
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

MODELING THE PERFORMANCE OF LOW LATENCY QUEUEING FOR
EMERGENCY TELECOMMUNICATIONS

Denise M. Bevilacqua Masi, PhD
Martin J. Fischer, PhD

David A. Garbin

Noblis
3150 Fairview Park Drive South

Falls Church, VA 22042-4519, U.S.A.
ABSTRACT

Event simulation and analytic modeling are used to evalu-
ate the performance of Low Latency Queueing (LLQ), a
queueing discipline available in some Internet packet
switching routers for integrated services performance as-
surance. LLQ combines priority queueing with Class-
Based Weighted Fair Queueing (CBWFQ). Priority queue-
ing is used to ensure satisfying tight delay constraints for
real-time traffic, whereas CBWFQ is used to ensure ac-
ceptable throughput for traffic classes that are less sensitive
to delay. Simulations are developed both using a commer-
cial product, OPNET Modeler, and also custom simulators
that we developed. Our custom simulators model two dif-
ferent approaches to CBWFQ; and comparisons between
the approaches and that of the commercial simulator are
conducted. Our computational experiences (central proc-
essing unit [CPU] times for model execution and post-
processing) in using the simulators are described. This
work is an important first step in the ability to model a
proposed enhancement to LLQ which may be beneficial to
Emergency Telecommunications Services.

1 INTRODUCTION

The ability to communicate during emergencies is essential
for government personnel. The mission of the National
Communications System (NCS) includes planning for and
provisioning National Security/Emergency Preparedness
(NS/EP) communications for the federal government under
all circumstances, including crisis or emergency, attack,
recovery, and reconstitution. Modeling telecommunica-
tions for current and future programs providing emergency
service is essential. Industry is moving from circuit
switched to Internet Protocol (IP) technology for all tele-
communications applications, including voice, and NCS is
investigating the need to evolve toward IP capability to en-
sure continuity of priority traffic during emergencies. We
221-4244-1306-0/07/$25.00 ©2007 IEEE
are conducting various modeling and simulation activities
to support this effort.

There are several different mechanisms available that
attempt to provide quality of service (QoS) in the Internet
(Semeria 2001 and Cisco IOS Quality of Service Solutions
Configuration Guide). Packet traffic on the Internet could
simply be handled on a First Come, First Served (FCFS)
basis. With a high enough bandwidth and under normal
traffic conditions, this could be sufficient (Davie 2002;
Fischer and Masi 2007). However, during emergency
situations, historically disasters have been documented to
produce demand of up to 10 times normal traffic in the
public switched telephone network. In priority queueing
(PQ), higher priority real-time traffic (e.g., Voice over IP
or VoIP traffic) is transmitted before lower priority traffic
(e.g., data traffic), with separate buffers for each class of
traffic. Weighted Fair Queueing (WFQ) allocates the band-
width fairly to network data traffic using weights to deter-
mine the amount of bandwidth allowed for different flows
of traffic. Class-Based Weighted Fair Queueing (CBWFQ)
extends weighted fair queueing to multiple user-defined
traffic classes, rather than individual flows of traffic. Under
CBWFQ, there are buffers for each class of traffic, but a
certain portion of the bandwidth is set aside for each of the
classes; when one class of traffic is not utilizing its band-
width, the other class is allowed to overflow and use the
bandwidth. In addition, Low Latency Queueing (LLQ),
which combines priority queueing and class-based
weighted fair queueing, is being used frequently on the
Internet with these multiple classes. It is apparent there are
many options available; modeling is essential to determine
which QoS mechanism is most appropriate in advance,
rather than using a trial and error approach on a real net-
work.

Under the assumption of Poisson packet arrivals, ana-
lytic queueing results are available for FCFS and PQ, but
not for CBWFQ or LLQ (see Fischer and Masi (2005b) for
a summary of available results). In practice, there would
66

Masi, Fischer, and Garbin
likely be greater than one class of data traffic in CBWFQ
(e.g., one or more Assured Forwarding [AF] classes, and a
Best Effort [BE] class). LLQ combines CBWFQ with pri-
ority queueing, and typically voice traffic is assigned to the
higher priority queue (the Expedited Forwarding [EF] traf-
fic class) than the data classes which use CBWFQ. In the
future there may be greater than one class of EF traffic.
Requests to the Internet Assigned Numbers Authority
(IANA) for additional EF classes, which could be used for
disaster response VoIP or video traffic, have been submit-
ted to the Internet Engineering Task Force (IETF) (Baker
2006; Baker 2007). This research focuses on the modeling
of LLQ; it is one discipline being studied to determine if it
can ensure QoS requirements will be met. Figure 1 depicts
the relationship between the priority queue(s) and the
class-based weighted fair queue in a router configured with
the LLQ discipline.
 The remainder of this paper will discuss the LLQ and
CBWFQ scheduling algorithms (Section 2), describe the
simulation tools used in this analysis (Section 3), review
the assumptions (Section 4), provide numerical examples
from our simulation models (Section 5) both under normal
and emergency traffic conditions, and summarize our con-
clusions and next steps in this research (Section 6).

