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ABSTRACT

We give a tutorial introduction to simulation optimization.
We begin by classifying the problem setting according to the
decision variables and constraints, putting the setting in the
simulation context, and then summarize the main approaches
to simulation optimization. We then discuss three topics in
more depth: optimal computing budget allocation, stochastic
gradient estimation, and the nested partitions method. We
conclude by briefly discussing some related research and
currently available simulation optimization software.

1 INTRODUCTION

Mathematical programming models can routinely involve
millions of decision variables and constraints. Similarly,
simulation models routinely utilize the generation of millions
of random variates. However, the combination of these
two arguably most used operations research (OR) tools
on this scale is not yet achievable (Fu 2007). So one
either has a large-scale simulation model with relatively
few (perhaps just a handful of) decision variables or a
huge mathematical programming model with a relatively
small number of random variables (or scenarios) over a
couple of recourse stages. Furthermore, as discussed in Fu
(2002), there seems to be a gap between academic theory and
commercial practice, especially in software implementations
of “optimization” approaches.

In this tutorial, we provide an overview of various
aspects of simulation optimization. We begin with a classi-
fication of problem settings, and then provide an overview

of the most well-known approaches, providing some of the
key references that the reader can consult for more details.
The rest of the tutorial provides more in-depth description
of three specific areas: the optimal computing budget al-
location (OCBA) approach, stochastic gradient estimation
techniques, and the nested partitions (NP) method.

The key difficulty in simulation optimization involves
a trade-off between allocating computational resources for
searching the solution space versus conducting additional
simulation replications for better estimating the perfor-
mance of current promising solutions. The searching aspect
can involve algorithmic computation, as well as simulation
computation for estimating the new candidate solutions. So
application of randomized search algorithms in the simu-
lation optimization setting involves two types of sampling:
sampling the solution space and sampling the sample path
(stochastic simulation) space. The fundamental tradeoff be-
tween search and estimation becomes especially pronounced
when the cost of simulation is expensive, For example, one
simulation replication of a complex semiconductor fab for
a month of operations might take as long to run as solving
a large linear programming (LP) problem. With millions of
random variables generated in the stochastic simulation, a
mathematical programming model formulation with millions
of decision variables and an objective function involving a
quantity that must be estimated using the simulation quickly
leads to intractability.

We end this section with a disclaimer note. Much of
this material is similar to that presented in Chen, Fu, and
Shi (2008), and portions of that paper are repeated here
(sometimes verbatim) without explicit attribution.
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2 PROBLEM SETTING & OVERVIEW

The general problem setting is as follows:

min
θ∈Θ

J(θ), (1)

where θ is a p-dimensional vector of all the decision vari-
ables and Θ is the feasible region. This general formula-
tion subsumes the usual mathematical programming settings
(which prefers x to θ for its decision variables):

• J(θ) is linear in θ and Θ can be expressed as a
set of linear equations in θ corresponds to linear
programming, or mixed integer linear programming
if part of the Θ space involves an integer (e.g., {0,1}
binary) constraint.

• J(θ) is convex in θ and Θ is a convex set corre-
sponds to a convex optimization problem.

Our setting, however, presupposes that we have little
knowledge on the structure of J (such as linearity or con-
vexity), and moreover that J cannot be obtained directly,
but rather is an expectation of another quantity L(θ ,ω), to
which we have access, i.e.,

J(θ) = E[L(θ ,ω)],

where ω comprises the randomness (or uncertainty) in the
system. In our setting, ω represents a simulation replication,
and L(θ ,ω) is a sample performance estimate obtained from
the output of the simulation replication, e.g., the number
of customers who waited more than a certain amount of
time in a queueing system, or average costs in an inventory
control system, or the profit and loss distribution in an
investment portfolio or risk management strategy. Most
performance measures of interest can be put into this general
form, including probabilities by using indicator functions.
However, quantiles are an example that cannot be put into
this form.

