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ABSTRACT

This is an introductory tutorial on Monte Carlo simulation,
a type of simulation that relies on repeated random sampling
and statistical analysis to compute the results. In this paper,
we will briefly describe the nature and relevance of Monte
Carlo simulation, the way to perform these simulations and
analyze results, and the underlying mathematical techniques
required for performing these simulations. We will present
a few examples from various areas where Monte Carlo
simulation is used, and also touch on the current state of
software in this area.

1 INTRODUCTION

Monte Carlo simulation is a type of simulation that relies on
repeated random sampling and statistical analysis to compute
the results. This method of simulation is very closely related
to random experiments, experiments for which the specific
result is not known in advance. In this context, Monte
Carlo simulation can be considered as a methodical way
of doing so-called what-if analysis. We will emphasis this
view throughout this tutorial, as this is one of the easiest
ways to grasp the basics of Monte Carlo simulation.

We use mathematical models in natural sciences, so-
cial sciences, and engineering disciplines to describe the
interactions in a system using mathematical expressions
(Wikipedia 2008c). These models typically depend on a
number of input parameters, which when processed through
the mathematical formulas in the model, results in one or
more outputs. A schematic diagram of the process is shown
in Figure 1.

Figure 1: Mathematical models.

The input parameters for the models depend on various
external factors. Because of these factors, realistic models
are subject to risk from the systematic variation of the
input parameters. A deterministic model, which does not
consider these variations, is often termed as a base case, since
the values of these input parameters are their most likely
values. An effective model should take into consideration
the risks associated with various input parameters. In most
circumstances, experimenters develop several versions of a
model, which can include the base case, the best possible
scenario, and the worst possible scenario for the values of
the input variables (Figure 2).

Figure 2: Case-based modeling.

This approach has various disadvantages. First, it might
be difficult to evaluate the best and worst case scenarios for
each input variable. Second, all the input variables may not
be at their best or worst levels at the same time. Decision
making tends to be difficult as well, since now we are con-
sidering more than one scenario. Also, as an experimenter
increases the number of cases to consider, model versioning
and storing becomes difficult. An experimenter might be
tempted to run various ad-hoc values of the input parameters,
often called what-if analysis, but it is not practical to go
through all possible values of each input parameter. Monte
Carlo simulation can help an experimenter to methodically
investigate the complete range of risk associated with each
risky input variable.

In Monte Carlo simulation, we identify a statistical
distribution which we can use as the source for each of the
input parameters. Then, we draw random samples from each
distribution, which then represent the values of the input
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variables. For each set of input parameters, we get a set
of output parameters. The value of each output parameter
is one particular outcome scenario in the simulation run.
We collect such output values from a number of simulation
runs. Finally, we perform statistical analysis on the values
of the output parameters, to make decisions about the course
of action (whatever it may be). We can use the sampling
statistics of the output parameters to characterize the output
variation.

The remainder of this paper is arranged as follows. In the
next section, we start with a few terms which are associated
with Monte Carlo simulation. In section 3, we discuss the
general methodology for performing Monte Carlo simulation
analysis. Next, we discuss each of the steps separately. In
section 4, we discuss how to identify input distributions from
historical data. That is followed by discussions on generating
random variates in section 5 and analyzing output of Monte
Carlo simulation in section 6. We also discuss various
application areas for Monte Carlo simulation in section 7
and software for performing Monte Carlo simulation in
section 8, before concluding in section 9.

2 TERMINOLOGIES

In this section, we discuss a few terms which are used in
the context of Monte Carlo simulation.

Statistical distributions Statistical distributions or
probability distributions describe the outcomes of vary-
ing a random variable, and the probability of occurrence
of those outcomes. When the random variable takes only
discrete values, the corresponding probability distributions
are called discrete probability distributions. Examples of
this kind are the binomial distribution, Poisson distribu-
tion, and hypergeometric distribution. On the other hand,
when the random variable takes continuous values, the cor-
responding probability distributions are called continuous
probability distributions. Examples of this kind are normal,
exponential, and gamma distributions.