2 LOW LATENCY QUEUEING AND CASE-
BASED WEIGHTED FAIR QUEUEING
SCHEDULING ALGORITHMS

Modeling the priority queueing portion of LLQ, that is, the
modeling of the EF class having priority over the CBWFQ
or data classes, is well understood. Analytic queueing
models exist for priority queues (see the standard non-
preemptive priority queueing model in Gross and Harris,
1998; Cohen, 1969). These models can also handle the
case of more than two priority classes, which arise if addi-
tional EF classes for disaster response VoIP or video traffic
are used. Cohen (1969) gives the first and second moments

BE: Data

AF2: Data

AF1: Video

EF: Voice

w1

w2

w3

P3

P1

P2

Priorities

Proposed EF2 for
Emergency Traffic

Proposed EF1 for
Emergency Traffic

Line

Transmission

EF Expedited Forwarding (e.g., VoIP)

AF1 Assured Forwarding (e.g., video)

AF2 Assured Forwarding (other performance-sensitive data, including VoIP signaling)

BE Best Effort (other data)

CBWFQ Class-Based Weighted Fair Queuing

CBWFQ
Weights

BE: Data

AF2: Data

AF1: Video

EF: Voice

w1

w2

w3

P3

P1

P2

Priorities

Proposed EF2 for
Emergency Traffic

Proposed EF1 for
Emergency Traffic

Line

Transmission

EF Expedited Forwarding (e.g., VoIP)

AF1 Assured Forwarding (e.g., video)

AF2 Assured Forwarding (other performance-sensitive data, including VoIP signaling)

BE Best Effort (other data)

CBWFQ Class-Based Weighted Fair Queuing

CBWFQ
Weights

Figure 1: Low Latency Queueing Router Depiction
2267
for the queue waiting time; these analytic results for the
higher priority class apply directly to the EF (voice) class
in the router configuration that we are studying. Because
we understand the interaction between the higher priority
EF queue and the class-based weighted fair queues, and
how to model that interaction, our focus in this modeling is
within the CBWFQ portion of the router, which is less well
understood.

Under CBWFQ, weights are specified for each class of
traffic. Each class of traffic is guaranteed to obtain the por-
tion of the bandwidth in accordance with the weight, if
needed. When one class of traffic is not utilizing its band-
width, other classes are allowed to overflow and use the
bandwidth.

The precise rules used by class-based weighted fair
queues to select which class of packet to transmit when the
router is available are difficult to determine. We were able
to obtain some information on the CBWFQ scheduling al-
gorithms used in practice. We initiated a dialogue with a
major router vendor to determine how these router sched-
ulers select packets under CBWFQ. Router vendors do not
usually publicize this detailed and sometimes proprietary
information. The vendor informed us that these CBWFQ
scheduling rules vary by class of router, but that most plat-
forms implement CBWFQ using a calendar queue or tim-
ing wheel. To associate each packet with the correct slot or
sequence number in the calendar queue, a “next time”
value for each packet is computed. As the details on the
computation of the next time value were not provided, this
information was not detailed enough for us to build a
CBWFQ model. We also spoke with OPNET Technolo-
gies, the creator of the OPNET Modeler, a popular dis-
crete-event simulation package which is designed specifi-
cally to model telecommunications networks. OPNET
Modeler includes models for CBWFQ. Personnel at
OPNET Technologies told us that their implementation of
CBWFQ is based on an academic implementation of
CBWFQ. In this implementation, each packet is assigned a
“virtual finish time,” which is computed as the packet
transmission time divided by the class weight, plus an arri-
val time. The packet having the smallest virtual finish time
is selected for transmission when the router is free. The de-
tails of what the “arrival time” is were not provided.

We also researched CBWFQ algorithms discussed in
the literature. Golestani (1994) describes a CBWFQ algo-
rithm in which a virtual finish time is computed for each
packet. This virtual finish time is the sum of the packet
transmission time divided by the class weight, plus the
maximum of two times which are the virtual finish time of
the previous packet of the same class, and a class-
independent time which is the tag of the packet in service
at the arrival time of the current packet of interest. Specifi-

cally, the virtual finish tag i
kF̂ , or service tag, of each

packet is computed as follows (Golestani 1994):

Masi, Fischer, and Garbin
))(ˆ,ˆmax(ˆ i
k

1i
k

i
k

k

i
k avFL

r

1
F

Where i is the packet index, k indicates the class member-

ship of packet i, rk is the weight of class k, i
kL is the trans-

mission time of packet i,)a(v̂ i
k is a class-independent vir-

tual finish tag of the packet in service at the arrival time of

packet i, and 0ˆ 0
kF .