The prototypical example we will use for illustrative
purposes in this tutorial is a single-item (s,S) inventory
control problem. Clearly, this example could easily be ex-
tended to more realistic systems that include many items and
complicated relationships in terms of demand and ordering
costs. Recall that under an (s,S) inventory control policy,
when the inventory position (which includes inventory on
hand plus that on order) falls below s at an order decision
point (discrete points in time in a periodic review setting and
any point in time in a continuous review setting), then an
order is placed in the amount that would bring the inventory
position up to S. The usual performance measure of inter-
est involves costs assessed for excess inventory, inventory
shortages, and item ordering. Alternatively, the problem
can be formulated with costs on excess inventory and item

ordering, subject to a service level constraint involving in-
ventory shortages. We will adopt the first formulation for
simplicity, and also define q = S− s to use in place of S
as one of the decision variables. Thus, in the framework
of above, we have θ = (s,q), Θ = ℜ+×ℜ+ and J(s,q) is
the sum of holding costs, backlogging or lost sales costs,
and ordering costs (which includes a fixed set-up cost and
a per-unit cost). Under certain conditions, it is well known
that an (s,S) policy is optimal, but even in cases where such
a policy is not guaranteed to be optimal, one might adopt
an (s,S) policy for its simplicity in implementation, and
the optimization would be over all policies of that form. In
certain simplified settings, an analytical form for J can be
derived, and the optimal (s,q) values obtained analytically
in closed form. Sometimes to test a simulation optimiza-
tion algorithm, such a simplified setting is also considered
to compare the convergence speed of the algorithm to the
known true optimum. However, in more general settings,
the costs can only be estimated via simulation.

A rough classification of simulation optimization prob-
lems can be based on the form of Θ. First, one could
distinguish between continuous variable optimization prob-
lems and discrete variable (e.g., combinatorial, including
binary) optimization problems. The latter could also be
divided into categories where the solution space is finite
and small, finite and large, or (countably) infinite. In the
first of these cases, if it were a deterministic optimization
problem, then enumeration would be an easy and obvious
solution approach. However, in the simulation setting, even
enumeration is not straightforward, as there is still the esti-
mation aspect which leads to the question of how to allocate
simulation replications among the feasible solutions. One
approach for treating this setting is presented in the next
section.

Next, Θ itself could be defined either explicitly or im-
plicitly, and deterministically or probabilistically. What we
mean by explicit and implicit here is non-standard, but it
refers to the variables being constrained independently, as
in Θ = ℜ+×ℜ+ versus what would have been the case
had we used s and S as the decision variables, since in
that case, we would have the constraint S ≥ s, putting a
dependence between the two decision variables, whereas s
and q have no such dependence. Typical mathematical pro-
gramming problems have both of these types of constraints,
though the distinction is usually not made. For random-
ized search algorithms, however, there is an implication in
terms of generating components of θ independently or in
a possibly correlated fashion. Both of these types of con-
straints, however, define known deterministic domains for
the decision variables, whereas if we consider the setting
of a service level constraint in the (s,S) inventory exam-
ple, then Θ itself would not even be known a priori, but
would be implicitly estimated based on simulation, e.g.,
Θ = {(s,q) : P(stockout) < 0.05)}, where P(stockout) re-
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quires simulation to estimate for a given value of s and
q.

Approaches towards simulation optimization include
the following:

• sample path optimization, also known as sam-
ple average approximation — the main idea is
to take a large enough set of samples so that the
stochastic problem is basically turned back into a
deterministic problem to which the tools of nonlin-
ear programming (or possibly convex optimization)
could be applied; in finance settings, this approach
is sometimes referred to as “freezing all the ran-
dom numbers,” which typically could easily go
into the millions or even billions; “convergence”
is in terms of increasing the number of samples
taken; for more details, see Rubinstein and Shapiro
(1993), Homem-de-Mello, Shapiro, and Spearman
(1999), Kleywegt, Shapiro, and Homem-de-Mello
(2001);

• sequential response surface methodology — iter-
ative algorithms using statistical methods, primarily
regression, in order to improve upon the candidate
solution by searching the feasible solution space;
there is also a non-sequential metamodel version,
as well; for more details and recent developments,
see Barton and Meckesheimer (2006) and Kleijnen
(2008);

• stochastic approximation — iterative algorithms
that mimic gradient methods in deterministic (non-
linear) optimization; such algorithms have provably
convergent asymptotic (in the number of iterations)
properties under suitable conditions; a comprehen-
sive reference is Kushner and Yin (2003);

• deterministic metaheuristics — broad category
including approaches such as genetic algorithms,
tabu search, scatter search, Nelder-Mead iteration,
and other iterative and possibly population-based
(evolutionary) algorithms from deterministic (non-
linear) optimization; there is little probabilistic or
statistical consideration incorporated; for more de-
tails in the simulation setting, see Ólafsson (2006).