Random sampling In statistics, a finite subset of in-
dividuals from a population is called a sample. In random
sampling, the samples are drawn at random from the pop-
ulation, which implies that each unit of population has an
equal chance of being included in the sample.

Random number generator (RNG) A random number
generator is a computational or physical device designed to
generate a sequence of numbers that appear to be independent
draws from a population, and that also pass a series of
statistical tests (Law and Kelton 2000). They are also
called Pseudo-random number generators, since the random
numbers generated through this method are not actual, but
simulated. In this article, we will consider RNG’s which
generate random numbers between 0 and 1, also called
uniform RNG’s.

3 METHODOLOGY

The following steps are typically performed for the Monte
Carlo simulation of a physical process.

Static Model Generation Every Monte Carlo simu-
lation starts off with developing a deterministic model which
closely resembles the real scenario. In this deterministic
model, we use the most likely value (or the base case) of
the input parameters. We apply mathematical relationships
which use the values of the input variables, and transform
them into the desired output. This step of generating the
static model closely resembles the schematic diagram in
Figure 1.

Input Distribution Identification When we are satis-
fied with the deterministic model, we add the risk compo-
nents to the model. As mentioned before, since the risks
originate from the stochastic nature of the input variables,
we try to identify the underlying distributions, if any, which
govern the input variables. This step needs historical data
for the input variables. There are standard statistical pro-
cedures to identify input distributions, which we discuss in
section 4.

Random Variable Generation After we have iden-
tified the underlying distributions for the input variables,
we generate a set of random numbers (also called random
variates or random samples) from these distributions. One
set of random numbers, consisting of one value for each
of the input variables, will be used in the deterministic
model, to provide one set of output values. We then repeat
this process by generating more sets of random numbers,
one for each input distribution, and collect different sets of
possible output values. This part is the core of Monte Carlo
simulation. We will discuss this step in detail in section 5.

Analysis and Decision Making After we have collected
a sample of output values in from the simulation, we perform
statistical analysis on those values. This step provides us
with statistical confidence for the decisions which we might
make after running the simulation. We will discuss this step
briefly in section 6.

4 IDENTIFICATION OF INPUT DISTRIBUTION

In this section, we will discuss the procedure for identifying
the input distributions for the simulation model, often called
distribution fitting. When there are existing historical data
for a particular input parameter, we use numerical methods
to fit the data to one theoretical discrete or continuous
distribution. Fitting routines provide a way to identify the
most suitable probability distribution for a given set of data.
Each probability distribution can be uniquely identified by its
parameter set, so, distribution fitting is essentially the same
as finding the parameters of a distribution that would generate
the given data in question. From this perspective, fitting
routines are nothing but nonlinear optimization problems,
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where the variables are parameters of the distributions. There
are a few standard procedures for fitting data to distributions.
We will discuss them briefly in the following sections.

4.1 Methods for Distribution Fitting

4.1.1 Method of Maximum Likelihood (ML)

The following discussion is a summary of the article at
Wikipedia (Wikipedia 2008b). ML estimation (MLE) is a
popular statistical method used to make inferences about
parameters of the underlying probability distribution from
a given data set. If we assume that the data drawn from
a particular distribution are independent and identically
distributed (iid), then this method can be used to find out
the parameters of the distribution from which the data are
most likely to arise. For a more detailed analysis, refer to
(Law and Kelton 2000, Cohen and Whitten 1988).

Let θ be the parameter vector for f , which can be either
a probability mass function (for discrete distributions) or a
probability density function (for continuous distributions).
We will denote the pdf/pmf as fθ . Let the sample drawn
from the distribution be x1,x2, . . . ,xn. Then the likelihood
of getting the sample from the distribution is given by the
equation (1).

L(θ) = fθ (x1,x2, . . . ,xn|θ) (1)

This can be thought of as the joint probability density
function of the data, given the parameters of the distribution.
Given the independence of each of the datapoints, this can
be expanded to the equation (2).

