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ABSTRACT

Continuous-variable simulation optimization problems are
those optimization problems where the objective function
is computed through stochastic simulation and the decision
variables are continuous. We discuss verifiable conditions
under which the objective function is continuous or differ-
entiable, and outline some key properties of two classes of
methods for solving such problems, namely sample-average
approximation and stochastic approximation.

1 INTRODUCTION

Consider optimization problems of the form

min
x∈D

f (x), (1)

where f (x) = E f (x,ξ ) and the domain, D, is a convex
subset of Rd . We assume that E| f (x,ξ )|< ∞ for all x ∈D.
We also assume that E f (x,ξ ) cannot be computed exactly,
and is instead estimated through simulation. The domain
D is assumed deterministic and known. In other words, we
do not consider the case where the domain D needs to be
estimated via constraint functions that are also evaluated
through simulation. We also assume that D is convex, so
the variables x take values in a continuum, excluding the
trivial case where D consists of a single point.

This simulation-optimization problem has received a
great deal of attention in the literature, perhaps owing to
its generality, the many problems of practical interest that
can be cast as such problems, and, certainly not least,
its intellectual challenges. For various introductions and
perspectives on the problem see Kim (2006) and earlier
simulation-optimization tutorials at the Winter Simulation
Conference, the optimization-related chapters in Henderson
and Nelson (2006), Chapters VII and VIII of Asmussen and
Glynn (2007), Fu (2002), Andradóttir (1998) and Chapter
12 of Law (2007).

Our goal in this paper is to review some key mathe-
matical concepts that often play an important role in the
analysis and solution of simulation-optimization problems.

We begin by discussing verifiable conditions under
which the function f (·) is continuous, along with closely
related properties like uniform continuity and differentia-
bility. This is important for two primary reasons. First, any
method for solving practical optimization problems of the
form (1) is approximate, in the sense that it cannot guarantee
that it will return a point x that is an exact local minimum
of f (·). Instead, all that can be hoped for is that x will be
close to a local minimum, x∗ say, of f (·). We would, of
course, like f (x) to be close to f (x∗). A simple sufficient
condition for this to hold is that f (·) be continuous at x∗.
Second, many optimization methods include a local-search
component whereby a current guess for the optimal solution
is replaced by the best of some “nearby” solutions. Here,
“nearby” means solutions that are close as defined by some
metric which is often the Euclidean metric. Again conti-
nuity of f (·) is desirable because, without it, one cannot
expect the simulation estimates of f (·) to be continuous,
and then it is not clear that there is value in searching in a
neighborhood of the current solution.

We then turn our attention to 2 general approaches to
simulation optimization. First, we describe key concepts
related to a collection of methods known variously as sample-
average approximation, the stochastic counterpart method,
retrospective optimization, and sample-path optimization.
Second, we discuss what is perhaps the most famous, in
academic circles at least, simulation-optimization algorithm,
namely stochastic approximation.

Any paper-length coverage of simulation optimization
will necessarily be incomplete. So what do we not cover
here? We do not cover results related to meta-heuristics
such as genetic algorithms and tabu search, e.g., Glover,
Kelly, and Laguna (1996). We do not discuss results used
to prove that various search algorithms converge to local
or global optima, e.g., Hong and Nelson (2006). We do
not discuss the very important and applicable area of meta-
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modeling, including the very promising area of kriging, e.g.,
Barton and Meckesheimer (2006) and Ankenman, Nelson,
and Staum (2008). We do not cover the frameworks of the
cross-entropy method, e.g., Rubinstein and Kroese (2004),
or model-reference adaptive search Hu, Fu, and Marcus
(2007). Finally, we do not discuss results related to the
difficulty of solving global optimization problems, e.g.,
Calvin (2004).

In summary, we believe the primary contribution of this
paper is to survey some key ideas related to establishing
structural properties of the true function we wish to optimize,
as well as to review some standard approaches to developing
optimization algorithms.

2 CONTINUITY AND DIFFERENTIABILITY

In the previous section we discussed the important role that
continuity of f (·) can play in simulation optimization. But
how can we establish that f (·) is continuous in x, when it
is not directly observable?

A very general approach to proving that f (·) is con-
tinuous is coupling theory. For introductions to coupling
theory, see Lindvall (1992) and Thorisson (2000). Let x1
and x2 be two points in the domain D, and let ξ1 and ξ2 be
random objects that have the same distribution as ξ . Then
f (x1)− f (x2) = E f (x1,ξ1)−E f (x2,ξ2). If ξ1 and ξ2 are
constructed on the same probability space, then

f (x1)− f (x2) = E[ f (x1,ξ1)− f (x2,ξ2)]. (2)

Properties of the unobservable f (x1)− f (x2) can now be de-
duced from corresponding properties of f (x1,ξ1)− f (x2,ξ2).
One is free to choose the joint distribution of (ξ1,ξ2) in
any way, and the idea in coupling is to choose the joint
distribution to one’s advantage. For example, the method
of common random numbers (CRN) arises when we take
ξ1 = ξ2.

As an example, recall that we want to show that f (·)
is continuous. In view of (2), one might postulate that this
will occur whenever f (·,ξ ) is continuous for any choice of
ξ . It turns out that something like this is indeed the case as
we will show shortly, but some additional conditions need
to be imposed.