More details on these techniques can be found in other
simulation optimization surveys (Fu 1994a, Fu 2002, Fu
2006, Andradóttir 1998, Andradóttir 2006). The first three
of these approaches benefit from the availability of gradient
estimates. In the sequential response surface methodology
approach, the gradient is obtained via (linear or quadratic)
regression. In the other two cases, there are different tech-
niques depending on how much knowledge one has about
the system of interest, from “black box” approaches to ex-
ploitation of the dynamics of the system. Stochastic gradient
estimation is discussed further in Section 4.

Over the past decade, all of the commercial simulation
software vendors have begun offering an “optimization”
module as an option. Most of the algorithms in these modules
are based on the fourth approach, employing metaheuristics
on the estimated performance, and thus have little in the
way of probabilistic or statistical guarantees (Fu 2002),
although more recently some statistical ranking & selection
ideas have begun to be applied in order to be able to say
something about the goodness of the solutions obtained.

Many commercial simulation software vendors offer a
call center simulation. Using queueing models (Whitt 2007),
one could optimize staffing levels, and then use simulation to
test the performance and tune the decision variables and/or
optimize other decision variables. At this time, however,
as far as we are aware, none of the commercial software
for simulation optimization has implemented any efficient
gradient search, which would require integration between
the simulation model and the optimization routine.

The following three sections outline in more detail three
different approaches or methodologies that attack the prob-
lem of simulation optimization from completely different
aspects. The first approach can be viewed as one method-
ology in the general research area of statistical ranking and
selection. The objective is simply to pick the best among a
fixed set of alternatives, where all alternatives will be tested,
so the number of choices has to be relatively small. In the
context of simulation optimization, the difficulty of search
has been removed, so the focus is on efficiently allocating
simulation replications among the alternatives. Following
that is the section on stochastic gradient estimation, where
both indirect “black box” techniques and more efficient di-
rect estimation methods are described. Then we consider
a global optimization approach called the nested partitions
method, which can be applied to both deterministic and
stochastic optimization problems.

In terms of our earlier classification, the three method-
ologies discussed in more detail in the following sections
attack the following cases:

• Θ is finite (and relatively small).
• Θ is a continuous space (subset of ℜp).
• Θ can be continuous or discrete, possibly defined

implicitly and probabilistically.

3 OPTIMAL COMPUTING BUDGET ALLOCATION

When Θ is finite and small enough, enumeration can be
used in principle to find the optimum, but in the simulation
optimization setting, the value of the objective function is
obtained through simulation, so the main question is how
to allocate the simulation replications efficiently among the
various alternative candidate solutions. This is a classi-
cal problem in statistical ranking and selection (see, e.g.,
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(Bechhofer, Santner, and Goldsman 1995), (Kim and Nelson
2006)).

One direct and intuitive approach is to gradually in-
crease the computing budget (i.e., the number of simulation
replications) for each alternative solution until the variance
of the estimated performance is sufficiently small (i.e., the
confidence interval for estimation is satisfactorily narrow).
The simplest allocation is to use an identical number of
replications for each alternative – called the “total equal
allocation” (TEA), which can be inefficient. For example,
if one alternative has very low variance, then it may only
require one or two simulation replications to estimate its
performance; thus, it seems sensible that the number of
total replications allocated to an alternative increase with
increasing (estimated) variance. On the other hand, if an-
other alternative has a very large mean, then it may be
easily screened out as not being competitive; thus, it seems
intuitive that the number of total replications allocated to
an alternative decrease with increasing (estimated) mean
(for a minimization problem; otherwise, it should increase).
The main result in the optimal computing budget allocation
(OCBA) approach is that both the means and variances enter
into the allocation.

We explain the ideas using a simple example. Suppose
that in the inventory control example, five alternative values
for (s,q) are provided to us, from which we want to find the
one with minimum expected cost. Generally, a sequential
procedure is employed, with the first stage used to “screen”
out obviously poor alternatives, and subsequent stages used
to determine the best. Two well-known two-stage ranking
and selection procedures are Dudewicz and Dalal (1975)
and Rinott (1978), which essentially allocate the total num-
ber of replications to each alternative proportional to the
(estimated) variance, with no dependence on the estimated
means!

