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ABSTRACT

Practitioners, venders, and researchers form three influ-
ential groups within the WSC community. The groups
depend upon each other, yet not-enough interaction exists.
Researchers, in particular, have difficulty explaining their
culture and contributions. This paper is an attempt at such
an explanation.

1 INTRODUCTION

Since at least 1976, when I first attended the Winter Sim-
ulation Conference (WSC), the WSC program has been
organized into tracks. Over the years, the number of tracks
has increased, but year after year each track draws its own
crowd. Practitioners participate in the various application
tracks, venders participate in the software tutorials (and,
since 1984, the exhibit area), and researchers participate
in the Modeling and Analysis Methodology tracks. Of
course a bit of mixing occurs among the tracks, but most
discussions among practitioners, venders, and researchers
are outside the program at user-group meetings, at society
business meetings, and in the hall smoozing. Even there,
the discussions seldom allow practitioners, venders, and
practitioners to understand each other.

If asked, most conference attendees would quickly iden-
tify themselves as being a practitioner, a vender, or a re-
searcher. (Those who easily identify with more than one
group are rare; the language venders of the early 1980s come
to mind.) Most attendees could (and would) quickly describe
the other two groups. (The animal-vegetable-mineral anal-
ogy might be fun, asking each attendee which matchup to
practitioner-vender-researcher would be most appropriate.)
My sense is that substantial misunderstanding exists.

Venders probably have the least misunderstanding. Hav-
ing a product to sell, they need to understand their buyers,
who are typically practitioners. Needing to develop a prod-
uct to sell, they need to understand the state of the art,
which arises (“by definition”, as I and other researchers

like to say) from the researchers. Ideally the state of the
art is embedded in the vender’s product; the practitioner
should not need to be bothered to learn the state of the art.

Practitioners have more misunderstanding. They have
a job to do. I hope that the job is to answer a set of questions
so that a decision maker (who might be the practitioner) can
make better decisions than if the practitioner weren’t doing
his or her job. To do the job, a simulation practitioner needs
deep understanding of the job context, excellent social skills,
a good understanding of at least one vender’s product, and
(ideally) no understanding of the state of the art.

Researchers have the most misunderstanding. I am a
researcher. I would like to understand other groups better.
For perspective, I occasionally attend other tracks, but my
own track (Analysis Methodology) invariably calls. In the
selfish hope that others will make the effort to describe their
groups to me, I describe here what we researchers do. As
must be, other researchers have different views, but to a
large extent we are alike and what I say here reflects what
is going on in the research community.

For perspective, because I think that my background
is similar to many other researchers, in Section I describe
how I became a researcher. Since most (almost all?) WSC
researchers are professors, Section 3 is about what professors
do for a living. Section 4 is about research, the process of
stating and defending a problem and its solution(s). Section
5 is about the WSC research community, at least as seen
in the Analysis Methodology track. Finally, in Section 6 I
try to extract lessons from two of my own research topics.

2 MY BACKGROUND

I was a practitioner once, with Electronic Data Systems
(EDS)in the early 1970s. Being a practitioner was difficult,
and not because of punch cards and jockeying for computer
time in the middle of the night. The difficulty was people and
communication skills: interviewing non-technical clients
to create models, extracting cost data from accountants
who didn’t understand why I wanted to exclude overhead
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costs (and I who didn’t understand that the term “marginal
cost” would have been useful), and writing weekly status
reports. Also, I noticed that the obvious higher-paying career
path meant managing other employees, and management
appeared to be really difficult.

After about a year of the real world, I began applying
to Ph.D. programs. I needed a career path that allowed
me to follow my nerdy technical strengths. As with many
eventual WSC researchers, my strengths were short on peo-
ple skills and long on mathematics, statistics, and computer
science. Indeed, my undergraduate mathematical-sciences
degree was a set of courses combined by the mathemat-
ics, statistics, and computer science departments at The
University of Iowa.