In addition, we hypothesized that a CBWFQ scheduler
that selects the packet class to transmit randomly, based on
the class weights, would preserve the fairness of the algo-
rithm as far as allocating to each class the desired share of
the bandwidth, if required by the packet traffic. For the
class selected by the random approach, the packet at the
head of the queue would be transmitted. This approach to
CBWFQ scheduling would be simple to implement in a
simulation model, and also the random nature of the packet
selection may be amenable to development of analytic
queueing models later on.

In summary, there are three main approaches to
CBWFQ scheduling that we have selected for further in-
vestigation and comparison:

Random selection of the class for transmission based
on the weights
Golestani’s virtual finish time approach
OPNET Modeler’s implementation of CBWFQ

We noted also that the Golestani algorithm and the OPNET
algorithm both compute a virtual finish time containing a
term that is the packet transmission time divided by the
class weight. In both cases, the packet with the smallest
value of the virtual finish time is selected for transmission
when the router is free, and, thus, smaller packets (which
have smaller transmission times) are given a preference for
selection if all else is equal. There are similarities between
these CBWFQ scheduling rules and the shortest processing
time (SPT) rule in the queueing literature (Gross and Har-
ris 1998; Schrage and Miller 1966), in which priority is
given to the group of customers which on average has the
faster service rate. Such a rule reduces the average wait in
queue.

3 SIMULATION TOOLS USED IN ANALYSIS

Several simulation tools were used in this analysis. It is de-
sirable that each of the simulation tools have the ability to
compute several measures of effectiveness: latency (mean
queue wait), jitter (assumed to be the 99.9 percentile of the
queue wait), and packet loss. The OPNET Modeler has ca-
pabilities to model many of the QoS mechanisms described
above, and we used it for our initial modeling of LLQ.
2268
However, we decided to develop our own custom simula-
tors of the CBWFQ portion of the LLQ for several reasons:

1. In order to determine if our interpretations of CBWFQ
were consistent with OPNET Modeler's implementa-
tion

2. To compare the sensitivity of the performance of
CBWFQ to possible differing interpretations of how it
works

3. To have a simulator that could be run quickly for com-
parisons with analytic results as we develop analytic
algorithms for CBWFQ, because OPNET Modeler
runs take some time in execution and post-processing
of results

4. To have a flexible simulator that can be modified in
the future to examine different system configurations
such as additional priority queues for traffic

With respect to item 4., the OPNET Modeler router model
does not support implementing two priority queues (e.g.,
EF plus an EF1 for emergency traffic) as well as CBWFQ.
To overcome this obstacle for future models with the addi-
tional emergency traffic EF queues, in the simulation
model two routers would have to be chained together. The
first router would provide CBWFQ for the AF1, AF2, and
BE traffic, and the second router would be configured with
multiple priority queues. The output of the CBWFQ router
would be connected as the input to the lowest priority
queue of the first router. Thus, for multiple reasons, a cus-
tom simulator of CBWFQ is desirable.

As previously mentioned, three main approaches to
CBWFQ scheduling were selected for further investigation
and comparison. The custom simulation models were im-
plemented multiple times by analysts working independ-
ently, in order to verify that the implementations were done
correctly. The specific models are denoted as follows:

Random_weights_1: Random selection of the class for
transmission based on the weights, coded in Microsoft
Access Visual Basic for Applications (MS VBA)
Random_weights_2: Random selection of the class for
transmission based on the weights, coded in MS VBA
by a different analyst independent of Random_
weights_1
Golestani_1: Golestani’s virtual finish time approach,
coded in MS VBA
Golestani_2: Golestani’s virtual finish time approach,
coded in object-oriented RealBasic by a different ana-
lyst independent of Golestani_1
OPNET Modeler’s implementation of CBWFQ

For the Random_weights_1 and Random_weights_2 cus-
tom simulators that we developed, we are assuming that
when the router is free, the class of the next packet for
transmission is chosen randomly according to the normal-