Returning to the (s,S) inventory example, suppose we
conduct some initial simulation replications (assume equal
number) for all five alternatives, and consider some possible
outcomes from the first-stage estimates, in terms of the
estimated costs and associated confidence intervals. Figure
1 depicts one possible outcome, where some alternatives
seem better, but are not clearly better than the others, since
all the confidence intervals overlap. In such a situation
it is not straightforward to determine which alternatives
can be eliminated. In this particular example, a reasonable
approach might be to simulate further all of the alternatives
the same number of replications, because the variances
are approximately equal, judging by the current confidence
interval half-widths. Thus in this case, equal allocation
corresponds roughly to an allocation based on variances, as
in Dudewicz and Dalal (1975) and Rinott (1978).

Another possibility after the initial set of replications is
shown in Figure 2, where there is also a significant amount
of uncertainty in the performance estimation, but it appears

Figure 1: Confidence intervals for average cost in the (s,S)
inventory example: a case where all five alternatives could
be best and have approximately the same variance.

that alternatives 2 and 3 are much better than the other
alternatives. Furthermore, the three worst alternatives have
larger variance than the two best alternatives, so an alloca-
tion based solely on variances would be wasting resources
on obviously inferior solutions, while not being able to
distinguish which one of the two better alternatives is best.
Thus, intuitively it seems sensible to allocate few or no
replications to alternatives 1, 4, and 5, instead allocating
the bulk of the simulation budget to alternatives 2 and 3.
In other words, the simulation budget allocation should be
based on a combination of the mean and variance estimates,
rather than just the variance alone.

If the sample performances L(θ ,ω) are assumed to be
independent and normally distributed, then the means and
variances should suffice to characterize an efficient alloca-
tion of simulation resources (otherwise, higher moments and
correlations might be required). The Optimal Computing
Budget Allocation (OCBA) — introduced in Chen et al.
(1997), Chen et al. (2000) — maximizes an approximation
of the probability of correct selection P{CS}, where cor-
rect selection (CS) indicates choosing the alternative with
minimum mean, leading to an efficient allocation algo-
rithm that includes both means and variances. Extensions
of the OCBA approach consider correlated sampling (Fu
et al. 2007); non-normal distributions (Glynn and Juneja
2004), (Fu et al. 2004); multiple objective functions (Lee
et al. 2004); using expected opportunity cost instead of the
probability of correct selection (Chick and Wu 2005), (He,
Chick, and Chen 2007); minimizing variance instead of
maximizing the probability of correct selection (Trailovic
and Pao 2004); selecting an optimal subset of top-m solu-
tions rather than the single best solution (Chen et al. 2008).
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Figure 2: Confidence intervals for average cost in the (s,S)
inventory example: a relatively “easy” case where two
alternatives are clearly superior, if based on both the mean
and variance estimates.

The approach by Chick and Inoue (2001b), Chick and In-
oue (2001a) estimates the correct selection probability with
Bayesian posterior distributions, and allocates further sam-
ples using decision-theory tools to maximize the expected
value of information in those samples. The procedure by
Kim and Nelson (2006) allocates samples in order to provide
a guaranteed lower bound for the frequentist probability of
correct selection integrated with ideas of early screening.
Branke, Chick, and Schmidt (2007) provide an overview
and extensive computational comparison between many of
the aforementioned selection procedures.

Now we briefly describe the OCBA approach, one of
the top performers in the computational tests of Branke,
Chick, and Schmidt (2007). Chen et al. (2000) formulate
the problem of simulation computing budget allocation as
an optimization problem. Let Ni denote the number of sim-
ulation replications allocated to alternative i. It is intended
to find N1,N2, . . . ,Nk such that the probability of correct
selection P{CS} is maximized, subject to a limited overall
computing budget T , i.e.,

maxP{CS}

s.t. N1 +N2 + · · ·+Nk = T.

Here N1 +N2 + · · ·+Nk = T denotes the total computational
cost assuming the simulation execution times for different
alternatives are roughly the same. Using a Bayesian model
(Chen 1996), an approximation of P{CS} is found and then
an asymptotic solution to the approximation is obtained.
Basically, aside from the best alternative, the solution pre-

scribes an allocation proportional to variance and inversely
proportional to the squared difference in mean from the best.
A sequential algorithm implementing the OCBA solution
is given in Figure 3, where the index “b” corresponds to
the estimated best alternative.