I was never quite a mathematician, though, because I
was often the student in class who disappointed the professor
by asking whether “this stuff” was ever used. Other than for
a part-time programming stint with Westinghouse Learning
Corporation, where I implemented Fortran programs to com-
pute descriptive statistics for American College Testing’s
Freshman Profile, I saw no evidence that the useful “stuff”
that I was learning was indeed useful. Fortunately, before
graduation I was required to meet with an adviser to ensure
that I had taken sufficient and appropriate courses for my
Bachelor of Arts degree. He asked a life-changing question:
What did I enjoy more, pure or applied mathematics? I
clearly didn’t know, because I asked in reply which had
I taken. He suggested that I go across the street to take
an introduction to operations research; “across the street”
referred to the engineering building. The course was taught
(well) by Professor John Liitschwager in industrial engi-
neering. More important than any course concept, however,
was that engineering provided the technical problem-solving
community that I had been looking for. But graduation and
the military draft loomed.

An April 1969 motorcycle accident gave me a one-
year draft deferment, so I enrolled in the IE Ph.D. graduate
program at Iowa. Professor John Ramberg introduced me to
systems simulation, first in a fall (Saturday morning, ouch)
course and then in a spring readings course. Based on one
of his suggestions during the readings class, I volunteered to
investigate how to generalize Tukey’s Lambda Distribution,
an effort that became my MS thesis and introduced me to
the joy of falling asleep and waking up thinking about a
single research question for an entire summer. And then I
won the first draft lottery (with number 183), removing a
primary reason to be a student. I dropped out with an MS
degree and suddenly was an operations-research practitioner
at EDS. But more than freedom from the draft caused me
to drop out: The salary of $11000 per year seemed huge,
IE at Iowa required at least one year of work experience
to obtain a Ph.D., and I had once again begun to wonder
whether the course material was “useful stuff”.

My practitioner experience at EDS, brief as it was, made
me a believer that the mathematics, statistics, and computer
science “stuff” was useful. And that bit of practitioner
experience has guided my research career, the point of
which has been to try to improve ability of practitioners to
do a good job, ideally automatically, without the practitioner
being aware, by having the research results embedded within
the off-the-shelf software.

3 ON BEING A PROFESSOR AT A RESEARCH
UNIVERSITY

As with most WSC researchers, I am an ivory-tower re-
searcher, having been a professor since I graduated from
Georgia Tech’s School of Industrial and Systems Engineer-
ing in 1975. Professors engage in teaching, research, and
service, but for most of us the reward system is hugely
skewed toward research, with quality of teaching and ser-
vice ignored until students march in protest or a law suit is
threatened. Many of us consult a bit, giving some advice
to a practitioner or to a vender, but we seldom face the
real-world issues of implementing and selling models or
of creating and selling products. Some professors do face
an almost-real-world issue—attracting funding—a revenue
source that is an ever-increasing share of research-university
budgets.

Tenure—the awarding of a life-time employment
contract—is at the heart of the life of a professor. Con-
ceptually the argument for tenure is simple: If the position
is called professor, then the person in the position should
profess. Professing well is aided when there is no fear of
losing one’s job. The content of engineering and science
teaching usually is not controversial, but management pro-
fessors more-often deal in opinion. More relevant to most
of us than freedom of class-room speech is the freedom
to choose research topics, popular or not. That freedom is
central to an interesting research career. And maintaining
the professor’s interest is crucial in a tenured world where
lack of productivity is not a criterion for termination.

Only a tiny part of a professor’s activities are required.
Showing up for class, almost all of the time, is required.
And some committee activities. And some formal advis-
ing. I’ll estimate that required activities comprise twenty
percent of what I do; the rest is voluntary. Much of the
rest is difficult to measure, both the quantity and the qual-
ity. Advising undergraduate and graduate students about
course selection, career direction, and thesis adviser. Ad-
vice to former students. Writing letters of recommendation.
Writing grant and contract proposals. Attending seminars,
sometimes to be supportive rather than from a fundamen-
tal interest. Informally talking with colleagues about their
research. Visiting other institutions to give a seminar, pro-
vide curriculum advice, or generally promote interaction.
Attending and speaking at conferences. Service to profes-
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sional societies. All of these activities are desirable; none
are required.