Example 1. Take the domain D = [0,1/2], and ξ ∼U(0,1).
For x > 0 define

f (x,ξ ) =


ξ/x2 0 < ξ ≤ x
2/x−ξ/x2 x ≤ ξ ≤ 2x
0 2x ≤ ξ < 1,

and for x = 0 define f (x,ξ ) = 0 for all ξ . One can check
that f (·,ξ ) is continuous for all ξ . Furthermore f (x) =

E f (x,ξ ) = 1 for all x ∈ (0,1] and f (0) = E f (0,ξ ) = 0, so
that f (·) is not continuous at 0.

The problem in this example is essentially a lack of
uniform integrability. Some additional regularity is needed
to ensure the validity of the interchange of limit and ex-
pectation in

lim
y→x

f (y) = lim
y→x

E f (y,ξ ) = E lim
y→x

f (y,ξ ) = E f (x,ξ ) = f (x).

Suppose that ξ takes values in some set H. Proposition
1 below gives sufficient conditions for the interchange.
Weaker sufficient conditions are known, but it is not clear
that those weaker conditions are broadly applicable in the
simulation context. The result is standard, but we include
a proof as we believe it to be instructive.

Proposition 1. Suppose that the family of functions F =
( f (·,ξ ) : ξ ∈ H) is equicontinuous at x ∈ D, i.e., for all
ε > 0, there exists δ = δ (x,ε) > 0 such that ‖y− x‖ < δ

implies that | f (y,ξ )− f (x,ξ )| < ε for all y ∈ D and all
ξ ∈ H. Then f (·) is continuous at x.

Proof. Let ε > 0 and x ∈ D be given. Choose δ as
in the statement of the proposition. Let ξ1,ξ2, . . . be i.i.d.,
distributed according to ξ . The strong law of large numbers
then implies that for any particular y ∈ D,

fn(y) =
1
n

n

∑
i=1

f (y,ξi)→ f (y) = E f (y,ξ )

as n → ∞ a.s. Equicontinuity of F implies that | fn(y)−
fn(x)| ≤ ε for any n ≥ 1 and any y such that ‖y− x‖ ≤ δ .
Hence, for such y,

| f (y)− f (x)| ≤ | f (y)− fn(y)|+ | fn(y)− fn(x)|
+ | fn(x)− f (x)|

≤ | f (y)− fn(y)|+ ε + | fn(x)− f (x)|.

This holds for any n≥ 1, so taking the limit of the right-hand
side, the strong law applied at both x and y implies that
| f (y)− f (x)| ≤ ε .

The proof above can be easily modified to give the
following result, yielding stronger versions of continuity
for f (·). A function g(·) is uniformly continuous if, for
any ε > 0, there exists δ > 0 such that |g(x)− g(y)| < ε

whenever ‖x− y‖ < δ . Also, a function g(·) is Lipschitz
continuous if there exists a finite constant ` (the Lipschitz
constant) such that |g(x)−g(y)| ≤ `‖x− y‖ for all x,y.

Proposition 2. If F is equicontinuous at all x∈D, then f (·)
is continuous on D. If F is uniformly equicontinuous (δ does
not depend on x), then f (·) is uniformly continuous. If each
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f (·,ξ ) is Lipschitz continuous with Lipschitz constant L(ξ ),
and ` = EL(ξ ) < ∞, then f (·) is Lipschitz with Lipschitz
constant `.

A related important question is whether the function f (·)
is differentiable or not. Again, this question can be partially
answered using a suitable coupling. The following argument
is essentially that given in Section 1.3 of Glasserman (1991).
For simplicity, assume that d = 1, i.e., that x is a scalar.

Let x be an interior point of D. Suppose that f (·,ξ )
is differentiable at x almost surely. In other words, we fix
x and look at the set of ξ for which the function f (·,ξ ) is
differentiable at x. The assumption here is that this set has
probability 1. Hence, with probability 1,

lim
h→0

f (x+h,ξ )− f (x,ξ )
h

(3)

exists and equals f ′(x,ξ ) say. If the family of random
variables {

f (x+h,ξ )− f (x,ξ )
h

: |h| ≤ δ

}
(4)

is uniformly integrable for some δ > 0, then one can pass
expectations through to the limit in (3) to obtain

E f ′(x,ξ ) = E lim
h→0

f (x+h,ξ )− f (x,ξ )
h

= lim
h→0

E
f (x+h,ξ )− f (x,ξ )

h
(5)

= lim
h→0

E f (x+h,ξ )−E f (x,ξ )
h

= lim
h→0

f (x+h)− f (x)
h

thereby establishing that f ′(x) exists and equals E f ′(x,ξ ).
The key then is to establish uniform integrability of the
family (4) for some δ > 0. The following result, proved in
Section 8.5 of Dieudonné (1960) and restated on p. 15 of
Glasserman (1991), is very useful in this regard.

Theorem 3 (Generalized Mean-Value Theorem). Let g be
a continuous real-valued function on the closed interval
[a,b] that is differentiable everywhere except possibly on
a set D of at most countably many points. Then, for all
x,x+h ∈ [a,b],∣∣∣∣g(x+h)−g(x)

h

∣∣∣∣≤ sup
y∈[a,b]\D

|g′(y)|.