INPUT k,T,∆,n0 (T −kn0 a multiple of ∆ and n0 ≥ 5).
INITIALIZE l←0;
Perform n0 simulation replications for all alternatives;

Nl
1 = Nl

2 = · · ·= Nl
k = n0.

LOOP WHILE
k
∑

i=1
Nl

i < T DO

UPDATE Calculate sample means J̄i,
sample standard deviation si, i = 1, ...,k, and
b=arg mini J̄i using the new simulation output.

ALLOCATE Increase the computing budget by ∆ and
calculate the new budget allocation,
Nl+1

1 ,Nl+1
2 , . . . ,Nl+1

k , according to

(1) Nl+1
i

Nl+1
j

= s2
i /(J̄b−J̄i)2

s2
j/(J̄b−J̄ j)2 , i 6= j 6= b,

(2) Nl+1
b = sb

√
k
∑

i=1,i6=b

(
Nl+1

i
si

)2

,

SIMULATE Perform max(Nl+1
i −Nl

i , 0)
additional simulations for alternative i, i= 1,. . . ,k;
l← l +1.

END OF LOOP
OUTPUT estimated best solution b=arg mini J̄i.

Figure 3: OCBA allocation procedure.

On the other hand, Chen and Yücesan (2005) consider
the problem from what can be viewed as the dual perspective,
which essentially corresponds to the traditional statistical
ranking and selection approach. Specifically, instead of
trying to maximize P{CS} subject to a fixed computing
budget, the problem is to minimize overall computing cost
(total number of simulation replications) while guaranteeing
a specified P{CS}, such as 95%, i.e.,

minN1 +N2 + · · ·+Nk

s.t. P{CS} ≥ P∗,

where P∗ is the desired “confidence level.” While the problem
appears to be different, Chen and Yücesan (2005) show that
its approximate solutions are identical, so the same OCBA
procedure applies to this problem, as well.

Extensive numerical testing of OCBA can be found in
the literature, including Branke, Chick, and Schmidt (2007),
which compares it with other methods with favorable con-
clusions on its efficiency. Of course, the actual computation
cost using OCBA depends on the specific problem and the
corresponding P{CS} requirement. However, the speedup
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factor of using OCBA vs. equal allocation is increasing in
the number of alternatives, but otherwise pretty robust to
many other problem parameters. Table 1 shows the speedup
factor using OCBA for an experiment in Chen and Yücesan
(2005).

Table 1: Example of estimated speedup factor of using
OCBA compared with the use of equal allocation.

# alternatives 4 10 20 50 75 100
speedup 1.8 3.4 6.5 12.8 16.3 19.8

4 STOCHASTIC GRADIENT ESTIMATION

The goal of stochastic gradient estimation is to estimate the
gradient of the performance measure with respect to the
parameters, denoted by ∇J(θ). This presupposes that J is
differentiable in θ , so in our simulation optimization context,
we are considering the setting where Θ is a continuous space,
generally a subset of ℜp. Given a gradient, one can carry
out local gradient search. When the gradient estimate is
noisy, this leads to the stochastic form of gradient search
known as stochastic approximation (Kushner and Yin 2003).
The algorithm takes the following iterative form:

θn+1 = θn−an∇J(θn),

which is simply gradient search in the stochastic setting,
where θn represents the value of the parameter vector at
the nth iteration and {an} is a step-size multiplier sequence
(sometimes called a “gain” sequence) that needs to go to zero
at an appropriate rate in order to guarantee with probability
1 (w.p.1) [or almost sure (a.s.)] convergence. However,
less stringent conditions are required (e.g., not even going
to zero) if weaker forms of convergence suffice.

The straightforward method of estimating the gradient
is to do so using componentwise perturbations. The ith
component of the symmetric difference gradient estimate
would be as follows:(

∇̂J(θ)
)

i
=

L(θ +hiei,ωA)−L(θ −hiei,ωB)
2hi

,

where hi is the (scalar) perturbation in the ith component,
ei is the unit vector in the ith direction, and ωA and ωB
represent two simulation replications with different random
number seeds. Using common random numbers, i.e., taking
ωA = ωB can oftentimes reduce the variance dramatically, but
it is problem dependent as to whether synchronization can
be achieved (Law and Kelton 2000). The biggest drawback
to finite difference approaches is that the computational
burden grows linearly in the dimension p of the vector θ ,
e.g., for the symmetric difference estimate, the number of

simulation runs per gradient estimate would be 2p. If p were
a million, then we go from one simulation replication per
performance estimate to two million simulation replications
per gradient estimate!

