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ABSTRACT

Network reduction techniques are mainly used with exact
approaches such as factoring to compute network reliability.
However, exact computation of network reliability is feasible
only for small sized networks. Simulation is an alternative
approach to estimate network reliability. This paper discuses
the effect of using network reductions before estimating
network reliability using a simulation. Theoretical and
empirical results are provided to understand the source of
variance reduction in simulation due to network reductions.

1 INTRODUCTION

In the connectivity-based network reliability analysis, a net-
work is usually modeled as a probabilistic network G(V,E)
where V is the set of nodes and E is the set of unreliable
arcs such that each arc (i, j) ∈ E can be in either operative
state (x(i, j) = 1) or failed state (x(i, j) = 0) with respective
probabilities p(i, j) and 1− p(i, j). Assuming that the state of
each arc is independent from the others, the probability of
observing a particular network state x = {x(i, j) : (i, j) ∈ E}
is given as

Pr{x}= ∏
(i, j)∈E

[1− p(i, j) + x(i, j)(2p(i, j)−1)]. (1)

This basic model is adequate to represent many practical
scenarios in real life networks. The main objective of the
connectivity-based network reliability analysis is to calcu-
late the probability that a network G provides a specified
connectivity service. This probability is calculated as

R(G) = E[Φ(x)] = ∑
xεS

Pr{x}Φ(x) (2)

where S is the state space of all network states and Φ(x) is a
binary structure function based on the connectivity service
that the network is expected to provide. For example, in
all-terminal reliability (i.e., the probability that all nodes of
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a network are connected), the structure function is defined
as

Φ(x) =
{

1, if all nodes are connected for x;
0, otherwise. (3)

Exact computation of (2) for a connectivity-based reli-
ability measure is NP-hard in general networks (Ball 1979).
Exact methods such as factoring (Colbourn 1987, Page and
Perry 1991, Resende 1986, Resende 1988, Satyanarayana
and Chang 1983) and backtracking (Ball and Slyke 1977)
to compute (2) are computationally feasible only for small
sized networks. Several bounding approaches have been pro-
posed to approximate (2). However, some of these bounds
(Slyke and Frank 1972) are only applicable to networks with
identical arc reliabilities. Bound methods that can be used
with networks with different arc reliabilities (Lomonosov
and Polesskii 1972, Aboelfotoh and Colbourn 1989, Brecht
and Colbourn 1988, Li and Silvester 1984, Lam and Li
1986, Yang and Kubat 1989) are not tight enough, or they
require considerable computational effort to obtain a good
approximation.

Because of the reasons briefly summarized above,
Monte Carlo (MC) simulation has been a popular approach
to evaluate (2), especially for large-sized networks. The
application of simulation to estimate network reliability is
outwardly straightforward. In the most basic simulation
approach, called Crude Monte Carlo (CMC) simulation, K
independent random samples of network states x(1), . . . ,x(K)

are taken from S according to probability function (1), and
then the unbiased estimator of R(G) is calculated as

R̂(G) =
1
K

K

∑
k=1

Φ(x(k)), (4)

with an estimator variance of

Var[R̂(G)] =
R(G)(1−R(G))

K
. (5)
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In CMC, a random state vector x(k) = {xk
(i, j) : (i, j)∈ E}

is generated by individually sampling the state of each arc
(i, j) ∈ E as follows:

xk
(i, j) =

{
1, U ≤ p(i, j);
0, otherwise .

(6)

where U is a random number.
Although the implementation of CMC is straightfor-

ward, it has been criticized for being inefficient, especially
for highly reliable networks. Therefore, alternative sampling
techniques such as dagger sampling (Kumamoto et al. 1980),
stratified sampling (Slyke and Frank 1972), the Markov
model (Mazumdar, Coit, and McBride 1999), the sequential
construction/destruction methods (Easton and Wong 1980,
Fishman 1986a), importance sampling using bounds (Fish-
man 1986b), the graph evolution method (Elperin, Gerts-
bakh, and Lomonosov 1991), sampling based on failures sets
(Kumamoto, Tanaka, and Inoue 1977), and the recursive
variance-reduction algorithm (Cancela and Khadiri 1995,
Cancela and Khadiri 1998, Cancela and Khadiri 2003) have
been proposed in the literature to improve efficiency and
effectiveness of the simulation approach to estimate network
reliability.

Simulation has also been widely used as the primary
reliability evaluation method by researchers in the design of
reliable networks (Deeter and Smith 1998, Srivaree-ratana,
Konak, and Smith 2002). The variance of the reliability esti-
mator is particulary important when the simulation output is
used within an optimization algorithm to evaluate candidate
networks with respect to reliability. In such cases, the noise
due to estimation error may cause incorrect evaluation of
solutions, impairing the performance of a search algorithm.