The idea is to apply this result to f (·,ξ ), assuming
that f (·,ξ ) satisfies the conditions of the theorem. Here
the interval [a,b] is taken to be [x−δ ,x+δ ], and the set D

depends on ξ (i.e., is random). We then have the bound∣∣∣∣ f (x+h,ξ )− f (x,ξ )
h

∣∣∣∣≤ sup
y∈[x−δ ,x+δ ]\D

| f ′(y,ξ )|

for almost all ξ . Notice that the bound is observable, as it
is defined on sample paths. If the bound has finite expected
value, then the family (4) is uniformly integrable and the
interchange (5) is valid, and so f ′(x) exists and is defined
as E f ′(x,ξ ).

The interchange argument above is the fundamental
idea underlying infinitesimal perturbation analysis and its
variants, which involve obtaining estimates of the derivative
f ′(x) from the same sample paths used to estimate f (x)
itself. See Ho and Cao (1991), Glasserman (1991), and Fu
and Hu (1997) for (much) more on this idea, and Fu (2006)
for a recent introduction to the general area of gradient
estimation in simulation.

Example 2. Suppose that a single ambulance serves calls
from a base located at the point x = (x1,x2) in the unit
square [0,1]2. Calls arrive according to a homogeneous
Poisson process at rate λ and are distributed randomly (and
not necessarily uniformly) over the square, independent of
all else. Calls that arrive when the ambulance is busy are
queued, and answered in order of arrival. The ambulance
travels in a straight line (i.e., in Euclidean fashion) at constant
rate v from its current location to its destination. The
ambulance spends a time V serving a call at the destination,
independent of all else, where we assume for convenience
that V is bounded above (but this is easily relaxed). We
assume that treatment is complete at the scene for all calls,
so patients are not transported to a hospital. This is merely
to keep things simple - all of the results to follow are easily
modified to allow hospital transports for some patients. After
completing a call, the ambulance returns to base unless there
are queued calls, in which case the ambulance travels directly
to the next call. When a call arrives while the ambulance
is returning to base the ambulance immediately responds to
the call from its current location. The ambulance receives
calls from t = 0 to t = 8, and then stops receiving new calls.
Calls that are not yet complete at t = 8 are served by the
ambulance before it returns to base at the end of the day.
The ambulance starts out idle and at its base at time t = 0.

We are interested in selecting the base location x that
minimizes the average response time of the calls received
over a large number of i.i.d. days, where response time is
defined as the time from when the call was received to the
time when the ambulance arrives at the location of the call.
Related performance measures, like the fraction of calls
with response times under a threshold can be handled using
a similar approach. If Ri(x) is the sum of the response times
on the ith day when the ambulance base lies at location x
and Ni is the number of calls received on day i, then the
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average response time over n days of operations is

R1(x)+R2(x)+ · · ·+Rn(x)
N1 +N2 + · · ·+Nn

→ ER1(x)
EN1

as n → ∞ a.s. We can compute EN1 = 8λ , so our problem
reduces to minimizing f (x) = E f (x,ξ ) = ER1(x) over all
possible base locations x = (x1,x2). Here the random object
ξ contains all information relating to call arrival times and
locations over the interval [0,8].

Using the general techniques described above we can
prove the following.

Proposition 4. The function f (·) is Lipschitz continuous
with Lipschitz constant 8λ/v.

Proof. We give a proof sketch rather than a complete
proof. Fix any sample path of the process. Let N be the
number of calls received in the 8 hour period. Let L(t)
be the location of the ambulance at time t when the base
location is x, and let L̃(t) be the corresponding location of the
ambulance at time t when the base location is x+h for some
vector h. (Notice that here we are using the CRN coupling so
that the call times, locations and service times are identical
for the 2 base locations.) Then ‖L(t)− L̃(t)‖ ≤ ‖h‖ at all
times t ≥ 0. This can be shown by induction on the times
at which events (call arrivals, ambulance departs from a
base or call, ambulance reaches base or a call, ambulance
completes service at the scene) occur because the ambulance
follows the same sequence of events. As a consequence, the
difference in response times for the two base locations is
never more than ‖h‖/v. (Recall that the ambulance travels
at rate v.) So if R and R̃ are the sum of the response times
when the base is located at x and x + h respectively, then
|R− R̃| ≤ N‖h‖/v. So then

| f (x+h)− f (x)|= |ER−ER̃|
≤ E|R− R̃|
≤ 8λ‖h‖/v

and the result follows.

Example 3. Consider the same situation as in Example 2
but this time suppose that there are 2 ambulances with
bases at locations x(1) and x(2). (This can be generalized
to more than 2 ambulances but for simplicity we stick with
2 ambulances.) Let x denote the 4-dimensional random
variable that gives both base locations. We would like to
show that the “long-run” average response time is continuous
in x. As with the 1-ambulance case, it suffices to show
that ER, the expected sum of the response times of all calls
received in 1 day, is continuous in x.