And I haven’t mentioned research, which is what draws
many of us to universities. After tenure is awarded, research
is another non-required activity. A fundamental question
that I ask myself when evaluating a tenure case is whether
I think that the candidate loves doing research. Research
effort arising in response to a reward system, rather than
for the inherent enjoyment, can quickly fade.

The good news, at least to those of us who are night
owls, is the freedom to work when we please. For me, that
means that afternoons can focus on advising, discussions,
seminars, and teaching, with the nights free for research.
And that others can find their own schedule. Alan Pritsker
and I occasionally would overlap our day in Grissom Hall at
about 3:30am, he arriving to write new material until 8a.m.
For research productivity, we all find a few uninterrupted
hours every day, and the university environment provides
few constraints.

Having few constraints, however, provides the argument
against the tenure system. Any tenured professor can choose
to ignore the non-required activities, and not much can be
done about it. The positive solution is allow the professor
to maintain interest. And that is aided greatly by the free
choice of research topics.

A researcher’s freedom to work on any topic can be
scary. Having a boss to assign a task is easier, much
like an entry-level position is easier than a managerial
position. Most students, before attempting a thesis, have
spent their lives taking courses, with the instructor providing
assignments and the students providing solutions. Many
excellent students, as measured by grade-point average,
struggle when the assignment is to decide what to do. For
several years, in my IE680 research-level simulation course,
I have asked the students to prepare for class, but to submit
only whatever they choose during the semester. Very few
students like the freedom to decide what to do. Even
after I make some suggestions (work specific examples,
or write computer code, or write a paper summary, or
make a class presentation, or engage me in discussion), the
uncertainty about what I want dominates. Seldom does a
student naturally enjoy the freedom to spend time on what
he or she wants when a course grade is to be assigned.

Similarly, most students prefer to have a thesis topic
and problem posed for them. At the thesis defense, a classic
question is why the student chose the particular topic and
problem; the classic bad answer is that the adviser suggested
them.

4 THOUGHTS ABOUT PURSUING RESEARCH

The following subsections contain random thoughts about
research.

4.1 Stating the Problem

Stating a research problem is difficult. Very often when I
ask someone about his or her current research, the reply
is about the solution. For example, “I am using neural
networks to choose input models”. Other times, the problem
is only vaguely stated. For example, “I am working on the
initial-transient problem.” Despite being difficult, I find the
exercise of stating the research problem, with no mention
of solution approach, useful.

In particular, I like to state the problem in two ways.
First, from the point of view of a practitioner. I want to
know what the practitioner is assumed to know, what is to be
found, and how the quality of the solution will be measured.
For example, given a vector of n steady-state data from an
unknown process, estimate the marginal standard deviation
to minimize the mean squared error. Problem statements
usually need to be clarified. For example, what compu-
tational effort is allowed? In many simulation contexts,
computation needs to be O(n) because otherwise the time
spent computing the point estimator could be used to obtain
more simulation data. But many reasonable standard-error
estimators are quadratic forms, so knowing whether O(n2)
computing is acceptable should be part of the problem
statement.

The second way to state the problem is from the point
of view of the researcher. In my world, the researcher’s
problem is to create a method, usually implemented in
computer code, to solve the practitioner’s problem. Ideally,
a design criterion is that the practitioner need not specify
any “magic” parameters. For example, a practitioner should
not be asked for an initial step size, a number of batches,
or an amount of initial data to be deleted. The practitioner
should need to provide only the problem context and the
quality of the solution desired.

When an adequate problem statement is available, re-
searchers should be able to determine which of two solutions
is preferable. A good exercise is to have someone else read
the problem statement to check whether the problem state-
ment can be broken. For example, a few years ago I was on
the committee of a Ph.D. student who proposed a scheduling
algorithm designed to minimize total tardy time. First, of
course, I corrected the statement to “expected total tardy
time”. Then I asked the meaning of “total tardy time”, which
turned out to be the sum of tardy times of all customers
who departed the facility. I proposed the rule that no tardy
customer be allowed to leave the facility, which always
would return zero total tardy time. The student protested
that of course he wasn’t interested in such a rule. But if such
a silly rule satisfies the problem statement, then certainly
there are other rules that might also be unacceptable even
while seeming to be good. As it turned out, the student’s
simulation experiments didn’t clear the queue, causing a
biased comparison: poorer scheduling rules usually ended
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with unseen tardy customers still waiting for service while
better rules usually cleared all customers from the system.