Another more efficient approach is simultaneous pertur-
bation stochastic approximation introduced by (Spall 1992),
which requires only two simulations per gradient estimate,
regardless of the dimension of the vector. Whereas in the
(symmetric) finite difference estimate, the pair in the numer-
ator changes for each component of the gradient estimate,
in the simultaneous perturbation (SP) gradient estimate, the
pair in the numerator is identical for each component of the
gradient estimate, and it is the denominator that is (possibly)
different for each component. The ith component of the SP
gradient estimate would be as follows:(

∇̂J(θ)
)

i
=

L(θ +∆,ωA)−L(θ −∆,ωB)
2∆i

,

where ∆ is a vector whose ith component ∆i is ±hi w.p.0.5.
Both of these approaches could be called “black box”

methods, since no knowledge of the simulation model is
used. In fact, there is nothing that even recognizes that
the model is stochastic, as the same estimators could be
used for deterministic models. However, in the simulation
setting more is known about the underlying system, for
example distributions that generate input random variables.
This allows for the implementation of more efficient di-
rect methods to estimate the gradient. Methods for direct
stochastic gradient estimation include perturbation analysis
(Ho and Cao 1991, Glasserman 1991, Fu and Hu 1997),
the likelihood ratio/score function method (Glynn 1987),
(Rubinstein and Shapiro 1993), and weak derivatives (Pflug
1989, Pflug 1996). For a more detailed overview on these
methods, the reader is referred to Fu (2006) and Fu (2008).

In general, perturbation analysis corresponds to directly
differentiating the sample performance function and is thus
sometimes called the pathwise method in finance applica-
tions (Glasserman 2004), whereas the other two methods
involve differentiation of the underlying (joint) probability
distribution, which in simulation generally corresponds to
the input random variables that generate the output perfor-
mance measures. In a queueing system, the input random
variables include the interarrival times and the service times,
whereas in the (s,S) inventory system, the input random
variables include the demand amounts, interarrival times of
demands, and order lead times. If the parameters occur in
these distributions, then any of the methods could theoret-
ically be applied, but the technical requirements are more
stringent for perturbation analysis. The latter has the ad-
vantage that it more easily handles “structural” parameters,
which is what the control parameters s and S can be viewed
as for that example. In principle, θ could have elements
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in both the sample performance and the underlying input
distributions (see L’Ecuyer (1990)).

For the (s,S) inventory system, perturbation analysis es-
timators were derived under different settings in Fu (1994b),
Fu and Hu (1994), and Bashyam and Fu (1994), the first
applications of stochastic gradient estimation techniques to
inventory systems. In Fu and Healy (1992) and Fu and Healy
(1997), the resulting estimators are applied to the classical
unconstrained cost minimization formulation, comparing a
stochastic approximation algorithm with a “retrospective
optimization” algorithm (precursor to the “sample average
approximation” or “sample path optimization” terminology),
whereas in Bashyam and Fu (1998), perturbation analysis
estimators are applied to a minimization of expected hold-
ing and ordering costs subject to a service level constraint,
where the latter is also estimated using simulation, and
the optimization algorithm is a stochastic adaptation of a
deterministic feasible directions algorithm. Zhang and Fu
(2005) add a pricing decison variable to the optimization
problem. Pflug and Rubinstein (2002) have shown how the
score function method could also be applied to the (s,S)
inventory system through an appropriate change of variables
and conditioning argument.

The entire Chapter 7 of the Lancaster Prize-winning
textbook by Glasserman (2004) discusses applications of
stochastic gradient estimation to the finance setting, begin-
ning with a discussion of finite difference methods.

Gradient search finds only local optima and applies only
to the setting where the parameters are continuous. The
method described in the next section is a global optimiza-
tion method that is also particularly suitable for discrete
(combinatorial) optimization problems.