Masi, Fischer, and Garbin
ized weights of the classes that are present. If the mean
packet sizes differ between classes, the weights are first ad-
justed by dividing by the mean packet size and then nor-
malized. The first packet in the queue of the selected class
is transmitted.
 Random_weights_1 generates a series of packet arri-
vals for each of three classes of packets. When the router is
free, the class of the packet to be transmitted next is deter-
mined by randomly selecting according to the normalized
class weights. It assumes finite buffers for each class, and
tracks the number of packets in the system at each arrival
point and departure point. At each arrival point, it deter-
mines changes in the system that have occurred since the
last arrival due to packet service completions and depar-
tures from the system. The number of packets in the sys-
tem at arrival points is used to determine if the arrivals are
blocked due to full buffers or not. Queue wait times are
tracked for each packet. At the end of the simulation, Ran-
dom_weights_1 collects statistics on the mean queue wait
(latency) by class, packet loss, and the 99.9 percent quan-
tile of queue wait (jitter) by traffic class.
 In order to verify we were simulating our random se-
lection interpretation of CBWFQ correctly, a second simu-
lator, Random_weights_2, was developed by an independ-
ent analyst. Random_weights_2 simulates the system
behavior at successive departure points. The number of
packet arrivals by traffic class occurring between succes-
sive departure points is estimated. The class of the packet
transmitted at each departure point is determined by ran-
domly selecting according to the class weights, as men-
tioned above. Random_weights_2 looks at the system at
packet departure points, and keeps track of the type of
packet departing and the number of packets of each type
left behind. It assumes infinite buffers, so is not suitable as
written for heavy traffic situations where packet buffer
limitations would be reached in practice. A packet’s trans-
mission time is selected by first determining the packet
size based on our assumed packet size distribution, and
thus the packet transmission time. The total number of ar-
rivals independent of class during that transmission time is
estimated; the binomial distribution is then used to deter-
mine number of packets of each class arriving during the
transmission time. In this way, the number in the system of
each class at same-class departure points is tracked. Lit-
tle’s formula is then used to get the expected buffer delay
for each class using the number by class at departure
points. That is, for the class 1 delay, only use the number
of class 1 customers in the system at class 1 departure
points.
 Random_weights_1 computes mean queue delay, jit-
ter, and packet loss, and, thus, is preferred over Ran-
dom_weights_2, which only computes mean queue delay.
However, we found it useful to have both simulators of the
random weights approach, which were developed inde-
pendently by different developers with different ap-
22
proaches, in order to validate the queue delay results gen-
erated by the two simulators.
 Golestani_1 implements the Golestani CBWFQ ap-
proach (1994) in MS VBA. Golestani_2 is an implementa-
tion of the Golestani algorithm in object-oriented Real-
Basic, developed by a second analyst.

Lastly, OPNET Modeler was also used. The model
consisted of a router with CBWFQ, interfaced with three
sources of packet traffic and a transmission line. OPNET
Modeler’s raw packet generator was used to generate pack-
ets according to our desired packet size distribution, which
is described in Section 4.

4 ASSUMPTIONS AND CASES

The assumptions and scenarios for our modeling will be
described. The assumptions below were used in all simula-
tors described in Section 3, so any significant differences
in the results of the three simulators would reflect differ-
ences in the CBWFQ scheduling algorithms that are as-
sumed. We used three traffic classes, which will be re-
ferred to as Class 1, Class 2, and Class 3 (rather than AF1,
AF2, and BE). The voice (EF) traffic is not modeled. Pois-
son arrivals for all three traffic classes were assumed (Cao
et al. 2002). Packet sizes for data are assumed to have three
packet sizes; previous research shows that three packet
sizes are dominant in IP traffic (Masi and Fischer 2005).
This packet size distribution is 40 bytes (50 percent), 750
bytes (10 percent), and 1500 bytes (40 percent), with a
mean packet size of 695 bytes.
 Scenarios assumed a total line speed of T1 (1,544
kbps) for all traffic including voice; the remaining band-
width for the data traffic is 1,059 kbps. This line speed was
chosen because it is viewed as a popular network access
speed; our experience with a particular large federal
agency indicates that 75 percent of its locations have ac-
cess speeds of T1 or less. This speed of 1,059 kbps is used
for all cases.
 Table 1 summarizes the input parameters for all cases.
These scenarios are designed to have realistic baseline and
overload traffic levels, and also investigate the variation in
the model results for different methods of implementing
CBWFQ as the traffic is varied and depending on the suffi-
ciency of the bandwidth allocation to the traffic classes.
 Case 1—Baseline—has a total line utilization of 74
percent. Case 1, Class 2’s allocation of the bandwidth is
much more than required, while Class 1’s allocation of the
bandwidth is close to what is required and Class 3’s alloca-
tion of the bandwidth is much less than required. Case 2—
Baseline with Equal Weights—adjusts the weights used in
Case 1 so that the allocated bandwidth for Class 1 is much
less than required. Cases 3 and 4 deviate from the total
utilization of .74 by plus or minus 20 percent. Cases 5 and
6 further increase the traffic; Case 5 has a total utilization
69