Reliability-preserving network reductions are mainly
used with the exact methods (Page and Perry 1991, Resende
1986, Resende 1988) to calculate network reliability. This
paper analyzes the reduction in the variance of a simulation
estimator when a network is simplified using reliability-
preserving network reductions. The primary contribution
of this paper is to provide insights on how reliability-
preserving network reductions can provide a significant
reduction in the estimator variance. In addition, the effect
of using network reductions along with a variance-reduction
simulation technique such as the Sequential Construction
(SC) method (Easton and Wong 1980) is demonstrated. A
theoretical analysis is provided for CMC, and computational
experiments are carried out to understand the relationship
between variance reduction and various network features
such as network density and arc reliability in the case of
all-terminal reliability.
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2 NETWORK REDUCTIONS AND SIMULATION

In reliability-preserving network reductions, the objective
is to reduce a network G to a simpler network G′ (i.e., a
network with fewer nodes and/or arcs) such that

R(G) = λR(G′) (7)

where λ is a reliability-preserving multiplicative constant
that depends on the applied reduction. Network reductions
are primarily used with factoring approaches in the exact
calculation of reliability to improve the computational per-
formance. Network reduction can be implemented before
simulation and reliability estimation for a reduced network
G′ can be used to estimate the reliability of the original
network as follows:

R̂(G) = λ R̂(G′). (8)

There are three basic reliability-preserving reductions
that can be applied in case of all-terminal reliability.

2.1 Degree-1 Reduction

If network G has a node i with only one single incident arc
(i, j), then node i and its incident arc (i, j) are removed from
the network to obtain G′. In this case, R(G) = p(i, j)R(G′).

2.2 Degree-2 Reduction

This reduction is applied to nodes that have only two incident
arcs. Assume that node i has only two incident arcs (i, j)
and (i,k). To obtain G′, node i is removed from the network,
and in addition, arcs (i, j) and (i,k) are replaced by a new arc
( j,k) with p( j,k) = p(i, j) p(i,k)/(p(i, j) + p(i,k)− p(i, j) p(i,k)). In
this case, R(G) = (p(i, j) + p(i,k)− p(i, j) p(i,k))R(G′).

2.3 Parallel Arc Reduction

In parallel arc reduction, two parallel arcs (i1, j1) and (i2, j2)
between nodes i and j are substituted by a single arc (i, j)
with p(i, j) = 1−(1− p(i1, j1))(1− p(i2, j2)), and R(G) = R(G′)
in this case. It should be noted that even though an original
network G does not have any parallel arcs, they may occur
as a result of degree-2 reductions.

The proposed approach is very straightforward and can
be summarized as follows:
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Set λ = 1
While there exist nodes with degree 1 or 2 {

For each node i with single arc (i, j) {
Remove node i and arc (i, j)
λ = λ p(i, j)

}
For each node i with only two arcs (i, j), (i,k) {

Remove node i, arc (i, j), and arc (i,k)
If arc ( j,k) exists Then {

Set p( j,k) = 1− (1− p( j,k))×(
1− p(i, j) p(i,k)

(p(i, j)+p(i,k)−p(i, j) p(i,k))

)
}
Else {

Add arc ( j,k)
Set p( j,k) =

p(i, j) p(i,k)
(p(i, j)+p(i,k)−p(i, j) p(i,k))

}
λ = λ (p(i, j) + p(i,k)− p(i, j) p(i,k))

}
}
Estimate R(G′) using a simulation method.
Use R̂(G′) to estimate R(G) as R̂(G) = λ R̂(G′).

In the procedure above, the variance of estimator R̂(G)
can be calculated from the samples taken during the simu-
lation.

Corollary 1 In the procedure above, if CMC is used
to estimate R(G′), then the variance of R̂(G) is given by

Var[R̂(G)] =
R(G)(λ −R(G))

K
. (9)

Proof: From (7), R(G′) = R(G)
λ

. Substituting this into
(5), the variance of R(G′) is written as

Var[R̂(G′)] =
R(G)

λ
(1− R(G)

λ
)

K
=

R(G)(λ −R(G))
λ 2K

. (10)

From (8), Var[R̂(G)] = λ 2Var[R̂(G′)], and substituting (10)
into this yields Var[R̂(G)] = R(G)(λ−R(G))

K . The variance re-
duction factor due to the applied network reductions is given
as

δ =
Var[ ] before reductions
Var[ ] after reductions

=
1−R(G)
λ −R(G)

. (11)

3 Computational Experiments

In this section, the reduction in an estimator variance due to
network reductions is analyzed using randomly generated
10-node networks with identical arc reliabilities. In order
to investigate the effect of network reductions with respect
to network density (i.e., the ratio of the number of arcs to
the number of nodes), networks with the number of arcs
23
Table 1: Results for CMC simulation.
δ

p minimum median maximum
0.90 2 31 6897
0.95 4 115 129293
0.99 15 2566 95284433
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Figure 1: Comparison of the theoretical and empirical vari-
ance reduction factor for the CMC simulation with p = 0.90.

ranging from 13 to 30 were considered, and 30 networks
were randomly generated for each level of network density.
In addition, experiments were repeated for three different
arc reliability levels, p = 0.90, 0.95, and 0.99. In all cases,
K = 106 was used, and R(G) was calculated exactly for
each network using a factoring algorithm (Page and Perry
1991), which enabled to calculate the theoretical variance
reduction factor (δ ) given in (11) for CMC.