5 NESTED PARTITIONS METHOD

The Nested Partitions (NP) method has recently been pro-
posed to solve global optimization problems (Shi and
Ólafsson 2000a, Shi and Ólafsson 2000b, Shi and Ólafsson
2008). Shi and Ólafsson (2007) concentrates on the de-
terministic setting (see also Ladson and Pintér 2007 for
additional discussion and references), whereas here the em-
phasis is on how it can be applied to the simulation setting,
which we illustrate with the (s,S) inventory control example.

The method can be briefly described as follows. In
each iteration, a region considered most promising is as-
sumed. We then partition this region into M subregions and
aggregate the entire surrounding region into one. Therefore,
within each iteration, we only look at M +1 disjoint subsets
that cover the feasible region. Each of these M +1 regions
is sampled using some random sampling scheme and the
estimated performance function values at randomly selected
points are used to approximate a so-called promising index
for each region. This index determines which region be-
comes the most promising one in the next iteration. The

sub-region scoring highest on the promising index auto-
matically becomes the most promising region. The method
backtracks to a larger region, if the surrounding region
rather than a sub-region is found to have the best promising
index. Here, a fixed backtracking rule is employed. The
new most promising region is then partitioned and sampled
in a similar fashion. This methodology divides into four
main steps that constitute the NP method. Not only can
each of these steps be implemented in a generic fashion, but
it can also be combined with other optimization methods,
thus making it adaptive to any special structure of a given
problem.

1. Partitioning. The first step is to partition the cur-
rent most promising region into several sub-regions
and aggregate the surrounding region into one. The
partitioning strategy imposes a structure on the fea-
sible region and is therefore important for the rate
of convergence of the algorithm. If the partition-
ing is such that most of the good solutions tend
to be clustered together in the same subregions,
it is likely that the algorithm quickly concentrates
the search in these subsets of the feasible region.
If the partitioning is completely unrelated to the
performance function, then it is called generic par-
titioning. The advantage of generic partitioning is
that the partitioning tree is usually predictable in
terms of branching degrees and searching depths.
More efficient partitions could be constructed if the
performance function is considered. This type of
partitioning technique is called Knowledge-Based
Clustered partitioning. For detailed discussion on
both partitions, see Shi, Ólafsson, and Sun (1999).

2. Random Sampling. The next step of the algorithm
is to randomly sample from each of the subregions
and from the aggregated surrounding region. This
can be done in almost any fashion, provided that
each solution in a given sampling region should
be selected with a positive probability. Although
uniform sampling can always be used, it may often
be worthwhile to incorporate special structures into
the sampling procedure so that the sampling quality
can be improved, e.g., some kind of weighted
sampling scheme.

3. Calculation of Promising Index and Determina-
tion of the Most Promising Region. Once each
region has been sampled, the next step is to use the
sample points to calculate the promising index of
each region and then determine the most promising
region based on the promising indices. It should
be noted that the determination is based on order
comparison of the indices. In terms of the implica-
tion for simulation optimization, the key thing to
note is that an accurate estimation of the promising
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index value for each region is not critical, i.e, the
relative order of promising indices, or the relative
order of the considered solutions, is more essential
than the value of the promising index itself. This is
an ideal situation for the use of ordinal optimization
(Ho et al. 1992, Ho et al. 2000). Again the NP
methodology offers a great deal of flexibility. The
only requirement imposed on a promising index is
that it should agree with the original performance
function on singleton regions.

4. Further Partition or Backtracking. If one of
the subregions has the best promising index, the
algorithm moves to this region and considers it to
be the most promising region in the next iteration.
If the surrounding region has the best promising
index the algorithm backtracks to a larger region.
The NP method described here can be applied,
in its generic form, to a wide range of problems.
The method is also capable of taking advantage
of special structures by incorporating them into
the partitioning, sampling, and promising index
steps. The partitioning approach also makes the
algorithm compatible with emerging parallel com-
puting capabilities. Each region can be treated
independently and in parallel, with only a minor
coordination overhead. The method also uniquely
combines global search through partitioning and
sampling and local search through estimation of
the promising index.