L(θ) =
n

∏
i=1

fθ (xi|θ) (2)

In MLE, we try to find the value of θ so that the value
of L(θ) can be maximized. Since this is a product of prob-
abilities, we conveniently consider the log of this function
for maximization, hence the term ’loglikelihood’. So, the
MLE method can be thought of as a nonlinear unconstrained
optimization problem as given below in equation (3):

maxLL(θ) =
n

∑
i=1

ln fθ (xi|θ), θ ∈Θ (3)

Here, Θ represents the domain of each of the parameter
of the distribution. For some distributions, this optimization
problem can be theoretically solved by using differential
(partial differential, if there are more than one parameter)
equations w.r.t. the parameters and then solving them.

Advantages and Disadvantages: MLE method is by
far the most used method for estimating the unknown pa-
rameters of a distribution. It has certain advantages.

• Although the bias of ML estimators can be substan-
tial, MLE is asymptotically unbiased, i.e., its bias
tends to zero as the number of samples increases
to infinity.

• The MLE is asymptotically efficient, which means
that, asymptotically, no unbiased estimator has
lower mean squared error than the MLE.

4.1.2 Method of Moments (ME)

The method of moments is a method of estimating population
parameters such as mean, variance, median, and so on (which
need not be moments), by equating sample moments with
unobservable population moments (for which we will have
theoretical equations) and then solving those equations for
the quantities to be estimated. For a detailed discussion,
see (Cohen and Whitten 1988).

Advantages and Disadvantages: MLE method is con-
sidered a better method for estimating parameters of dis-
tributions, because ML estimates have higher probability
of being close to the quantities to be estimated. However,
in some cases, the likelihood equations may be intractable,
even with computers, whereas the ME estimators can be
quickly and easily calculated by hand. Estimates by ME
may be used as the first approximation to the solutions of
the likelihood equations. In this way the method of mo-
ments and the method of maximum likelihood are symbiotic.
Also, in some cases, infrequent with large samples but not
so infrequent with small samples, the estimates given by
the method of moments are outside of the parameter space;
it does not make sense to rely on them then. That problem
never arises in the method of maximum likelihood.

4.1.3 Nonlinear Optimization

We can also use nonlinear optimization for estimating the
unknown parameters of a distribution. The decision vari-
ables are typically the unknown parameters of a distribution.
Different objective functions can be used for this purpose,
such as: minimizing one of the goodness-of-fit statistics,
minimizing the sum-squared difference from sample mo-
ments (mean, variance, skewness, kurtosis), or minimizing
the sum-squared difference from the sample percentiles (or
quartiles or deciles). Additional constraints can be added
to facilitate the formulation of the optimization problem.
These constraints can be constructed from the relations be-
tween distribution parameters. This method is typically
less efficient, and often takes more time. The value of the
parameter depends on the algorithm chosen to solve the
nonlinear optimization problem.
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4.2 Goodness-Of-Fit Statistics

Goodness-of-fit (GOF) statistics are statistical measures that
describe the correctness of fitting a dataset to a distribution.
Other than visual indications through graphs, like p-p plots
or q-q plots (Law and Kelton 2000), these are mostly used
by various software to automate the decision of choosing
the best fitting distribution. In this section, we will discuss
three of the most common GOF statistics used. For more
information on these statistics, refer to (D’agostino and
Stephens 1986, Law and Kelton 2000).

4.2.1 Chi-square Test

The Chi-square test can be thought of as a formal comparison
of a histogram of the data with the density or mass function
of the fitted distribution. To compute the chi-square test
statistic in either the continuous or discrete case, we must
first divide the range of the fitted distribution into k adjacent
intervals [a0,a1), [a1,a2), . . . , [ak−1,ak). It is possible that
a0 =−∞ or ak = +∞, or both. Then we tally N j = Number
of Xi’s in the jth interval [a j−1,a j), for j = 1(1)k. Note that,
∑

k
j=1 N j = n. Next, we compute the expected proportion p j

of the Xi’s that would fall in the jth interval if we were
sampling from the fitted distribution. Naturally,

p j =

{ ∫ a j
a j−1

f̂ (x)dx where, f̂ is the p.d.f.
∑a j−1≤xi≤a j p̂(xi) where, p̂ is the p.m.f.