Masi, Fischer, and Garbin
Table 1: Model Parameters

Lambda1
(ppms)

Buffer
Size 1 (k1)

Weight 1
(w1) Rho1

Lambda2
(ppms)

Buffer
Size 2 (k2)

Weight 2
(w2) Rho2

Lambda3
(ppms)

Buffer
Size 3 (k3)

Weight 3
(w3) Rho3

1 Baseline 0.08 20 0.4 0.42 0.015 512 0.45 0.08 0.045 512 0.15 0.24 0.74

2
Baseline with Equal
Weights 0.08 20 0.33 0.42 0.015 512 0.33 0.08 0.045 512 0.33 0.24 0.74

3
Baseline Plus 20%
Traffic 0.096 20 0.4 0.50 0.018 512 0.45 0.09 0.054 512 0.15 0.28 0.88

4
Baseline Minus
20% Traffic 0.064 20 0.4 0.34 0.012 512 0.45 0.06 0.036 512 0.15 0.19 0.59

5 Heavy Traffic 0.1056 20 0.4 0.55 0.0198 512 0.45 0.10 0.0594 512 0.15 0.31 0.97
6 10x Overload 0.8 20 0.4 4.20 0.015 512 0.45 0.08 0.45 512 0.15 2.36 6.64

Case
Number/
Scenario
Number Case Name

Total
Utilization,

Rho

Class 1 Class 2 Class 3
of 97 percent. However, disaster response traffic can be up
to 10 times the normal load. Case 6 represents a disaster
situation, and increases the Case 1 traffic levels for Classes
1 and 3 by a factor of ten. Class 2 is assumed to be a con-
trolled class for business applications and is not subject to
the traffic increase in Case 6.

5 NUMERICAL RESULTS

Figure 2 compares the mean queue waits under Case 1 for
the five simulators. Figure 3 shows the 99.9 percentile of
the queue wait (often referred to as Jitter) for this scenario.

Mean Queue Wait, Case 1

0

5

10

15

20

25

Class 1 Class 2 Class 3

Traffic Class

M
ea

n
Q

ue
ue

 W
ai

t (
m

s)

Random_weights_1 Golestani_1 OPNET Modeler Golestani_2 Random_weights_2

Figure 2: Mean Queue Wait, Case 1

99.9 Percent Queue Wait (Jitter), Case 1

0

50

100

150

200

250

300

Class 1 Class 2 Class 3

Traffic Class

99
.9

%
 J

it
te

r (
m

s)

Random_weights_1 Golestani_1 OPNET Modeler Golestani_2

Figure 3: 99.9 Percent Queue Wait (Jitter), Case 1
22
As is seen in Figure 2, the Random_weights_1 and Ran-
dom_weights_2 simulators are in agreement which verifies
our implementation of this CBWFQ scheduling approach;
hence, we will report only results from Random_weights_1
for subsequent examples. Also in Figures 2 and 3, the Go-
lestani_1 and Golestani_2 simulators are in agreement
which verifies our implementation of that CBWFQ sched-
uling approach, so we will report only results from Go-
lestani_1 for subsequent cases. The more interesting com-
parisons are between the Random Weights, Golestani, and
OPNET Modeler results. The Random Weights approach
gives higher mean queue waits (between 6 percent and 31
percent higher, depending on the class) and a higher 99.9
percentile of the queue wait (between 3 percent and 38
percent higher) for all three traffic classes than the Go-
lestani or OPNET Modeler approaches. We had suspected
that the Golestani approach would yield lower queue waits
based on its relationship to the shortest processing time
rule. In addition, the variance of the queue waits were
compared (Figure 4), and the Random Weights approach
has a higher variance than Golestani or OPNET Modeler.
For Case 1, packet loss was zero for all models. Also, the
OPNET Modeler and Golestani results are close; differ-
ences are less than 3 percent for mean queue waits and less
than 7 percent for the jitter. As we suspected, the OPNET
Modeler is likely using the Golestani approach to model
CBWFQ.

Queue Wait Variance, Case 1

0

100

200

300

400

500

600

700

800

900

1000

Class 1 Class 2 Class 3

Traffic Class

V
ar

ia
nc

e
(m

s2
)

