but others overlap. The insurgency network ranges
from 0 to 25, the network of civilians partial to insurgency
from 25 to 127, the network of civilians partial to HN from
127 to 230, and the soldiering network from 230 to 255. A
neutral network connects civilians with mildly different at-
titudes toward the HN. Two family networks—one for those
initially leaning towards the HN, the other for supporters
of the insurgency—span the entire spectrum.

3.1.2 Influence Within Networks

In Pythagoras, communication devices are equipped with
attribute changers that allow communicating agents to in-
fluence one another. An agent can have many such devices,
so we use a different device for each networks. Still, all
social networks are not equally effective. An agent may be
strongly influenced by those in one network, and (at the
same time) weakly influenced by those in another network.
We implement this in Pythagoras by changing the effec-
tiveness of the communications devices. For example, an
agent with an initial attitudinal stance represented by 178
in blueness lives in the color-bin between 168 and 200 and
therefore takes part in two networks: his family network
and the network of civilians partial to HN. Because 178 is
the initial blue value for this subpopulation, the effective-
ness for the participation in the family network is set to the
maximum possible value of 90%. Our modeling assumption
is that even in a family, the communication is not perfect.
If this agent’s blueness drops to 130, then the effectiveness
of the family communication channel will drop to 50%.

In all, there are 14 color-bins implemented, represent-
ing the different combinations of social networks an agent
can participate in and the effectiveness of the communi-
cations within these social networks. These combinations
can be seen in Figure 4 on an imaginary vertical axis. For
example, an agent with blueness 110 possesses the “Net-
work of civilians partial to insurgency, blueness between 25
and 127” (pink) and his “Subpopulation family network”
(orange). The values separating these color-bins are called
“triggers” since when these values are reached, they trigger
an agent to adopt different behaviors or change one or more
communications devices. Most communication devices are
two-way devices, allowing every member of a network to
talk with (and influence) every other member. Family net-
works have a slightly different setup. To map the stronger
influence a family leader might have on his family members
in a patriarchal society, we provide each family leader with
a one-way device for talking only; the leader can influence
his family, but will not receive direct feedback.

In addition to colors, Pythagoras has ten “attributes” that
can represent a person’s core beliefs, and attribute changers
can now be used with weapons, terrain, or communications
devices. We define four attributes for attitudinal effects in
this study, representing the core beliefs of religion, infras-
tructure, security, and economic security. With the built-in
attribute changer device, the values of these beliefs can be
changed, and because a change in a belief will alter a per-
son’s behavior, this should consequently change the value
of an agent’s blueness. There is no means in Pythagoras
2.0.0 to automatically change the blue value when an at-
tribute value changes, so we tie these two together—in our
model, a sufficient amount of change in the attribute values
is responsible for a change in an agent’s color status. Not
all core beliefs have the same importance for a person, so
we also introduce the concept of weighted attributes. This
concept takes care of these differences and changes the
attitude of an agent depending on his weighting of his core
beliefs. All communications that actively transfer influence
through the network possesses an attribute changer.

If a member of this subpopulation gradually changes his
attitude towards the HN over time and becomes a supporter of
the insurgency, he will proceed through different color-bins,
and in each bin the agent possesses different communication
devices with different settings. Losing and gaining network
participations is possible. He adds the neutral network
component but does not give up his connection to those
partial to the HN when his blueness is between 127 and 138.
He keeps this neutral network component, stops talking to
civilians partial to the HN, and starts talking to civilians
partial to the insurgency when his blueness falls between
116 and 127. Later on his way to becoming a terrorist he
will lose this neutral connection as well as obtain access
to the insurgency network; although he still possesses his
family network, its effectiveness will drop dramatically.
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3.2 Subpopulations

Even after the networks are defined, not all members of
a subpopulation have the same thoughts and beliefs. Not
all attendees of a specific mosque are soldiers, plumbers,
or terrorists. But certain percentages of them are similar,
and the subpopulation’s distribution reflects this. In the
Pythagoras model, we start by considering two subpopula-
tions, S1 and S2, that could represent two different ethnic,
religious, or political groups. Suppose S1 initially leans to-
ward the HN, while S2 initially leans toward the insurgency.
(All agents within S1 will share the same “family” network,
and similarly for S2, in our implementation.) These two
subpopulations can be further divided into smaller parts,
depending on whether the agents are taking part in insur-
rection, production, or soldiering activities to support their
families. This is important if economic activities are going
to be incorporated into the model.