The test statistic is given by the following equation.

χ̂
2 =

k

∑
j=1

(N j−np j)2

np j

4.2.2 EDF Statistics

Given the random sample (the data corresponding to the
input variable in the simulation model that needs to be fitted),
let X(1) < X(2) < .. . < X(n) be the ordered statistics. The
empirical cumulative distribution function (ECDF) Fn(x) is
given by:

Fn(x) =


0 for x < X(1)
i
n for X(i) ≤ x≤ X(i+1)
1 for x≥ X(n).

This is a right-continuous step function. If F(x) is the
CDF of the fitted distribution, then any statistic measuring
the difference between Fn(x) and F(x) are called an EDF
statistic

Kolmogorov-Smirnov Statistic (KS) Kolmogorov-
Smirnov test (KS test) compares an EDF with the fitted

distribution function. Define D+ = supx{Fn(x)−F(x)} and
D− = supx{F(x)−Fn(x)}. Then, the KS statistic D is de-
fined as:

D = sup
x
|Fn(x)−F(x)|= max(D+,D−)

The Quadratic Statistics The quadratic statistics are
given by the following general form:

Q = n
∫

∞

−∞

{Fn(x)−F(x)}2
ψ(x)dF(x)

Cramer-von Mises Statistic When ψ(x) = 1 in the
above equation, the statistic is called Cramer-von Mises
Statistic, and is usually represented by W 2.

Anderson-Darling Statistic (AD) When ψ(x) =
[{F(x)}{(1− F(x)}]−1, the statistic is called Anderson-
Darling Statistic, and is usually represented by A2.

4.3 An Example of Distribution Fitting

Consider having the following dataset consisting of 30 num-
bers representing the weights of students in a class (Table
1). We will fit the dataset to normal and lognormal distribu-
tions. For deriving the MLE equations for fitting a dataset
to the normal distribution, refer to (Law and Kelton 2000).
For the corresponding equations for lognormal distribution,
refer to (Cohen and Whitten 1988).

Table 1: Weight data for 30 students in pounds.

116.33 129.50 141.44
128.17 136.68 152.64
151.82 135.48 164.43
161.36 132.56 156.87
160.92 162.19 164.49
101.52 114.36 147.95
104.90 192.11 143.19
196.93 172.94 176.94
123.43 165.28 125.37
180.91 136.09 197.85

For the normal distribution, we estimate the mean (µn)
as the sample mean and the standard deviation (σn) as
the sample standard deviation. Representing the dataset as
{xi, i = 1 . . .30}, we get the parameters as follows.

µn =
1
n ∑

i
xi =

4474.66
30

= 149.16

σn =

√
∑i(xi−µn)2

n−1
=

√
19565.14

30
= 25.97
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Thus, the underlying distribution for the data can be a normal
distribution with mean 149.16 and standard deviation 25.97.

For fitting to the two-parameter lognormal distri-
bution with log-mean µl and log-standard-deviation σl , we
use two equations as follows.

µl =
1
n ∑

i
lnxi =

149.70
30

= 4.99

σl =

√
1
n ∑

i
(lnxi−µl)2 =

√
0.9117

30
= 0.18

Thus, the underlying distribution for the data can also be a
lognormal distribution with log-mean 4.99 and log-standard-
deviation of 0.18. To decide the better fit among the above
two distributions, we will calculate the Anderson-Darling
(AD) statistic for the dataset and the two fitted distributions.
This can be easily done by a spreadsheet software like
Microsoft Excel. We obtain the AD statistic for the normal
distribution as 0.1763, and that for the lognormal distribution
as 0.1871. Since a lower GOF statistic indicates a better
fit, we choose normal distribution as the better one among
the above two fits.

One can also look at the p-value (also called critical
value) for the above fitted distributions, using the p-value
tables for the corresponding distributions. For a detailed
discussion on p-values, refer to (Law and Kelton 2000). For
the fitted distributions above, we obtain a p-value of 0.919 for
normal distribution and 0.828 for the lognormal distribution,
using the distribution fitting feature of Oracle R© Crystal
Ball (Gentry, Blankinship, and Wainwright 2008), which
is an add-in for the Microsoft R© Excel software. Since a
larger p-value indicates a better fit, we can conclude that
normal distribution is a better fit to the data.