Defending the problem is as much part of research as
defending the solution. Typically thesis defenses pursue
these three questions and answers: (1) Why is the problem
of interest? Because it is important. (2) If it is important,
why hasn’t it been solved? Because it is difficult. (3) If it
is difficult, why do you think that you can solve it? And
then we come to the hook, the insight into the problem
that might allow the researcher to solve an important and
difficult problem.

4.2 Research is Opportunistic

The pattern of choosing a topic, focusing on a problem, and
then finding a hook is only sometimes sequential. Often an
adviser suggests a thesis topic and the student struggles to
define a problem that has a hook. In contrast, experienced
researchers live in a world of several topics—often a set that
increases with experience—and wander around reading and
listening to many ideas, finding synergies among disciplines
that provide hooks to problems.

For many of us, off-topic seminars are useful because
the speakers’ comments can stimulate useful thoughts about
our set of topics, either about new problems or about new
solutions. My guess is that the process is common in
other fields. Opportunistically, just now I remember a short
internet article (Ker Than 2005) that contains the quote from
Bradley Folley, a graduate student in clinical psychology
at Vanderbilt University. “Creativity at its base is...taking
things that you might see and pass by everyday and using
them in a novel way to solve a new problem.” Years ago, Lee
Schruben told me that, at the beginning of his professorial
career, he tried to sit-in a course every semester. Beyond
the continued learning, my impression is that attending
courses contributed to his impressive creativity. How else
does someone think of solving the warm-up problem by
reversing the output time-series data and then using quality-
control concepts to ask when the reversed time series is
out of control? How else to think of using a Turing test
(originally proposed in 1950 to determine whether machines
can think) for model validation? How else to relate graph
theory to next-event modeling?

Being opportunistic is at the heart of a distinction
between research and development. Like research, devel-
opment can be difficult to do well. But development can be
done on a schedule, in contrast to research, which requires
the hook, which requires something unexpected. For true
research, sitting down to “do” research is difficult. Progress
is not linear. Sometimes another week’s passing means only
that the researcher now understands why a current idea is
not worthwhile to pursue. The boundary between research
and development is not pure, especially since after finding
the hook much of research is development.

4.3 A World View of Simulation Experiments

From the research point of view, simulation is one of three
methods to analyze a given probability model. The other
two are to seek closed-form solutions, such as taught in
classical probability courses, and numerical methods, such
as taught in numerical-analysis courses. Probability models
have two parts: the input model and the logical model. The
input model describes the random behavior of individual
components; for example, that customers arrive according
to a Poisson process with rate six per hour. The logical
model describes how the random components interact; for
example, that arriving customers begin service immediately
if a server is available and otherwise enter the queue. Much
like the distinction between data and code in computer
science, the boundary between the input model and the logic
model is sometimes vague; for example, when customers
arrive deterministically every ten minutes. Given an input
model and a logic model, analyzing a probability model
means to determine the numerical values of one or more
performance measures; for example, the mean and 0.9
quantile of customer time in the system.

The world view of input model, logical model, and
performance measures, which allows every application to
fit within the same structure, allows researchers to think
abstractly so that results are general. Venders are always
seeking common structure, because they are like researchers
in seeking generality. Practitioners who use a common
structure for all applications know what to look for, much
as in optimization modeling one knows to look for decision
variables, an objective function, and constraints.

Researchers don’t move much beyond the world view
comprising input model, logic model, and performance
measures. Simulation used for training, for example, seldom
is discussed in the Analysis Methodology track. Stochastic
root finding and stochastic optimization augment the world
view by defining some parameters of the input model and
logic model to be decision variables. Researchers often
think about how to improve the quality of input models,
but usually consider the logic model to be given.