For example, S1 might begin with 5% of its agents
leaning toward the insurgency but in the production force,
90% of its agents in the production force initially leaning
toward the HN, and 5% of all agents employed as soldiers. In
contrast, S2 might begin with 15% of its members insurgents,
55% of its members in the production force favoring the
insurgency, 28% in the production force favoring the HN,
and 2% employed as soldiers. In an analytic model, such
as the diffusion models used for social networks, these
smaller subpopulations are assumed to be homogeneous.
In a simulation model, these restrictions are not necessary.

For example, distributions F1 and F2 could be used to set
the initial blueness values for agents in subpopulation S1
and S2, respectively.

We implement one special agent in each subpopulation
called the Leader, who serves the function of a clan leader
in a tribal (patriarchal) society. Each leader possesses a
one-way communications channel, along which he passes
influence to his subpopulation without being influenced in
return. We also provide the leaders with more powerful
attribute changers than their followers, to represent the
greater influence that leaders have over their subpopulations.

3.3 Experiments And Results

In the model development phase and initial tests, some
unexpected results occurred. These led to Seitz (2008) and
Ferris (2008) simplifying the model to track down reasons
for this behavior. One simplification was to reduce the
number of agents to two: one leader and one follower. A
nearly-orthogonal Latin hypercube (NOLH, see Cioppa and
Lucas 2007) was used to vary the attribute change values
(in a single time step) for each of the four attributes over
the range 1 to 20 per time step (between 0.1% and 2.0%
of the total value for the attribute).

Figure 5 shows what should happen to the leader’s
and follower’s attitudes over time, after a series of strong,
positive influences on the leader. Yet as Figure 6 shows,
the combination of Pythagoras’ time-step behavior and lim-
itations imposed on trigger events meant the actual attitude
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values were radically different—the average attribute value
in the simulation converged to just under 300 (an error
rate over 70%), rather than reaching the desired value of
1000, because of stable oscillatory patterns that emerge as a
function of the time step, attitude change values, and trigger
events.
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Figure 5: Calculated correct attribute values for a leader
and a follower after a series of strong, positive influences
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Figure 6: Mean % error in attribute values over time, for
small and large attribute changes per time step.

3.4 Summary

Because Pythagoras is a combat model, it can easily represent
all parts of a stabilization operation that are related to any
kind of military actions. Patrolling areas, hunting down
terrorists, responding to terrorist attacks, and so forth are
easily to model; this part of the attitudinal model is well-
modeled. Even global actions that influence a population like
mass media or taxes can be modeled and analyzed, whether
the entire populace is under this influence at the same time
or only parts of it in different locations are affected. So

influences from the outside that act on single agents, groups
of agents, or all agents at once can be mapped.

There are other aspects of a stabilization operation and
human behavior that are not easy to map to Pythagoras,
including the dispersion of influence through social networks
we describe in this paper. The detailed results and findings
in Seitz (2008) show a way to enhance the capabilities of
Pythagoras 2.0.0, so the software could be used by the U.S.
Army and Marine Corps for more sophisticated analyses of
stabilization operations. But they also demonstrate that it
might be better to use more than one simulation software
platformalong with more than one version of any component
analytic modelsto represent and predict human behavior.

This study clearly shows that experimental design is
a valuable tool during model development. It allows the
analyst to explore a wide variety of situations and identify
those that need to be investigated in greater detail. In the
end, this will help the decision maker to come up with
better decisions regarding stabilization operations and other
issues critical to global security.