5 RANDOM VARIABLE GENERATION

After we have identified the underlying distributions for
the input parameters of a simulation model, we generate
random numbers from these distributions. The generated
random numbers represent specific values of the variable.
For example, we have determined that the normal distribution
is the best fit for the weights of students in the previous
example (section 4.3). If we want to use this information in
a model which has weight as an input parameter, we would
generate a random number from the distribution, and use
that number as one representative weight.

In this section, we will discuss the most common method
for generating random variates (RV’s) from discrete and
continuous distributions. We will also discuss the case of
generating random numbers when an input distribution is
not available. We will not discuss the generation of random
numbers between 0 and 1 for a uniform distribution, we will

assume that a steady stream of uniform random numbers are
available. We use these numbers for the methods discussed
below. For a detailed discussion on generating uniform
U(0,1) random numbers, refer to (Law and Kelton 2000,
Fishman 1995).

5.1 Generating RV’s from a Distribution Function

5.1.1 Inverse Transformation Method

The inverse transformation method provides the most direct
route for generating a random sample from a distribution.
In this method, we use the inverse of the probability density
function (PDF) (for continuous distributions) or probability
mass function (PMF) (for discrete distributions), and convert
a random number between 0 and 1 to a random value for
the input distribution. The process can be mathematically
described as follows.

Let X be a continuous random variate (which we want
to generate) following a PDF function f . Let the cumulative
probability distribution function (CDF) for the variate be
denoted by F , which is continuous and strictly increasing in
(0,1). Let F−1 denote the inverse of the function F , which
is often called inverse CDF function. Then, the following
two steps will generate a random number X from the PDF
f .

1. Generate U ∼U(0,1).
2. Return X = F−1(U).

Note that, since 0 ≤U ≤ 1, F−1(U) always exists. The
schematic diagram (Figure 3) below depicts the process.
We show the curve of a CDF of a certain lognormal
distribution in the right hand side. In the left hand side,
we show an uniform distribution. A randomly generated
number U(0.1)number (say 0.65), corresponds to 160 at
the lognormal CDF curve. So, this number is a random
variate from the lognormal distribution. If we generate
100 such U(0,1)numbers and replicate the process using
the same curve, we will obtain 100 random variates from
this distribution.

The inverse transformation method can also be used
when X is discrete. For discrete distributions, if p(xi) is
the probability mass function, the cumulative pmf is given
by:

F(x) = P(X ≤ x) = ∑
xi≤x

p(xi)

The cumulative pmf is a step function with discrete jumps.
Then, the second step of the algorithm mentioned above for
generating random variates from continuous distributions
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Figure 3: Generation of random variates.

can be replaced by the following: determine the smallest
positive integer I such that U ≤ F(xI), and return X = xI .

An important advantage of the inverse transformation
method is that, it can be used for generating random numbers
from a truncated distribution. Also, since this method
preserves the monotonicity between the uniform variate U
and the random variable X , negative correlation can be
successfully induced between two random variables. This
method can also be used for any general type of distribution
function, including functions which are a mixture of discrete
and continuous distributions. One disadvantage arises from
the fact that this method becomes difficult to implement if
there is no closed-form inverse CDF for a distribution. If no
closed form is available but F(U) can be calculated easily, an
iterative method (like bisection or Newton-Raphson) can be
used. Note that, in addition to the numerical error inherent
in working on any finite precision computer, the iterative
methods induce an additional error based on the specified
error tolerances. Fore more details, refer to (Devroye 1986).

There are a couple of other methods for generating
random variates from distributions, for example, composi-
tion method, convolution method and acceptance-rejection
method. For a more detailed treatment of these methods,
and a list of formulas and methods for specific distributions,
refer to (Law and Kelton 2000, Fishman 1995).