Unfortunately, in contrast to the 1-ambulance case, the
sample paths do not change in a smooth fashion as we

vary x. To see why, consider a single sample path and
2 base locations. As we perturb the base locations, the
set of calls that each ambulance responds to could change:
Ambulance 1 will be assigned some of the calls previously
assigned to Ambulance 2 and vice versa. This reassignment
means that the ambulances do not follow the same paths,
and the response times can be dramatically different as a
result of the perturbation of base locations. Nevertheless,
it is possible to show that ER is, indeed, continuous in
x, despite these sample-path discontinuities. Our proof of
the following result again uses coupling. As we will see
more precisely in the proof below, while the sample paths
have discontinuities, they are “locally continuous” with
probability 1, and this is the key observation that allows us
to prove continuity.

Proposition 5. Assume that call locations have a density
with respect to Lebesgue measure. Then, the function f (·)
is continuous in x in the two-ambulance case.

Proof. We give a proof sketch. We adopt the same
notation as in the proof of Proposition 4. We again adopt
the usual CRN coupling, and then

|ER−ER̃| ≤ E |R− R̃|
= E[|R− R̃|I(Bc)]+E[|R− R̃|I(B)], (6)

where B denotes the event that the assignment of calls to
ambulances is different for the original (x) and perturbed
(x+h) base locations, and Bc is the complement of B. On
Bc, the sum of the response times is Lipschitz continuous
in h, as observed in the proof of Proposition 4, and so the
first term in (6) is bounded by

E[NI(Bc)‖h‖/v]≤ 8λ‖h‖/v.

Hence, the first term in (6) is Lipschitz continuous in x.
To deal with the second term in (6) we apply dominated

convergence. We have

|R− R̃|I(B)≤ R+ R̃.

We assumed the time spent at the scene of a call is bounded.
This, together with the fact that we are operating within a
bounded region (the unit square), means that we can bound
ER and ER̃ as follows. Let s be a bound on the time spent
at the scene of a call. The time to travel to any call is
bounded by

√
2/v. So the response time to the first call is

bounded by
√

2/v, and the response time for the second call
is bounded by the first call’s response time and service time
plus

√
2/v. (This worst case for response time can only arise

when the first and second calls arrive simultaneously and
the calls occur at diagonally opposite corners.) In general
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the response time for the kth call to arrive is bounded by

(k−1)s+ k
√

2/v ≤ k(s+
√

2/v).

Hence, both R and R̃ are bounded by

(s+
√

2/v)
N

∑
k=1

k = (s+
√

2/v)N(N +1)/2.

Now, N is Poisson distributed and so has finite second
moment, so the right-hand side of this expression multiplied
by 2 gives a uniform (in x) bound on R+ R̃ that has finite
mean. Dominated convergence will then complete the proof,
provided that |R− R̃|I(B)→ 0 as ‖h‖→ 0 a.s.

First assume that the ambulances are never simultane-
ously at exactly the same place. Consider the first time τ at
which a call is assigned to a different ambulance under base
locations x + h than under base locations x. As ‖h‖ → 0,
the ambulance locations and status at time τ using bases at
x+h converge to their respective values at time τ for bases
at x. So the only way that the call could change its assigned
ambulance in the limit as ‖h‖ → 0 is if it was located at
a point that is exactly the same distance from both ambu-
lances at the time of arrival, or it arrived at the exact time
point at which an ambulance changed status from busy to
available, or available to busy, under base locations x. Both
of these possibilities occur with probability 0 under our
assumptions. Therefore I(B) = 0 for ‖h‖ sufficiently small
with probability 1 if ambulances are never simultaneously
at the same place.

Unfortunately, ambulances can be at the same location,
but as we explain this happens at a set of times with measure
0 unless the base locations x(1) and x(2) coincide. Suppose
the ambulance bases are distinct, i.e., x(1) 6= x(2). Calls
happen one at a time in a Poisson process with probability
1, and we assumed that call locations have a density, so
with probability 1, ambulances can only be in the same
location when their paths cross while at least 1 of them is
traveling. Our assumptions ensure that this happens at a set
of times with measure 0. Hence, when the base locations
do not coincide, I(B) = 0 for ‖h‖ sufficiently small with
probability 1.

Finally, suppose that the ambulance base locations co-
incide, i.e., x(1) = x(2). Consider the first time τ that a call
is assigned to a different ambulance under base locations
x+h than under base locations x. The gain in response time
is of order ‖h‖, and as ‖h‖→ 0 the ambulance locations will
essentially be identical in the sample path and its perturbed
version until the next call arrives. (The ambulance identities
will be different, but since ambulances are indistinguishable
in this model, this does not matter.) By induction on the set
of events on the path, we find that even though I(B) does
not converge to 0, the difference in the sums of response

times, R− R̃, does converge to 0. So |R− R̃|I(B) → 0 as
‖h‖→ 0 a.s. in this case as well.

In Proposition 4 we were able to show Lipschitz con-
tinuity, while in Proposition 5 we were only able to show
continuity. One might hope to strengthen these results to
differentiability of f (·). Indeed, the main device in the
proof of Proposition 5 is the decomposition (6) onto com-
plementary events, where the sample paths are continuous
on 1 event, and discontinuous on the other. This is a funda-
mental idea in smoothed perturbation analysis for obtaining
derivative estimates from sample paths; see p. 27 of Fu and
Hu (1997). This type of argument may also prove useful
for analyzing other situations where the sample paths are
not continuous.