Arising from Barry Nelson’s Ph.D. thesis (Nelson 1983),
the world view of simulation experiments can be thought of
as five sequential boxes, which I usually draw horizontally.
On the left is the random-number generator (including ini-
tial seed), code that makes a deterministic computer seem
to create random numbers, the contents of the second box.
The random numbers are assumed to be uniformly and in-
dependently distributed over the unit interval. Practitioners
hope that the vender has taken care in the choice of gen-
erator(s), venders often do take care, and researchers have
the luxury of simply stating an assumption. The random
numbers from the second box are used to generate random
variates, which lie in the third box. These random variates
are observations from the input model. The random variates
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are fed into the logic model, to produce output data (e.g.,
the customer times in the system), which lie in the fourth
box. The output data are combined using a point estimator
of the performance measures; the fifth box contains the
point estimates, which are then reported to the practitioner.
This world view is implicit in researcher discussions, but
most textbooks don’t discuss it explicitly; Leemis and Park
(2006) is an exception.

5 ABOUT THE WSC RESEARCH COMMUNITY

The following subsections are my attempt to explain the
culture of the WSC Analysis Methodology track.

5.1 WSC Researchers

I am pleased that the WSC community of researchers has
both high standards and fine collegiality. Recent examples
abound. Three days ago, Shane Henderson sent me (and
co-authors) an email note pointing out that very similar
work was published about six years ago. How much better
to have the reference now than to have published our work
only to find out later about the earlier work. Similarly, I
remember David Kelton pulling an accepted paper before it
was published because a conceptual error needed attention.
This summer Mike Taaffe has been rewriting “Concise
Notes”, which I compiled for an introductory probability
course; how pleasant when arguing about authorship that
everyone is being generous. In contrast to colleagues in
other sub-disciplines, I have never had an argument about
author order.

5.2 Background Disciplines

Simulation research, at least in the Analysis Methodology
track, lies at the intersection of multiple academic dis-
ciplines. I’ve already mentioned that the departments of
mathematics, statistics, and computer science defined my
undergraduate degree. But every faculty member in each
of those departments would say that his or her department
includes several disciplines.

For the Analysis Methodology track, the first year of
an engineering probability and statistics course allows a lis-
tener to understand a bit of what is happening. Frequentist
statistics dominates the discussions, with Steve Chick re-
minding us of the advantages of Bayesian statistics. Courses
in queueing, design of experiments, response-surface meth-
ods, time-series analysis and survey sampling are relevant.
Real analysis arises repeatedly, typically to prove various-
forms of algorithm convergence (that is, if the algorithm runs
forever it will return the correct answer). Random-number
generation uses number theory and depends upon computer
architecture, topics that seldom arise otherwise. Numerical
analysis is useful, often because improving a simulation ex-

periment often involves combining elements of numerical
methods, Monte Carlo, and closed-form analysis.

With the influence of so many disciplines, defining the
state of the art is sometimes difficult. Is using another
discipline’s established idea to solve a problem from our
simulation world view a change in the state of the art? The
answer depends upon a person’s background, with the same
presentation often seeming elementary to one listener and
insightful to another listener.

5.3 Real Numbers and Computer Numbers

At our best, we blend the various disciplines, but sometimes
we ignore the possibilities. An example that I have discussed
briefly, at different times, with Jim Wilson, Wheyming Song,
Fen Chen, and Raghu Pasupathy is why we use real analysis
to prove algorithm convergence. By definition, real analysis
is about real numbers. Simulation algorithms, in contrast,
use computer arithmetic, which can represent only some
rational numbers, a small subset of the real numbers, with the
subset depending upon the particular computer. Therefore,
we sometimes use real analysis to prove that an algorithm
converges to some point θ , even when the computer can’t
represent θ .

The difference between real and computer arithmetic
also arises when we assume that random numbers are contin-
uously distributed on the unit interval. On 32-bit computers
using a random-number generator with period 231−1, the
largest 2000 (approximately) random numbers are repre-
sented as one, an effect that doesn’t happen to the 2000
smallest numbers. Programmers quickly notice the effect
when, for example, they generate an exponential random
variate using x =−ln(1−u). The real-world jolt of having x
be undefined keeps us honest in random-variate generation,
which is quite different from algorithm convergence where
we never notice that θ is undefined (because no algorithm
runs forever).