5.2 Generating RV’s from a DataSet: Bootstrapped
Monte Carlo

Often it is not possible to obtain an underlying distribution for
an input variable in a simulation model. This can be because
of the complicated shape of the original distribution (like
non-convex or multi-modal), scarcity of data (for example,
destructive testing or costly data) and so on. In those cases,
we might end up with nothing more than a few historical
values for the input parameter. In those cases, bootstrapped
Monte Carlo (MC) simulation (often called bootstrapping)
can be used to generate random variates. In bootstrapping,
we do not really generate random variates. Instead, we

repeatedly sample the original dataset to choose one of the
data points from the set (choose a number with replacement).
For many datasets, this method provides good result for
simulation purposes. For detailed reference, refer to (Efron
and Tibshirani 1993, Wikipedia 2008a). For bootstrapped
MC simulation, one has to still use an uniform RNG,
specifically an RNG to generate integer random numbers
among the indices of an array, which is being used for
storing the original dataset.

Bootstrapped simulation can be a highly effective tool
in the absence of a parametric distribution for a set of data.
One has to be careful when performing the bootstrapped
MC simulation, however. It does not provide general finite
sample guarantees, and has a tendency to be overly opti-
mistic. The apparent simplicity may conceal the fact that
important assumptions are being made when undertaking the
bootstrap analysis (for example, independence of samples)
where these would be more formally stated in other ap-
proaches. Failure to account for the correlation in repeated
observations often results in a confidence interval that is too
narrow and results in a false statistical significance. There-
fore, the intrinsic correlation in repeated observations must
be taken into account to draw valid scientific inference.

5.2.1 Example of Bootstrapped MC

Let us assume that we are interested in using the following
20 data points in a simulation. The numbers in Table 2 are
from a bimodal distribution.

Table 2: 20 samples from a bimodal distribution

7.58 -2.16
-13.08 -2.56
-13.70 -3.84
-1.27 -7.28

-17.03 -8.18
2.44 -12.30

-15.56 -18.32
-13.00 0.62
3.79 -4.45
0.28 -14.60

The following figure (Figure 4) shows a comparison be-
tween the original bimodal distribution and the bootstrapped
MC simulation. In this figure, the histogram at the top shows
1000 samples randomly drawn with replacement from the
original 20 numbers shown in Table 2. The samples are also
called bootstrapped samples. The histogram at the bottom
shows 1000 numbers randomly generated from the original
bimodal distribution. Table 3 compares the basic statistics
of these two sets of samples, where the first column refers to
the bootstrapped MC sample, and the second column refers
to the general MC sample. We notice that the parameters
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are not drastically different, considering the fact that the
bootstrap was done from only 20 samples. If we had more
data points to perform bootstrap sampling, the result would
be even better.

Figure 4: Bootstrap simulation and general Monte Carlo.

Table 3: Basic statistics comparison between bootstrapped
MC sample and general MC sample

BS Sample MC Sample
Number of Trials 1000 1000

Mean -6.79 -5.76
Median -4.45 -4.02

Mode -15.56 —
Standard Deviation 7.51 8.28

Variance 56.39 68.58
Skewness 0.08 -0.04

Kurtosis 1.74 1.53
Coeff. of Variability -1.11 -1.44

Minimum -18.32 -20.62
Maximum 7.58 9.21

Range Width 25.90 29.83
Mean Std. Error 0.24 0.26

6 MONTE CARLO SIMULATION OUTPUT
ANALYSIS

The result of the Monte Carlo simulation of a model is
typically subjected to statistical analysis. As mentioned
before, for each set of random numbers (or trials) generated

for each of the random variable, we use the model formula
to arrive at a trial value for the output variable(s). When the
trials are complete, the stored values are analyzed (Schuyler
1996). Averaging trial output values result in an expected
value of each of the output variables. Aggregating the
output values into groups by size and displaying the values
as a frequency histogram provides the approximate shape
of the probability density function of an output variable.
The output values can themselves be used as an empirical
distribution, thereby calculating the percentiles and other
statistics. Alternatively, the output values can be fitted to a
probability distribution, and the theoretical statistics of the
distribution can be calculated. These statistics can then be
used for developing confidence bands. The precision of the
expected value of the variable and the distribution shape
approximations improve as the number of simulation trials
increases.