Another interpretation of the proof of Proposition 5 that
formalizes the “local continuity” comment above is given
in the following proposition.

Proposition 6. Fix x ∈ D. Suppose that, with probability
1, f (·,ξ ) is continuous at x. Suppose also that the family
of random variables

( f (y,ξ )− f (x,ξ ) : |y− x| ≤ δ )

is uniformly integrable for some δ > 0. Then f (·) = E f (·,ξ )
is continuous at x.

Proof. Consider any sequence {xn} in D with xn → x as
n→∞. Our continuity assumption then gives that f (xn,ξ )−
f (x,ξ )→ 0 as n→∞. The uniform integrability assumption
then ensures that we can pass expectations through this
limit.

3 SAMPLE-AVERAGE APPROXIMATION

One standard technique for solving the problem (1) is
the sample average approximation (SAA) approach. This
method approximates the original simulation optimization
problem (1) with a deterministic optimization problem in
the following manner. Let N be a deterministic positive in-
teger, and suppose that we generate an independent random
sample ξ1, ..,ξN . For a fixed x, define the sample mean over
( f (x,ξi) : 1 ≤ i ≤ N) as

f̄N(x) =
1
N

N

∑
i=1

f (x,ξi).

The SAA problem corresponding to (1) is

min
x∈D

f̄N(x), (7)
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i.e., we minimize the sample average. Once the sample is
fixed, f̄N(x) becomes deterministic. Its values and gradient
(assuming it is differentiable) can be computed for a given
value of the parameter x. Consequently, the SAA problem
(7) becomes a deterministic optimization problem and one
can solve it using any convenient optimization algorithm.
The algorithm can exploit the IPA gradients, which are exact
gradients of f̄N(x).

Various forms of this method have been used by different
researchers. The stochastic counterpart method by Rubin-
stein and Shapiro (1993) uses likelihood ratios to obtain
the approximate optimization problem. In Robinson (1996)
this approach is called the sample path method. Healy and
Schruben (1991) refer to it as retrospective optimization.
Chen and Schmeiser (2001) developed retrospective approx-
imation algorithms for stochastic root finding problems. For
a general introduction to the SAA approach, the reader is
referred to Shapiro (2003).

To solve the SAA problem (7), one can use the steep-
est descent method with a line search. However, when the
computational budget is limited and the evaluation of the
sample function is expensive, one may want to draw sam-
ples conservatively and then use a more sophisticated search
algorithm. In Bastin, Cirillo, and Toint (2006), the num-
ber of samples is adaptively drawn based on the statistical
inference of the simulation error, which limits the number
of samples in early iterations. The convergence of the al-
gorithm is guaranteed by a trust region technique, where
the improvement of the solution is ensured by locally min-
imizing a quadratic model of the objective function. When
a considered problem has a specific structure (for exam-
ple, a two-stage stochastic linear programming problem),
an efficient SAA method can be developed by using a good
deterministic algorithm, which exploits the structure of the
optimization problem (Shapiro 2003;Verweij et al. 2003).
Polak and Royset (2008) and Pasupathy (2008) look at the
question of how to progressively increase the size of the
SAA sample in conjunction with a numerical optimiza-
tion algorithm that converges at a specific rate, in order to
obtain fast overall rates of convergence as a function of
computational effort.

Generally, the SAA problem (7) is close to the original
problem (1) when N is large. By the strong law of large
numbers (SLLN), we have that f̄N(x) converges to f (x)
w.p.1 as N → ∞. But, the point-wise convergence does
not guarantee the convergence of the SAA method. We
next look at conditions under which we can prove that
the SAA method will converge; that is, under which the
optimal solutions of the SAA problem (7) approach the set
of optimal solutions of the original problem as N grows.

First, we introduce some definitions. For every x in
the domain D, we define the set C (x) as follows. For x in
the interior of D, C (x) = {0}. For x on the boundary of D,
C (x) is the convex cone generated by the outward normals

of the faces on which x lies. A first-order critical point x
of the function f satisfies

−∇ f (x) = z for some z ∈ C (x).

A first-order critical point is either a point where the gradient
∇ f (x) is zero, or a point on the boundary of D where the
gradient “points towards the interior of D”. Let S( f ,D) be
the set of first-order critical points of f in D. We define
the distance from a point x to a set S to be

d(x,S) = inf
y∈S

‖x− y‖.

Let v̂N and v∗ denote the optimal objective values of
the SAA problem (7) and the true problem (1), respectively.
Throughout this section, we assume that D is a non-empty
convex compact set.

Theorem 7. Suppose that

(i) the set S( f ,D) of optimal solutions of the true
problem (1) is non-empty and contained in D,

(ii) the function f (·) is finite-valued and continuous
on D,

(iii) f̄N converges to f uniformly on D, that is

sup
x∈D

∣∣∣∣∣ 1
N

N

∑
i=1

f (x,ξi)−E f (x,ξ )

∣∣∣∣∣→ 0

as N → ∞ a.s., and
(iv) the set S( f̄N ,D) of optimal solutions of the SAA

problem (7) is non-empty w.p.1 for large enough
N and contained in D.