4 INFORMATION NETWORKS SUPPORTING
LOGISTIC SUSTAINMENT OPERATIONS

The previous two examples considered the implementation
of networks in abstract models of a combat operation and
civilian populations. Yet another aspect of the Department
of Defense’s transformation to network-enabled forces is
the role that networks play at the tactical logistics level.

Network-enabled and information systems provide the
visibility of node and mode status in a shared Logistics
Common Operating Picture (LCOP). Currently, there are a
variety of communications systems employed that enable
distribution operations; however, in some instances at the
Soldier level these capabilities do not exist. Accordingly,
individual units and commands have supplemented their
units with a myriad of commercial, off-the-shelf products
as system and network enablers to fill current network-
enabled capability needs.

Recognizing the need for supporting these operations,
TRAC-MTRY is conducting a study to identify network-
enabled capability gaps for Combat Service Support (CSS)
Soldiers, as well as potential solutions to fill those gaps.

In this section, we briefly summarize the work of Baez
(2008), who explores the use of the Logistics Battle Com-
mand (LBC) model to assess the effects of Soldier-level,
network-enabled capabilities on cargo operations at a truck
terminal within a sustainment base. The LBC model, de-
veloped by TRAC-Monterey, is a low-resolution, object-
oriented, stochastic, discrete-event model that enables the
analysis of sustainment battle command scenarios. The in-
tent is to determine the types of operational insights that
LBC can provide—specifically, in terms of quantifying the
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impacts that network-enabled capabilities on the logistics
sustainment operations.

4.1 Model of Logistics Sustainment

The scenario modeled is one of Army Transportation
Soldiers performing cargo terminal operations at a Cen-
tralized Receiving and Shipping Point (CRSP) within a
Forward Operating Base (FOB). These operations support
regular sustainment convoys, that deliver equipment and
supplies to their final destinations. CRSPs (in current
operations) are different in size with different layouts.
Nevertheless, most CRSPs are composed of an operations
center, a palletized cargo area, a customer container
area/lanes, unit vehicles or rolling stock area/lanes, an
area for battle-damaged vehicles, and an empty container
collection point (EECP) area to ensure fluid vehicle move-
ment within the CRSP yard. Figure 7 (from Center for
Army Lessons Learned 2007) shows a typical CRSP layout.

 

Figure 7: CRSP layout.

Typically, the customer container area contains an in-
bound and an outbound lane. Containers that have completed
the final leg of their movement or are to be picked up at the
CRSP are staged in the inbound container lane. Containers
that will continue their onward movement are staged in the
outbound container lane. Rolling stock is usually treated in
the same manner as containers, with the exception that the
rolling stock lanes require a much larger area. A palletized
cargo area allows for pallets to be built and convoys to come
in and stage so that one side loads and the other side offloads.
The battle-damaged vehicle area segregates these vehicles
from other retrograde cargo. ECCPs are established for cross
loading containers used for retrograde cargo arriving from
the FOBs, and to exchange any carrier-owned and leased
containers with government-owned containers. Finally, the
operations center is the central location where all of the
cargo entering and exiting the yard is processed and ac-

counted for; additionally, the operations center synchronizes
the CRSP efforts to ensure uninterrupted operations.

Three different network topologies are of interest (Fig-
ure 8). The Hierarchical topology represents the existing
physical laydown and connectivity for the current force.
Specifically, operations in the CRSP are largely governed
by paper-based manifests, radio reports, and radio frequency
(RF) technology capabilities. The CRSP operations center
can access the LCOP and develop detailed plans based on
the ITV data, but those plans are made available to the con-
tainer, pallet, and rolling stock lane in an ad hoc manner by
radio, face-to-face, and paper message processes. These ad
hoc manner methods are time consuming and operationally
non-responsive. In the Star topology, each of the four
nodes of the network within the CRSP is connected to the
network-centric LCOP node with a point-to-point link. The
resulting structure has four communications channels in a
hub-and-spoke arrangement. The Hierarchical-Star topol-
ogy, as its name implies, combines the first two topologies
together to form a more complex network.