6.1 Formulas for Basic Statistical Analysis

In this section, we show the formulas for the basic statistical
analysis for a set of output values. Let us assume that we
have N values for each of the output parameters, each
value represented as xi, i = 1(1)N. Note that, these are the
estimates of the complete population from the simulated
sample, so we use sample statistics. For more information on
unbiased estimators of population parameters from samples,
refer to (Casella and Berger 2001).

Mean (x̄)

x̄ =
1
n ∑

i
xi

Median 50th percentile
Standard Deviation (s)

s =

√
1

N−1 ∑
i
(xi− x̄)2

Variance (s2)

s2 =
1

N−1 ∑
i
(xi− x̄)2

Skewness

Skewness = ∑i(xi− x̄)3

(N−1)s3

Kurtosis

Kurtosis = ∑i(xi− x̄)4

(N−1)s4 −3
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Coeff. of Variability

Coeff. of Variability =
s
x̄

Minimum (xmin)

xmin = min
i

xi

Maximum (xmax)

xmax = max
i

xi

Range Width

Range Width = xmax− xmin

Mean Std. Error

Mean Std. Error =
s√
n

Other than calculating the basic statistics, one can also
calculate the capability statistics in case of a six-sigma-based
simulation (Pyzdek 2003) (for some more details, refer to
section 7.2), or perform sensitivity analysis to find out the
input variables which cause the predominance of variation
in the values of the output parameter of interest.

6.2 Example of MC Simulation Output

Table 3 shows an example of the calculated basic statis-
tics which result after a Monte Carlo simulation has been
performed. The table shows the output analysis from 1000
trials. For each method of simulation (bootstrapped MC and
general MC), the table shows the basic statistics involved
with the values of the output parameter, like mean, median,
mode, variance, standard deviation, skewness, kurtosis, co-
efficient of variability, and so on. The table also shows the
average standard error in the calculation.

7 APPLICATION AREAS FOR MONTE CARLO
SIMULATION

In this section, we discuss some example problems where
Monte Carlo simulation can be used. Each of these problems
is representative of a broad class of similar problems, which
can be solved using MC simulation. For a detailed study,
refer to (Glasserman 2003).

7.1 Monte Carlo Simulation in Finance

Financial analysts use Monte Carlo simulation quite often
to model various scenarios. Following are a few scenarios
in which typically MC simulation gets used.

7.1.1 Real Options Analysis

In real options analysis (used in corporate finance or project
finance), stochastic models use MC simulation to charac-
terize a project’s net present value (NPV). The traditional
static and deterministic models produce single value of NPV
for each project. Stochastic models can capture the input
variables that are impacted by uncertainty, run MC simu-
lation, and the average NPV of the potential investment,
its volatility and other sensitivities are observed from the
analysis of the output.

7.1.2 Portfolio Analysis

Monte Carlo Methods are used for portfolio evaluation
(Wikipedia 2008d). Here, for each simulation, the (cor-
related) behavior of the factors impacting the component
instruments is simulated over time, the value of the instru-
ments is calculated, and the portfolio value is then observed.
The various portfolio values are then combined in a his-
togram (i.e. the portfolio’s probability distribution), and the
statistical characteristics of the portfolio are then observed.
A similar approach is used in calculating value at risk.

7.1.3 Option Analysis

Like real option analysis, MC simulation can be used for
analyzing other types of financial instruments, like options.
A MC simulation can generate various alternative price
paths for the underlying share for options on equity. The
payoffs in each path can be subjected to statistical analysis
for making decisions. Similarly, in bond and bond options,
the annualized interest rate is a uncertain variable, which
can be simulated using MC analysis.

7.1.4 Personal Financial Planning

MC methods are used for personal financial planning
(Wikipedia 2008d), for example, simulating the overall mar-
ket to find the probability of attaining a particular target
balance for the retirement savings account (known as 401(k)
in United States).