Let x̂N be an optimal solution of the SAA problem (7). Then
v̂N → v∗ and d(x̂N ,S( f ,D))→ 0 a.s. as N → ∞.

The above theorem can be proved based on epi-
convergence theory. For a proof, see Proposition 6 in
Shapiro (2003).

The key in establishing the above convergence results is
a uniform version of the strong law of large numbers (ULLN),
which is the assumption (iii) in the above proposition. In
general, the point-wise law of large numbers (LLN) does
not imply the ULLN. However, in a convex problem, the
point-wise LLN ensures the ULLN holds.

Let H be a closed support of ξ .

Proposition 8. Suppose that

(i) for every z ∈ H, the function f (·,z) is convex on
D,
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(ii) the law of large numbers (LLN) holds point-wise,
that is f̄N(x) converges to f (x) as N →∞ a.s., for
any fixed x ∈ x, and

(iii) f (·) is finite valued on a neighborhood of D.

Then f̄N converges to f uniformly on D, as N → ∞ a.s.

Proof. We only provide a sketch of the proof here. Under
the assumptions in the above proposition, it can be shown
that the sample mean f̄N epi-converges to the function
f . But epi-convergence implies uniform convergence in
convex programming, and hence the result in the above
proposition follows. For a complete proof, see Proposition
2 and Corollary 3 in Shapiro (2003).

A large class of simulation optimization problems are
convex problems (e.g., two-stage stochastic linear programs
with recourse), and Proposition 8 shows that in the convex
case the SAA method converges under very mild conditions.
However, we often have non-convex stochastic problems in
practice. For example, in the ambulance base location
problem in Section 2, the sum of the response times R(·)
can be non-convex with a certain call location distribution.

The following proposition provides relatively simple
conditions for the ULLN without the convexity assump-
tion. Indeed, one can easily show that the one-ambulance
location problem in Section 2 satisfies the conditions in the
proposition below. We say that f (x,ξ ) is dominated by an
integrable function h(·) if Eh(ξ ) < ∞ and for every x ∈ D,
| f (x,ξ )| ≤ h(ξ ) a.s.

Proposition 9. Suppose that

(i) for every z ∈ H, the function f (·,z) is continuous
on D, and

(ii) f (x,ξ ) is dominated by an integrable function.

Then f (·) is finite valued and continuous on D and f̄N
converges to f uniformly on D, as N → ∞ a.s.

Proof. Under the condition (ii), the family of path-wise
functions { f (x,ξ ) : x ∈ D} is uniformly integrable. This,
together with the condition (i), ensures the continuity of the
function f . Then by establishing the uniform integrability
of the family of random variables{

sup
x∈VN

| f (x,ξ )− f (x̂N ,ξ )| : N ≥ 1

}
,

where VN is a properly defined neighborhood of xN , we
can obtain the ULLN on f̄N . For a complete proof, see
Proposition 7 in Shapiro (2003).

Theorem 7 ensures that, if x̂N solves the SAA problem
(7) exactly, then x̂N converges to the set of optimizers of

the limit function f . Moreover, if the true problem (1) has
a unique optimal solution x∗, then x̂N → x∗. However, in
the non-convex case, the best that we can hope for from
a computational point of view is that x̂N is a first-order
critical point for the SAA problem. The following results
ensure the convergence of the first-order critical points to
those of the true problem.

Theorem 10. Suppose that D is convex, and

(i) for every z∈H, the function f (·,z) is continuously
differentiable on a neighborhood of D, and

(ii) the gradient components ∂

∂xi
f (x,z)(i = 1, ...,d) are

dominated by an integrable function.

Let x̂N ∈ S( f̄N ,D) be the set of first-order critical points of
f̄N on D. Then f is continuously differentiable over x and
d(x̂N ,S( f ,D))→ 0 as N → ∞ a.s.

Proof. First apply Proposition 9 to the each component
of the gradient and then apply Theorem 7 to the sample
gradient function.

Theorem 10 shows that x̂N converges to the set of first-
order critical points of f as N →∞. This does not guarantee
that the sequence {x̂1, x̂2, x̂3, · · ·} converges almost surely.
In general, we cannot guarantee this because, when there are
multiple critical points, the particular critical point chosen
depends, among other things, on the optimization algorithm
that is used.

There exists a well-developed statistical inference of
estimators derived by the SAA method. That inference is
incorporated into validation analysis and error bounds for
obtained solutions. If the true problem has a unique optimal
solution x∗, then under a set of conditions an optimal solution
x̂N for the SAA problem converges to x∗ at a stochastic rate
of Op(N−1/2) and the bias E[v̂N ]− v∗ = E[ f (x̂N)]− f (x∗)
is of order o(N−1/2) (Shapiro 1993; Shapiro 2003). We
further discuss the assessment of the solution quality in the
context of the SAA method in Section 5.