Table 1 shows the minimum, median, and maximum
theoretical variance reductions obtained for random net-
works using CMC simulation. As seen in the table, the
median variance reduction factors were 31, 115, and 2566
for p = 0.90, 0.95, and 0.99, respectively. Figure 1 illus-
trates a comparison of the theoretical and actual variance
reductions for random networks. As seen in the figure, the
experimental results are highly consisted with the theoretical
results. The results showed that the higher is the reliability
of a network, the higher level of variance reduction obtained.

In the second part of experiments, instead of CMC, the
SC method (Easton and Wong 1980) was used to estimate all-
terminal reliability in order to investigate the effect of using
network reductions with a variance-reduction simulation
technique. Tables 2 and 3 summarize the results for the SC
method. Table 2 presents the variance reductions due only
to the network reductions. The results in this table were
obtained as follows. First, the reliability of each network
was estimated using the SC method, and the variance of this
estimation was calculated from the samples taken during the
simulation. Let VarB denote the variance before reductions.
Then, network reductions were applied, and reliability was
03
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Table 2: Results for the sequential construction method.
VarB/VarA

p minimum median maximum
0.90 4 185 89340
0.95 10 1995 6705195
0.99 202 1041845 1147275074272

Table 3: Combined effect of network reductions and se-
quential construction method.

Var[] in (5)/VarA
p minimum median maximum

0.90 18 449 193175
0.95 83 7039 25583911
0.99 14484 10361703 5600347736444

estimated one more time using the SC method. Let VarA
be the variance of the estimation after applying reductions.
The results given in Table 2 are the ratio of VarB to VarA.
Therefore, the variance reduction factors in Table 2 are
independent from the variance reductions due to the SC
method. As seen in the table, network reductions provided
considerably higher reductions in the variance when used
with the SC method than with CMC. This additional gain in
variance reduction can be explained as follows. Compared
to CMC, the performance of the SC method increases with
increasing network reliability (Fishman 1987, Easton and
Wong 1980). As seen in Figure 3, the ratio of the variance
of CMC to the variance of the SC method exponentially
increases as reliability approaches one. This property of the
SC method can be exploited in reduced networks since the
reliability of a reduced network G′ is always higher than
that of the original network G. Therefore, the SC method
provided an additional variance reduction.

In Table 3, the ratio of the variance of CMC given in (5)
to (VarA) is given. This ratio indicates the combined effect
of network reductions and the SC method in reducing the
sampling error. As the results show that if network reduction
techniques are used along with an efficient variance reduction
approach such as the SC method, very high levels of variance
reductions can be achieved. Similar to CMC, the level of
variance reduction considerably increased with increasing
arc reliability.

When the results were carefully analyzed, it was realized
that the highest variance reductions were achieved for two
cases, very sparse and very dense networks. An example
for this observation is given in Figure 2 where the median
variance reduction is plotted against the number of arcs.
Random sparse networks usually had several nodes to apply
network reductions, and as a result sparse networks were
able to be greatly simplified through network reductions.
This provided high levels of reductions in variance as most
of the network states were covered through reductions. In
dense networks, for most cases only one or two reductions
23
could be applied, but these few reductions provided very high
levels of reduction in variance. Note that 1 > λ > R(G)
and R(G′) > R(G) if a network G is reducible through
network reductions, and a dense network is usually highly
reliable (i.e., R(G) ≈ 1.0). Therefore, λ −R(G) becomes
very small (≈ 0) in the case of a reducible dense network,
and in turn results in a large reduction in the variance
due to (11) for CMC. As mentioned earlier, the SC method
yields exponentially smaller variance as reliability increases,
and after reductions, the reliability of the reduced network
becomes almost one for a highly reliable dense network.
This also explains very high levels of variance reductions
which were obtained for dense networks when the SC method
was used.
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Figure 2: Median variance reduction factor versus network
density for the SC Method with p = 0.90.
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Figure 3: The ratio of the variance of the SC method to the
variance of CMC as a function of reliability.

4 CONCLUSIONS

Simulation is commonly used to estimate network reliability
since its exact computation is computationally intractable.
As both theoretical and empirical results have shown, ap-
plying network reductions before simulation provides sig-
nificant variance reduction for the estimator. The proposed
04
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approach is a general tool that can be easily used with other
variance reduction techniques a demonstrated.
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