We use the (s,S) inventory example to illustrate how
the NP method can be applied to this problem in simulation
optimization. In the kth iteration we assume that there is a
subregion of the feasible region that may be considered most
promising. Initially we assume no knowledge about the most
promising region and let it be the entire feasible region Θ.
The first step is to partition the most promising region into
disjoint subregions and aggregate the surrounding region
(if any) into one. In the two-dimensional (s,S) inventory
example, the partition can be done on one variable only or
on both simultaneously. For example, in Figure 4, we first
partition the solution space into two subregions based on
the value of s, without any surrounding region. Next, if
{(s < 10,q)} becomes the most promising region, we then
partition it into two subregions, and the surrounding region
is Θ \ {(s < 10,q)}. We can further partition each such
subregion by subdividing the second variable into intervals
or by further partitioning the variable s into subintervals as
is done in the example shown in Figure 4. Assuming that
s and q are discrete (e.g., integer-valued), this procedure
can be repeated until the singleton region is reached, when
all the s and q are fixed. It can be seen from Figure 4
that at the same level, each subregion contains a different
number of feasible points. Given a solution space, there

Figure 4: Partitioning of the (s,S) inventory problem ex-
ample.

exist many partitions. For example, we could also have
divided Θ into three subregions initially by dividing the
real-line interval for s into three different intervals (as in
the third level in Figure 4). This partition would provide a
completely different set of subregions.

The second step is to use some sampling method to
obtain a set of solutions from each region. This should
be done in such a way that each point has a positive
probability of being selected. It should be noted that many
heuristics may be incorporated into the sampling step through
a weighted sampling scheme, which we will demonstrate.
The only requirement is that each point in a sampling region
should have a positive probability of being selected. While
uniform sampling scheme works well in most cases, from
our experience, incorporation of a simple heuristic into
the sampling scheme can drastically improve the sampling
quality. For example, suppose the current sampling region
has the form of {([0,R],q)}, meaning that the variable s
could take any value between [0,R] and q could take any
non-negative value. Generating a random sampling point
in this sampling region means to randomly select on both
values. However, assume we want to weight the probabilities
for the numbers between 0 and 2 three times higher than
values greater than 2. Such a weighted sampling scheme
is illustrated in Figure 5 for R > 2. Of course, there are
many other ways to assign the weights. Numerical results
indicate that the NP method performs well using such simple
heuristics.

The third step is to rank and select the best from the set
of sampled alternatives (solutions), comprising the union
of all sampled solutions from each disjoint (sub)region. In
the simulation setting, this step is connected to the previous
step and the next step, because simulation must be used to
estimate the performance (promising index) of each sampled
solution. Clearly, the OCBA method is one way to carry
this out more efficiently, and combining NP with OCBA in
these steps is proposed in Shi and Chen (2000).

The final step is to determine the most promising region
for the next iteration. The subregion estimated to have the
best promising index becomes the most promising region in
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Figure 5: Weighted sampling scheme for the (s,S) inventory
problem example.

the next iteration. In the simulation setting, the estimation
error comes from two sources:

1. the error from possibly not sampling the entire
subregion (except when they are singletons), and

2. the error from simulation estimation of performance
at a particular solution point.

The new most promising region is thus nested within the
last. By extension, if the surrounding region is found to
have the best promising index, the algorithm backtracks to a
larger region that contains the best solution. The partitioning
continues until singleton regions are obtained and no further
partitioning is possible.

6 CONCLUDING REMARKS

Simulation optimization is an active research area, both in
terms of research into new and improved algorithms and
theoretical results, and in commercial software implementa-
tion. The most exciting developments are usually reported
annually in the Winter Simulation Conference. Two of the
most well-known pieces of optimization software for sim-
ulation are OptQuest and SimRunner, and the commercial
vendors are regular attendees at the conference. Because the
field of simulation optimization is so important and flourish-
ing, an important step in helping researchers compare their
algorithms and results is the building and maintaining of
a testbed of simulation optimization problems (Pasupathy
and Henderson 2006).

Closely related to simulation optimization research
is research in stochastic programming (Birge and Lou-
veaux 2000), approximate (stochastic) dynamic program-
ming (Powell 2007) (also known as reinforcement learning in
the artificial intelligence community (Sutton and Barto 1998)
and neuro-dynamic programming in the control community
(Bertsekas and Tsitsiklis 1996)), and simulation-based ap-
proaches to Markov decision processes (Chang, Fu, Hu,
and Marcus 2007). All of these areas are interested in find-
ing ways of utilizing simulation efficiently and integrating
simulation into the algorithms themselves.
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