5.4 Engineers Versus Mathematicians

The research community, as a whole and often individually,
bounces between the engineering culture and the mathemat-
ics culture in two ways. First is the battle between being
useful and being elegant. Useful means that a practitioner
or vender uses the problem solution. Elegant means that
the problem solution is insightful and has a theoretical base;
typically stating conditions under which infinite computing
will provide the stated solution. An algorithm that explicitly
searches a finite space of solutions is not elegant, and only
sometimes useful.

Many of us hope for both useful and elegant. In the
world of algorithm design, we often plot expected squared
error versus computing effort. If the curve goes to zero,
then it converges. If Algorithm A has a curve that is lower
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than other algorithms’ curves, then Algorithm A is useful
in that it is a natural choice for a practitioner or vender.
Creating the algorithm with the lowest curve is good.

The second way that the WSC researchers bounce be-
tween engineering and mathematics is the underlying re-
search goal. A useful cliche is that science seeks to find
what exists and engineering seeks to create what didn’t
exist. In that sense, creative design of algorithms is engi-
neering and the theory upon which algorithms (one hopes)
are designed is science. Many of us try to do both, but most
know where our interests and strengths lie. And for most
of us, despite our symbol-filled papers, we are engineers,
designing solutions. The heavy hitters, many of them Peter
Glynn’s students, try to keep us on a solid foundation.

6 ON MY RESEARCH

My own topics, in the order that I acquired them, are all
related to Monte Carlo simulation experiments: univariate
input modeling, random variate generation, multivariate in-
put modeling, variance reduction, output analysis, stochastic
root finding, and stochastic optimization. Appending U(0,1)
random-number generation and the initial-transient problem
to the list would encompass most presentations within the
WSC Analysis Methodology track.

Below I discuss two topics, with the hope that the
research discussion is the focus more than the topics.

6.1 Input Modeling

Based on my short practitioner career, my first independent
research focused on the following practitioner context. I
was trying to predict the effect of automating Blue Cross
/ Blue Shield claims processing. For the input model, I
needed service-time distributions for various human opera-
tions, routing probabilities, travel-time distributions, mail-
room arrival volumes, and mail-room arrival times. As was
not atypical, I had arrived midweek and needed results for
Monday’s big presentation. The service-time distributions
were difficult because they obviously would affect the con-
clusion, there were many of them, and because there were
no data sets.

My only academic training was the classical approach
of hypothesizing a family of distributions, fitting parameters,
and testing goodness of fit. With many distributions, no
data sets, and not enough time, I needed a quick-and-dirty
solution. Like many practitioners before me, I scurried from
operation to operation, asking for minimum, maximum, and
most-likely service times, and then assumed a triangular
density function. Some sensitivity analysis was possible,
because over the weekend I had the main-frame computer
to myself. Not surprisingly, the results were sensitive to the
maximum. Worse, even I didn’t know what I meant by the
maximum time needed to check a claim form for errors.

My first research funding, from the Office of Naval
Research, was to create four- and five-parameter families
of distributions. I had only a vague problem statement. I
wanted to obtain a distribution family that was so general
that it would be adequate for most quick-and-dirty appli-
cations. Ideally, it would cover the entire plane of third
and fourth standardized moments. Ideally, it would have
parameters that have meaning, like the three parameters of
the triangular family. Ideally, it would have a closed-form
inverse transformation for easy random-variate generation
and to support correlation induction. Ideally, it would look
good, in the sense that a practitioner tended to think that
the fitted shape was reasonable.

The best of several attempts, written with Ram Lal, was
a five-parameter generalization of the triangular family; the
fourth parameter changed the shape of the left side and the
fifth the right side. A referee said that we had set statistics
back fifty years, leading me to shove the manuscript in
a lower drawer forever. For several years I did teach the
distribution in simulation classes, because I found the five-
parameter approach useful. Then fitting software, such as
Averill Law’s UniFit and later Mary Ann Wagner’s Bezier
curves, arrived, and I thought that need for a five-parameter
family was gone. Recently, however, Sam Kotz and Rene
van Dorp (2005) recently proposed the same family in their
excellent reference Beyond Beta.