4.2 Measures of Effectiveness

Baez examines three measures of effectiveness: velocity,
reliability, and visibility. Velocity is expressed as the mean
time in CRSP, which includes waiting time plus time re-
ceiving service. As the mean time in CRSP decreases,
velocity increases. Reliability is the degree of assurance or
dependability that CRSP operations will consistently meet
cargo demands under established conditions to specified
standards. Reliability measures the variability of the mean
time in CRSP and the mean difference in area of visibility.
Visibility represents the capacity to determine the status, lo-
cation, and direction of flow of materiel. Visibility requires
the availability of timely, accurate, and usable information
essential to the maintenance of the LCOP with the overall
joint distribution stakeholders. It quantifies the mean dif-
ference in the area between the ground-truth stock levels at
the CRSP lanes, and the levels reported at the LCOP.

Since queueing theory certifies that resource utilization
and flow rates (convoys per hour) determine delays in the
system, our analysis focuses on these factors. After the
experiment was complete, these two factors were combined
into a single term called traffic intensity. This does not
directly correspond to the traffic intensity in a mathematical
model of, say, an M/M/1 queueing system, where a traffic
intensity of 1.0 or more leads to infinite queue build-ups.
Nonetheless, higher traffic intensities are associated with
more congestion in the CRSP. (An alternative experimental
design could vary convoys per hour and traffic intensity,
rather than conveys per hour and resource utilization, as the
factors to facilitate the analysis; see Kleijnen et al., 2005).
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Figure 8: Three different network topologies explored in the logistics sustainment simulation.

4.3 Experimental Design

The factors are derived directly from concept-specific at-
tributes listed in the Net-Centric Operational Environment
Joint Integrating Concept (JS, 2005) and input from subject-
matter experts. The decision factors considered are the
availability and accuracy of in-transit visibility informa-
tion (ITV-available and ITV-accuracy), the rate at which a
provider or CRSP lane updates the LCOP (LCOP update),
probability of communications, latency, and communica-
tion relay capability. These factors all potentially influence
network capability for the scenario, and represent choices
that could be implemented in the CRSP. The noise factors
are resources available, convoys per hour, and convoy com-
position. Varying these factors allows for examining the
impact of network capability aspects across a broader range
of potential operating conditions.

In all, ten replications of each of 771 different scenarios
(design points) were used to generate results—257 for each
of the three dissimilar network structures. The system starts
in an empty-and-idle state, generates convoy arrivals at the
appropriate rate up to a maximum number, and simulates
until all these convoys have been processed.

4.4 Results

We present a few results to indicate the types of information
that can be obtained from such a study (see Baez 2008 for
more detail). First, contour plots of the Velocity (mean
time in CRSP) as functions of the traffic intensity and
in-transit visibility are shown in Figure 9 (best viewed
in color). The red areas in the lower right-hand corners
correspond to very poor velocity (high mean time in
CRSP). The Hierarchical network (on the left) performs
worst, and the Hierarchical-Star network (on the right)
performs best. All three network topologies have some

scenarios where the CRSP is unable to handle the vol-
ume of work and the mean time in CRSP is excessively high.
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Figure 9: Contour plots of the mean time in CRSP as
functions of traffic intensity (x-axis) and in-transit visibility
data availability (y-axis).

A closer look provides additional insight into this behav-
ior. Naturally, the system contains an initial transient period.
The CRSP starts in an empty-and-idle state, so early convoys
will experience fewer congestion-related delays than later
convoys. Because LBC operates on a first-come, first-served
basis, a particular cargo-processing time is not influenced
by any cargo that arrives later. If the initial transient period
is short, then the steady-state processing time distributions
may be reached before the simulation terminates.