There are some difficulties in applying the SAA method
when the the sample function f (·,ξ ) is discontinuous (e.g.,
the two-ambulance location problem). All of the results
above assume at least the continuity of the sample function,
so we may not be able to apply the above convergence
results directly to a discontinuous problem. Even if the SAA
problem converges to the true problem uniformly, the SAA
method can perform poorly in finite time. Since the sample
function is discontinuous, the resulting SAA problem can
be a non-convex and discontinuous optimization problem,
which is generally hard to solve.
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4 STOCHASTIC APPROXIMATION

Another standard method to solve the problem (1) is that of
stochastic approximation (SA). This technique is analogous
to the steepest descent gradient search method in determin-
istic optimization, except here the gradient does not have
an analytic expression and must be estimated. Since the ba-
sic stochastic algorithms were introduced by Robbins and
Monro (1951) and Kiefer and Wolfowitz (1952), a huge
amount of work has been devoted to this area.

The general form of the SA algorithm is a recursion
where an approximation xn for the optimal solution is updated
to xn+1 using an estimator gn(xn) of the gradient (or a
sub-gradient) of the objective function f (·) at xn. For a
minimization problem, the recursion is of the form

xn+1 = ΠD(xn−angn(xn)), (8)

where ΠD denotes a projection of points outside D back
into D, and {an} is a sequence of positive real numbers
such that

∞

∑
n=1

an = ∞ and
∞

∑
n=1

a2
n < ∞. (9)

The original Robbins-Monro algorithm is designed for
single-dimensional root-finding problems. The objective
function is assumed to be monotonically increasing and un-
known to the experimenter, but its estimates are available.
In general, an SA algorithm equipped with an unbiased esti-
mator of the gradient is called a Robbins-Monro algorithm.
If unbiased estimation of the gradient is not possible, we
may appeal to finite difference (FD) schemes. The idea is
to use the difference quotient of f (·,ξ ) as an estimate of
the gradient. The resulting stochastic approximation proce-
dure is called the Kiefer-Wolfowitz algorithm (Kiefer and
Wolfowitz 1952). In the Kiefer-Wolfowitz algorithm, the
computational effort per iteration increases linearly in d. For
example, the central FD gradient estimates require estima-
tion of 2d parameter values. To deal with high-dimensional
problems, Spall (2000) developed the simultaneous perturba-
tion stochastic algorithm (SPSA). All parameter components
in the gradient estimate are randomly perturbed, and only
two simulations of the objective function are required.

In the presence of non-convexity, the SA algorithm
may only converge to a local minimum. Theorem 11 below
is an immediate specialization of [Theorem 2.1, p. 127]
Kushner and Yin (2003), which gives conditions under
which xn converges to a local minimizer x∗ a.s. as n →
∞. The recursive structure of the algorithm provides an
environment where we can apply martingale ideas to analyze
the convergence of the algorithm.

Let (Gn : n≥ 0) be a filtration, where the initial guess x0
is measurable with respect to G0 and gn(xn) is measurable
with respect to Gn+1 for all n.

Theorem 11. Let f : Rd →R be C 1. Suppose that for n≥
0, xn+1 = ΠD(xn−angn(xn)) with the following additional
conditions.

(i) The conditions (9) hold.
(ii) supn E‖gn(xn)‖2 < ∞.

(iii) There is a sequence of random variables {βn} such
that

E[gn(xn)|Gn] = ∇ f (xn)+βn, for all n ≥ 0,

where
∞

∑
i=1

|aiβi|< ∞ w.p. 1.

Then,

d(xn,S( f ,D))→ 0

as n → ∞ a.s. Moreover, suppose that S( f ,D) is a discrete
set. Then, on almost all sample paths, xn converges to a
unique point in S( f ,D) as n → ∞.

The limiting points in S( f ,D) can be random. If there
exists a unique optimal solution, then xn converges to that
point. Assumption (iii) implies that the bias sequence {βn}
is asymptotically negligible. In the Kiefer-Wolfowitz algo-
rithm, βn represents FD bias. In the classical SA meth-
ods, the function gn(·) does not depend on n. In this
case, the sufficient condition for the condition (ii) is that
supx∈D E||gn(x)||2 < ∞.

Consider the one-ambulance location problem, and as-
sume that the function f (·) is twice continuously differ-
entiable. Since it is not possible to directly compute the
gradient of the sum of response times R(·), we can con-
sider a Kiefer-Wolfowitz type algorithm to find the optimal
base location. Assumption (ii) in the theorem above can
be easily verified by using the Lipschitz continuity of R(·).
From the second order Taylor series approximation of f ,
the bias of the FD gradient estimator is of order O(cn),
where {cn} is the sequence of the difference parameters in
the FD estimator. Therefore, Assumption (iii) is satisfied
as long as the difference parameter cn goes to zero fast
enough with n. For example, if an = O(n−1), cn = O(n−γ)
with γ > 0 satisfies the condition.

The stochastic approximation procedure is easy to im-
plement and exhibits good performance with appropriately
chosen step sizes. In the classical Robbins-Monro SA al-
gorithm, the sequence {an} is usually chosen to be of the
form an = a/n for all n, where a is a positive scalar. With
the optimal value of a, the distance from xn to the set of
optimizers is Op(n−1/2). The optimal choice of a depends
on the Hessian matrix of f (·) at the optimal solution, which
is usually unknown. The algorithm can perform poorly with
a bad choice of a, but unfortunately directly determining
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the required Hessian matrix is often difficult or impossible
in practice.