What is the lesson? A researcher needs to develop a
thick skin. Don’t take referees, who are usually anony-
mous, too seriously. Read and think about the comments.
Don’t make changes only because a referee suggested them.
Understand that the same idea better presented is usually
publishable; any manuscript that is mathematically correct
can find a home, because many journals struggle to fill their
pages. But please, if an idea is bad or not new, let the
manuscript die.

6.2 On Choosing a Confidence-Interval Procedure

Since the 1950s a classic simulation topic has been to
estimate the standard error of the sample mean of a steady-
state vector of n data points.

The topic continues to develop today, taking several
directions. Solution methods have evolved, from explicit
estimation of autocorrelations, batching (spaced, contigu-
ous, partial overlapping, overlapping), ARMA time-series
modeling, regenerative processes, standardized time series,
and quadratic forms. Criteria have changed, from the prob-
ability of covering the mean to that and the expected half
width to those two and the variance of the half width. The
problem has been generalized to the estimation of any dis-
tribution property, rather than only the mean. The problem
has also been generalized from the original, which assumed
that a vector of data are given, to sequential methods, which
assumed that each data point is available, used to update

7



Schmeiser

cumulative statistics, and discarded. And stopping rules
yield many other variations.

The half century of no-end-in-sight research is not
due to lack of competence. Most papers are correct, new,
and well written. The reason is, I think, the use of two or
three criteria (coverage probability, expected half width, and
sometimes variance of the half width). Given the multiple
criteria, most reasonable ideas are not dominated. Paper
after paper includes tables of Monte Carlo results showing
good performance.

Schmeiser and Yeh (2002) propose a single criterion to
replace the classical multiple criteria. (The single criterion
is the expected squared difference of the p value of an ideal
procedure and the p value of a new proposed procedure, but
that is a detail here.) Our hope is that the single criterion,
or an alternative, will allow the research community to
rank procedures unambiguously. Now, six years later, my
impression is that no other author has adopted our single
criterion. Also no author, even in a hall discussion, has
attacked the single criterion.

What is the lesson? Maybe everyone is being kind by
not attacking the single criterion. More likely, though, is
that research communities fall into comfortable patterns.
Thesis advisers know how to point students to publishable
research. Students can examine earlier theses for good
analogies. Editors and referees know what to expect from
a submitted manuscript with the problem statement and
criteria are consistent with the existing literature. Given the
university reward system, for which publishing papers is
important, there is little reason for a community to change.

As the years pass, however, I do find a reason to change.
Adding yet another paper to a well-developed literature is
less fun. Stating (and defending) new problems is more fun.
And my belief that the heart of good research is creating
the problem statement continues to grow stronger.

7 IN CONCLUSION: MARKETING

So what happened to the bar that the practitioner, the vender,
and the researcher walked into? The purpose of the bar
was only to attract you, the reader. Which leads us to the
final point, that if we researchers don’t work a bit harder
to attract attention to our work, much of it will be ignored.
And most researchers are not good at attracting attention.

Venders have always been good with catchy pronounce-
able names. Alan Pritsker was the king of well-known
acronyms: GERT, GASP, SLAM, AWESIM. Lee Schruben’s
SIGMA and Steve Roberts’s INSIGHT are perfect names,
although both have the researchers’ aversion to marketing.
Dennis Pegden, Jim Henriksen, and all other serious venders
have a sense of the catchy name and marketing. Would OP-
TQUEST have been so easily adopted by multiple venders
if the code had a different name?

As a practitioner at EDS, I tried. Based on GASP II, I
wrote a simulation package for insurance-claims processing.
I called it SNAP: Simulation of a Network of Activities
Program. The acronym was ok, but the words lacked
cadence.

Researchers are getting better at names. For years
I talked about “the three-step method”, a 1970s idea to
transform multivariate-normal random vectors to vectors
having uniform (0,1) marginal distributions to vectors having
arbitrary marginal distributions with a specified correlation
matrix. Barry Nelson, in automating the idea, began saying
NORTA, for “normal to anything”. More recently he and
Jeff Hong deftly named their search method “COMPASS”
and a later variation “Industrial-Strength COMPASS”.

Good names are a step toward better communication
among practitioners, venders, and researchers. And that
better communication would be good for all of us.
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