7.2 Monte Carlo Simulation in Reliability Analysis and
Six Sigma

In reliability engineering, we deal with the ability of a system
or component to perform its required functions under stated
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conditions for a specified period of time. One generally
starts with evaluating the failure distribution and repair
distribution of a component or a system. Then random
numbers are generated for these distributions and the output
result is statistically analyzed to provide with the probability
of various failure events. This general method can be used
for evaluating life cycle costs (for example, for fix when
broken or planned replacement models), cost-effectiveness
of product testing and various other reliability problems.

Six sigma is a business management strategy, which
seeks to identify and remove the causes of defects and
errors in manufacturing and business processes (Antony
2008). It uses various statistical methods accompanied by
quality management procedures, follows a defined sequence
of steps, and has quantified financial targets (cost reduc-
tion or profit increase). MC simulations can be used in
six-sigma efforts for enabling six-sigma leaders to identify
optimal strategy in selecting projects, providing probabilis-
tic estimates for project cost benefits, creating virtual testing
grounds in later phases for proposed process and product
changes, predicting quality of business processes, identify-
ing defect-producing process steps driving unwanted vari-
ation etc. Six-sigma principles can be applied to various
industries, including manufacturing, financial and software.
For more details, refer to (Pyzdek 2003).

7.3 Monte Carlo Simulation in Mathematics and
Statistical Physics

Monte Carlo simulation is used to numerically solve com-
plex multi-dimensional partial differentiation and integration
problems. Is is also used to solve optimization problems in
Operations Research (these optimization methods are called
simulation optimization). In the context of solving integra-
tion problems, MC method is used for simulating quantum
systems, which allows a direct representation of many-body
effects in the quantum domain, at the cost of statistical un-
certainty that can be reduced with more simulation time.
One of the most famous early uses of MC simulation was
by Enrico Fermi in 1930, when he used a random method
to calculate the properties of the newly-discovered neutron
(Wikipedia 2008c).

7.4 Monte Carlo Simulation in Engineering

Monte Carlo simulation is used in various engineering dis-
ciplines for multitude of reasons. One of the most common
use is to estimate reliability of mechanical components in
mechanical engineering. Effective life of pressure vessels
in reactors are often analyzed using MC simulatio, which
falls under chemical engineering. In electronics engineering
and circuit design, circuits in computer chips are simulated
using MC methods for estimating the probability of fetching
instructions in memory buffers. In computer science and

software engineering, various algorithms use MC methods,
for example, to detect the reachable states of a software
model and so on.

8 MONTE CARLO SIMULATION SOFTWARE

Various options are available to use Monte Carlo simulations
in computers. One can use any high-level programming lan-
guage like C, C++, Java, or one of the .NET programming
languages introduced by Microsoft R©, to develop a computer
program for generating uniform random numbers, generat-
ing random numbers for specific distributions and output
analysis. This program will possibly be tailor-made for
specific situations. Various software libraries are also avail-
able in most of these high level programming languages, to
facilitate the development of MC simulation code. Then,
there are stand-alone software packages which can be used
for MC simulations. These are general purpose simula-
tion software packages, which can be used to model an
industry-specific problem, generate random numbers, and
perform output analysis. Examples needed. Finally, MC
simulations can also be performed using add-ins to popular
spreadsheet software like Microsoft R© Excel. Using these
software, one typically starts by developing a determinis-
tic model for the problem, and then defines distributions
for the input variables which contain uncertainty. Finally,
these add-ins are capable of generating charts and graphs
of the output parameters for further analysis. Crystal Ball
from Oracle R© (Gentry, Blankinship, and Wainwright 2008),
@RISK from Palisade, and the Solver add-in from Frontline
Systems are a few examples of this type of software.

9 CONCLUSION

Monte Carlo simulation is a very useful mathematical tech-
nique for analyzing uncertain scenarios and providing prob-
abilistic analysis of different situations. The basic principle
for applying MC analysis is simple and easy to grasp. Vari-
ous software have accelerated the adoption of MC simulation
in different domains including mathematics, engineering, fi-
nance etc. In this tutorial article, we have discussed the
methodology, theoretical basis, and application domains
for Monte Carlo simulation. Readers interested in further
exploring this field are adviced to go through the list of
references, or contact the author.
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