Random_weights_1 Golestani_1 OPNET Modeler

Figure 4: Queue Wait Variance, Case 1
70

Masi, Fischer, and Garbin
When the CBWFQ weights are equal for all cases (Case 2),
that is, the weights decrease for Classes 1 and 2 and in-
crease for Class 3, queue waits increase significantly for
Classes 1 and 2 and decrease for Class 3 for both the Ran-
dom Weights and Golestani approaches (Table 2). Thus,
the importance of selecting weights that are appropriate for
the performance needs of the various classes of traffic are
seen. The Random_weights_1 mean queue waits remain
higher than the Golestani_1 mean queue waits for this case
(between 8 percent and 21 percent higher), as was also
seen in the Case 1. Similar increases in jitter versus the
Case 1 are also seen, with Random_weights_1 giving
higher jitter values than Golestani_1 for this case (Table 3).
 Table 4 summarizes the mean queue waits for the
various cases having unequal class weights, and Table 5
shows the 99.9 percent jitter for the same cases. Table 6
gives the packet loss probabilities, which are non-zero for
the heavier traffic cases. Percent differences are also given
in all tables. The decreasing percent differences between
the two approaches as the total load increases is evident.
Figures 5 and 6 show these results in graphical form, only
for the cases with total offered load less than one, and the
fairly close tracking of the Random_weights_1 and Go-
lestani_1 results are seen.
 Run speeds are significantly less for our custom simu-
lators versus the OPNET Modeler, especially when the
OPNET Modeler post-processing that is required to sum-
marize the measures of interest is considered. Table 7 gives
the CPU time required for the Random_weights_1 custom
simulator a per-packet basis due to the differing numbers
of packets used in runs from the two simulators. CPU
times are longer for the OPNET Modeler than our own
simulator written in VBA (e.g., about 20 seconds for our
simulator versus 322 seconds for the OPNET Modeler,
with similar numbers of packets). After the OPNET Mod-
els are run, the results must be exported to a text file for
each traffic class and statistic type (queueing delay by
packet and traffic dropped over time). The data is then im-
ported into Microsoft Access due to the large number of
records in each of the exported text files and the limitations
in the number of records in a Microsoft Excel spreadsheet.
Queries must then be run in Microsoft Access to summa-
rize the mean queue wait, extract the 99.9 percentile of
queue wait, and obtain the mean packet loss. This whole
process takes about an hour. Our own simulators in VBA
were easily programmed to compute all performance
measures of interest within the CPU times given in Table
7, so additional post-processing is not required. The Ran-
dom_weights_1 and Golestani_1 simulators have similar
CPU times. The custom simulators were run on a Dell
Latitude D810 laptop (with a 2.13 Ghz CPU and 1.0 GB of
22
 RAM), while the OPNET Models were run on a work-
station with a 2.8 Ghz CPU and 3.5 GB of RAM.

6 SUMMARY AND NEXT STEPS

We infer from the results of the above simulations that
there are some differences between our Random Selection
based on the weights method of modeling CBWFQ and the
other methods investigated. The Golestani approach and
the OPNET Modeler’s implementation of CBWFQ have
lower estimated packet queue waits than our Random Se-
lection based on the weights method of modeling CBWFQ.
In the cases we investigated, our Random Selection
method gave especially higher estimates than the Golestani
approach for classes with more than enough allocated
bandwidth to carry the offered traffic. The Golestani ap-
proach to CBWFQ scheduling appears to be similar to the
OPNET Modeler’s implementation. Under emergency con-
ditions with traffic up to 10 times the normal load, and for
classes whose weights do not provide sufficient bandwidth
to handle their traffic load, differences between the
Random Selection based on weights method and the Go-
lestani method decrease. Based on the scenarios we mod-
eled, the OPNET Modeler appears to utilize the Golestani
method for CBWFQ.
 Our custom simulators provide more efficient analysis
capabilities than the commercial simulator for several rea-
sons. The custom simulator run times are faster than the
commercial simulator, and they also can be programmed to
quickly compute the desired measures of effectiveness to
minimize or eliminate the need for post-processing of out-
put data. The OPNET Modeler appears to use the Golestani
approach for CBWFQ, and thus we suggest using the Go-
lestani approach for custom simulators. The Random Se-
lection based on the weights method gives similar results
to the Golestani method in emergency-type overload traf-
fic, but may have the advantage of being more amenable as
a model for developing analytic queueing models of
CBWFQ.
 We plan to conduct additional work in several areas.
We have begun researching more appropriate statistical
distributions for modeling video traffic, using actual packet
trace data from video equipment. Our simulation model
will then be enhanced to utilize the selected video distribu-
tions. In addition, we are investigating several approaches
to analytic approximations of CBWFQ, one of which is a
Markov Chain approach. Our custom simulators are being
used to calibrate the analytic results with greater speed and
flexibility than the commercial CBWFQ models, and, thus
provide needed capabilities for future work.
71

Masi, Fischer, and Garbin
Table 2: Mean Queue Waits for Original Weights Versus Equal Weights Cases

Mean Queue Wait (ms)