Various adaptive Newton-type procedures have been
developed in which the Hessian and the gradient are adap-
tively updated as the number of iterations grows. In Ruppert
(1985), a direct estimate of the gradient is available and the
Hessian is estimated using finite differences of the gradient
estimates. At each iteration, this approach uses O(d) eval-
uations of the gradient. In Spall (2000), the Hessian and
gradients are estimated based on the simultaneous pertur-
bation methodology. In high-dimensional problems, such
simultaneous changes admit an efficient implementation by
greatly reducing the number of objective function evalua-
tions or gradient evaluations. At each iteration, the Hessian
estimates are projected on the set of positive definite and
symmetric matrices so that the algorithm converges to a
minimum. Bhatnagar (2005) developed three-time scale
SPSA-type algorithms. At each iteration, the algorithms
update the Hessian and the gradients simultaneously, using
no more than four samples at each iteration. The resulting
Hessian estimates can be easily modified to make them
symmetric matrices.

The concept of iterate averaging provides a great im-
provement in the theory of the SA method. Ruppert (1991)
and Polyak and Juditsky (1992) showed that for a Robbins-
Monro type algorithm, the averaged sequence x̄n = ∑

n
i=1 xi/n

is more robust than the final value xn. Under certain condi-
tions, notably that the step-size an decrease to 0 at a slower
rate than n−1, the average x̄n achieves the optimal asymp-
totic convergence rate without needing to know or estimate
the Hessian matrix. Dippon and Renz (1997) applied the
Polyak-Ruppert averaging idea to Kiefer-Wolfowitz type
algorithms. The iterate averaging scheme has been widely
used in the context of the SA method, and its advantages
have been observed in many empirical results. On the other
hand, it has been reported that the asymptotic promise
of iterate averaging can be difficult to realize in practical
finite-sample problems (Spall 2000).

Juditsky et al. (2007) considered SA methods based on
a weighted-averaging scheme for a class of convex stochastic
optimization problems, and compared them with the SAA
method. Convexity of the function f (·) allows one to
improve the estimates for x∗ by taking a weighted average
of the trajectory {x1,x2, ...,xn}. Although the asymptotic
convergence rate of the algorithm is not optimal when
the objective function is strongly convex, the algorithm
is more robust than the the classical SA algorithm. The
numerical experiments demonstrate that the method can
perform well even with a simple constant step size policy,
and can significantly outperform an implementation of the
SAA method.

5 SOLUTION QUALITY

Assessing the quality of the obtained solution is important
in optimization algorithms, and there are several approaches
for testing solution quality in simulation optimization. One
approach uses the limiting distribution of the solution.

For example, in the Robbins-Monro algorithm, under
certain conditions, x̄n is asymptotically normally distributed,
i.e.,

√
n(x̄n− x∗)⇒ N(0,Σ(x∗)) as n → ∞,

where x∗ is an optimal solution. In theory, this allows
us to construct confidence regions for x∗. However, the
covariance matrix of the limiting normal distribution Σ(x∗)
depends on the Hessian of the objective function at x∗,
which is challenging to estimate. One way to produce
confidence regions without having to explicitly estimate
the covariance matrix of the limiting normal distribution is
through multiple replications (Hsieh and Glynn 2002). The
idea is similar to the batch means method; first simulate m
independent replications of the estimator x̄n, and then use
them to estimate x∗ and the covariance matrix Σ(x∗).

Another approach to determining the solution quality
is via confidence intervals on the optimality gap,

µ = E f (x̂,ξ )− v∗,

where x̂ is a candidate solution and v∗ = f (x∗) for some
optimal solution x∗. The analysis of the optimality gap is
well studied in the context of the SAA method (Norkin,
Pflug, and Ruszczyński 1998, Mak, Morton, and Wood
1999). By interchanging minimization and expectation, we
can obtain a lower bound on v∗,

Ev̂N = E
[

min
x∈D

f̄N(x)
]
≤ min

x∈D
E

[
f̄N(x)

]
= v∗.

It can also be shown that Ev̂N ≤ Ev̂N+1 for all N. Thus,
the lower bound v̂N provides a better estimate for v∗ on
average as the sample size grows. On the other hand,
we have v∗ ≤ E f (x̂,ξ ) from the sub-optimality of x̂. Then
E f (x̂,ξ )−Ev̂N is an upper bound for the optimality gap
for x̂. We can estimate this quantity by

µ̂N = f̄N(x̂)−min
x∈D

f̄N(x). (10)

Under the conditions in Theorem 7, µ̂N converges to µ w.p.1.
In general, we cannot expect the asymptotic normality of the
estimator µ̂N because of the minimization in the right-hand
side of the equation (10). However, again by using the
multiple replications idea, we can construct a confidence
interval on the optimality gap µ. One drawback of the
multiple replication procedure is that it needs to solve the
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SAA problem at least 30 times to obtain a statistically
valid confidence interval. Bayraksan and Morton (2007)
developed single- and double-replication procedures, which
require less computational effort but still produce confidence
intervals that attain a desirable level of coverage.
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