In Figure 10, we show traces of the time in CRSP
for each convoy for three replications of three different
design points. The left-most plot shows that Design Point
1 appears to achieve steady-state with no warm-up period,
although there is a large amount of variability in the
system. The center plot shows that Design Point 31 has
a longer warm-up period and much greater variability, as
seen by the differences between the traces for the three
replications; it also reveals strong, positive correlation of
the mean times in CRSP across convoys. The right-most
plot is on a different scale, but shows curious behavior:
the mean times in CRSP rise steadily, then drop slightly,
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and then rise again. When the mean time in CRSP keeps
increasing for the later convoys, this indicates that the
CRSP is incapable of handling the level of traffic with its
current resources.
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Figure 10: Trace results of time in system for the first three
replications of three different design points.

The dip in the right-most plot in Figure 10, as well as
some other unusual behavior, needs to be examined further
before relying too heavily on operational insights from
these results. Nonetheless, Baez’s results that the network
structure does affect all three measures of effectiveness in the
LBC model. A summary of some findings from regression
metamodeling and regression tree analyses follows.

Velocity. The most significant factors affecting velocity
for all topologies are the traffic intensity and the availability
of in-transit visibility (ITV) data. Changing from a Hier-
archical to a Star or Hierarchical-Star network improves
velocity by 32% and 42%, respectively, in our model.

Reliability. Reliability is also affected by traffic in-
tensity and ITV data availability. Overall, the Hierarchical
structure was the least reliable.

Visibility. The most significant factors influencing vis-
ibility differ by the network topology. For the Hierarchical
structure, these are the communication relay capability at
the supervisor lane, and the probability of communications
between the supervisor and the LCOP. For the Star struc-
ture, these are the probability of communications between
the LCOP and the pallet lane, as well as the LCOP and
container lane, and the communications relay capability at
the pallet lane. For the Hierarchical-Star structure, these
are the communications relay capability at the supervisor
lane, the probability of communications between the LCOP
and the container lane, as well as the LCOP and pallet lane.
Overall, changing from a Hierarchical structure to a Star or
Hierarchical-Star structure improves visibility by 43% and
59%, respectively, in our model.

Typically, architectural analysis based on subject-
matter-expert input is the basis of the capability-based as-
sessment (CBA) process, and modeling and simulation is
rarely used. However, the results from this research suggest
that modeling and simulation—combined with an efficient
design of experiments approach—will result in a more robust
process, and add credibility to the CBA findings.

5 CONCLUDING REMARKS

The three studies summarized in this paper consider differ-
ent aspects of information networks at different levels of
abstraction. But in all cases, these studies do not stop after
obtaining results for a single, baseline model. Instead, they
use experimental designs to conduct broad explorations of
the simulation models’ behaviors under various conditions.
This use of experimental design is very powerful. It provides
much broader insights into the model behavior, which can
assist in verifying that the model is coded properly, and pro-
viding assurance that the model is suitable for its intended
use. It allows many factors to be studied simultaneously,
so interactions among factors that might be missed with a
trial-and-error approach can be identified and exploited.

Modeling intangibles like the value of information,
human attitudes and social dynamics, and the impact of
new technologies and communication structures is a diffi-
cult task—but one that cannot be ignored. Decision-makers
faced are faced with difficult questions about the best equip-
ment, tactics, techniques, and procedures to use in current
operations, and they must also look to the future to de-
termine how to build, organize, equip, maintain, and, if
necessary, employ their military and security forces. These
dynamic, rapidly-changing environment adds complexity.
For instance, we may want urban cultural geography mod-
els capable of being quickly modified to support a range
of stability and support operations—from sectarian con-
flict within a region, to stability and support operations
following a natural disaster. What is clear is that with
the increasing reliance on new technologies and network-
enabled operations, incorporating information networks into
the simulation models used to support these decisions is
extremely important.
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