Case w1 w2 w3 Random_
Weights_1,

Class 1

Random_
Weights_1,

Class 2

Random_
Weights_1,

Class 3

Golestani_
1,

Class 1

Golestani
_1,

Class 2

Golestani_
1,

Class 3

1 0.40 0.45 0.15 12.38 7.88 20.57 10.50 5.37 19.20
2 0.33 0.33 0.33 16.68 9.79 12.31 15.36 8.11 10.76
Table 3: 99.9 Percent Jitter for Original Weights Versus Equal Weights Cases

99.9 Percent Jitter (ms)

Case w1 w2 w3 Random_
Weights_1,

Class 1

Random_
Weights_1,

Class 2

Random_
Weights_1,

Class 3

Golestani_
1,

Class 1

Golestani_
1,

Class 2

Golestani_
1,

Class 3

1 0.40 0.45 0.15 122.82 73.72 238.77 110.48 47.20 228.02
2 0.33 0.33 0.33 167.70 101.02 127.39 161.97 69.01 108.12
Table 4: Mean Queue Waits
Percent Differences

Case
Total
Rho

Random_
Weights_
1, Class 1

Random_
Weights_
1, Class 2

Random_
Weights_
1, Class 3

Golestani_1,
Class 1

Golestani_1,
Class 2

Golestani_1,
Class 3

Class
1

Class
2

Class
3

4 0.59 6.72 5.35 9.45 5.83 3.80 8.65 15.2 40.9 9.2

1 0.74 12.38 7.88 20.57 10.50 5.37 19.20 17.9 46.6 7.1

3 0.88 26.52 11.28 70.19 22.95 7.69 67.74 15.5 46.6 3.6

5 0.97 46.37 13.65 334.60 42.42 9.72 342.02 9.3 40.5 -2.2

6 6.64 154.67 14.18 10615.43 155.74 10.57 10703.80 -0.7 34.2 -0.8
Table 5: 99.9 Percent Jitter
 Percent Differences

Case
Total
Rho

Random_
Weights_
1, Class 1

Random_
Weights_
1, Class 2

Random_
Weights_
1, Class 3

Golestani_1,
Class 1

Golestani_1,
Class 2

Golestani_1,
Class 3

Class
1

Class
2

Class
3

4 0.59 73.65 57.98 123.21 66.46 35.58 115.42 10.8 63.0 6.7

1 0.74 122.82 73.72 238.77 110.48 47.20 228.02 11.2 56.2 4.7

3 0.88 189.82 87.77 726.60 183.44 57.94 660.46 3.5 51.5 10.0

5 0.97 227.65 96.31 2110.48 221.06 66.85 2141.63 3.0 44.1 -1.5

6 6.64 282.11 88.78 12283.85 274.51 62.11 12366.07 2.8 42.9 -0.7
Table 6: Packet Loss Probabilities
 Percent Differences

Case
Total
Rho

Random_
Weights_
1, Class 1

Random_
Weights_
1, Class 2

Random_
Weights_
1, Class 3

Golestani_1,
Class 1

Golestani_1,
Class 2

Golestani_1,
Class 3

Class
1

Class
2

Class
3

4 0.59 0.000 0.000 0.000 0.000 0.000 0.000 N/A N/A N/A

1 0.74 0.000 0.000 0.000 0.000 0.000 0.000 N/A N/A N/A

3 0.88 0.001 0.000 0.000 0.001 0.000 0.000 29.0 N/A N/A

5 0.97 0.007 0.000 0.000 0.006 0.000 0.000 23.3 N/A N/A

6 6.64 0.840 0.000 0.893 0.842 0.000 0.893 -0.1 N/A -0.1
2272

Masi, Fischer, and Garbin
Mean Queue Wait for CBWFQ Models

0

50

100

150

200

250

300

350

400

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Total Rho

Mean Queue Wait
(ms)

Random_weights_1, Class 1 Random_weights_1, Class 2 Random_weights_1, Class 3

Golestani_1, Class 1 Golestani_1, Class 2 Golestani_1, Class 3

Figure 5: Mean Queue Wait Time
99.9 Percent Jitter for CBWFQ Models

0

500

1000

1500

2000

2500

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Total Rho

99.9 Percent Wq
(Jitter)

Random_weights_1, Class 1 Random_weights_1, Class 2 Random_weights_1, Class 3

Golestani_1, Class 1 Golestani_1, Class 2 Golestani_1, Class 3

Figure 6: 99.9 Percent Queue Wait (Jitter)
2273

Masi, Fischer, and Garbin
Table 7: Simulator Execution and Processing Time Requirements

Random_Weights_1 OPNET Modeler

Packets
Simulated

CPU
Time
(sec)

CPU
Seconds

Per
Packet

Packets
Simulated

CPU
Time
(sec)

CPU
Seconds

Per
Packet

Post Processing
Time (hrs)

1,000,000 19.8 2.0E-05 999,986 322.0 3.2E-04 1 hour
ACKNOWLEDGMENTS

This work was partially funded by the National Commu-
nications System Contract Number NBCH-D-02-0039
(Task Order Number D0200390095). Research funding
was also provided by the Center for Network-Based Sys-
tems, a research collaboration of Noblis and George Ma-
son University. We would like to thank Dr. Pat McGregor
of Nyquetek for reviewing our assumptions and giving us
feedback.

REFERENCES

Baker, F., Polk, J., and M. Dolly, “An EF DSCP for Ca-
pacity-Admitted Traffic,” draft-ietf-tsvwg-admitted-
realtime-dscp-00 (work in progress), December 2006,
http://tools.ietf.org/id/draft-ietf-tsvwg-admitted-
realtime-dscp-00.txt.

Baker, F., J. Polk, and M. Dolly, “DSCPs for Capacity-
Admitted Traffic,” draft-ietf-tsvwg-admitted-
realtime-dscp-01 (work in progress), March 2007;
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-
admitted-realtime-dscp-01.txt.

Cao, J., W. S. Cleveland, D. Lin, and D. X. Sun, “Internet
Traffic Tends Toward Poisson and Independent as
the Load Increases,” Nonlinear Estimation and Clas-
sification, Editors: C. Holmes, D. Denison, M. Han-
sen, B. Yu, and B. Mallick, Springer, New York, NY,
2002; http://cm.belllabs.com/who/dong/papers/
lrd2poisson.pdf.

Cisco IOS Quality of Service Solutions Configura-
tion Guide, Release 12.2 (Congestion Management
Overview chapter); http://www.cisco.com/en/US/
proucts/sw/iosswrel/ps1835/products_configuration_
guide_chapter09186a00800b75a9.html.

Cohen, J. W., “The Single Server Queue,” North-Holland
Publishing Company, New York, 1969.

Davie, B. “Is QoS Necessary? Quality of Service Mecha-
nisms vs. Bandwidth Provisioning,” Fall 2002 Semi-
nar/Public Lecture Series, Stanford University School
of Engineering, U.S. Asia Technology Management
Center, 2002.

Fischer, M. J., and D. M. B. Masi, “Voice Packet Arrival
Models and Their Effect on Packet Performance,”
Applied Telecommunications Symposium, San Diego,
CA, April 3–7, 2005.
2274
Fischer, M. J. and D. M. B. Masi, “A Quantitative Analy-
sis of the Voice and Data Quality of Service Prob-
lem,” The Telecommunications Review 2007, Noblis,
Falls Church, VA.

Golestani, S. J., “A Self-Clocked Fair Queuing Scheme
for Broadband Applications,” Proceedings of the
IEEE INFOCOM, 1994.

Gross, D. and C. M. Harris, “Fundamentals of Queueing
Theory,” Third Edition, John Wiley, New York, NY,
1998.

Masi, D. M. B. and M. J. Fischer, “Voice over Internet
Protocol (VoIP) Performance Models—A Compre-
hensive Approach”, International Conference on
Telecommunication Systems–Modeling and Analysis
(ICTSMA), Dallas, TX, November 17–20, 2005.

Schrage, L. E., and L. W. Miller, “The Queue M/G/1 with
the Shortest Remaining Processing Time Discipline,”
Operations Research 14, pp. 670–684, 1966.

Semeria, C., “Supporting Differentiated Service Class:
Queue Scheduling Disciplines,” Juniper White Pa-
per, 2001; http://www.juniper.net/solutions/litera-
ture/white_papers/200020.pdf.

AUTHOR BIOGRAPHIES

DENISE M. BEVILACQUA MASI is a senior principal
engineer at Noblis. Her experience and research interests
include queueing theory and simulation applied to tele-
communications networks. She received her doctorate
degree in information technology and engineering at
George Mason University. Her email address is
dmasi@noblis.org.

MARTIN J. FISCHER is a senior fellow at Noblis. His
experience includes network design and performance
analysis in telecommunications. He has published ap-
proximately 40+ articles in refereed journals. He received
his doctorate degree in Operations Research from South-
ern Methodist University. His email address is
mfischer@noblis.org.

DAVID A GARBIN is a senior fellow at Noblis. His
30+ years of experience is in the telecommunications and
networking field, focusing on the design and economic
analysis of large networks, both for carriers and their cus-
tomers. His current duties include research into providing

Masi, Fischer, and Garbin
quality of service in convergent IP networks and advising
government agencies in the acquisition and implementa-
tion of VoIP. He holds advanced degrees from MIT and
is the co-author of the best-selling New McGraw-Hill
Telecom Factbook. His email address is
david.garbin@noblis.org.
2275

