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ABSTRACT 

Event simulation and analytic modeling are used to evalu-
ate the performance of Low Latency Queueing (LLQ), a 
queueing discipline available in some Internet packet 
switching routers for integrated services performance as-
surance. LLQ combines priority queueing with Class-
Based Weighted Fair Queueing (CBWFQ). Priority queue-
ing is used to ensure satisfying tight delay constraints for 
real-time traffic, whereas CBWFQ is used to ensure ac-
ceptable throughput for traffic classes that are less sensitive 
to delay. Simulations are developed both using a commer-
cial product, OPNET Modeler, and also custom simulators 
that we developed. Our custom simulators model two dif-
ferent approaches to CBWFQ; and comparisons between 
the approaches and that of the commercial simulator are 
conducted. Our computational experiences (central proc-
essing unit [CPU] times for model execution and post-
processing) in using the simulators are described. This 
work is an important first step in the ability to model a 
proposed enhancement to LLQ which may be beneficial to 
Emergency Telecommunications Services.   

1 INTRODUCTION 

The ability to communicate during emergencies is essential 
for government personnel. The mission of the National 
Communications System (NCS) includes planning for and 
provisioning National Security/Emergency Preparedness 
(NS/EP) communications for the federal government under 
all circumstances, including crisis or emergency, attack, 
recovery, and reconstitution. Modeling telecommunica-
tions for current and future programs providing emergency 
service is essential. Industry is moving from circuit 
switched to Internet Protocol (IP) technology for all tele-
communications applications, including voice, and NCS is 
investigating the need to evolve toward IP capability to en-
sure continuity of priority traffic during emergencies. We 
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are conducting various modeling and simulation activities 
to support this effort. 

There are several different mechanisms available that 
attempt to provide quality of service (QoS) in the Internet 
(Semeria 2001 and Cisco IOS Quality of Service Solutions 
Configuration Guide). Packet traffic on the Internet could 
simply be handled on a First Come, First Served (FCFS) 
basis. With a high enough bandwidth and under normal 
traffic conditions, this could be sufficient (Davie 2002; 
Fischer and Masi 2007). However, during emergency 
situations, historically disasters have been documented to 
produce demand of up to 10 times normal traffic in the 
public switched telephone network. In priority queueing 
(PQ), higher priority real-time traffic (e.g., Voice over IP 
or VoIP traffic) is transmitted before lower priority traffic 
(e.g., data traffic), with separate buffers for each class of 
traffic. Weighted Fair Queueing (WFQ) allocates the band-
width fairly to network data traffic using weights to deter-
mine the amount of bandwidth allowed for different flows 
of traffic. Class-Based Weighted Fair Queueing (CBWFQ) 
extends weighted fair queueing to multiple user-defined 
traffic classes, rather than individual flows of traffic. Under 
CBWFQ, there are buffers for each class of traffic, but a 
certain portion of the bandwidth is set aside for each of the 
classes; when one class of traffic is not utilizing its band-
width, the other class is allowed to overflow and use the 
bandwidth. In addition, Low Latency Queueing (LLQ), 
which combines priority queueing and class-based 
weighted fair queueing, is being used frequently on the 
Internet with these multiple classes. It is apparent there are 
many options available; modeling is essential to determine 
which QoS mechanism is most appropriate in advance, 
rather than using a trial and error approach on a real net-
work.  

Under the assumption of Poisson packet arrivals, ana-
lytic queueing results are available for FCFS and PQ, but 
not for CBWFQ or LLQ (see Fischer and Masi (2005b) for 
a summary of available results). In practice, there would 
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likely be greater than one class of data traffic in CBWFQ 
(e.g., one or more Assured Forwarding [AF] classes, and a 
Best Effort [BE] class). LLQ combines CBWFQ with pri-
ority queueing, and typically voice traffic is assigned to the 
higher priority queue (the Expedited Forwarding [EF] traf-
fic class) than the data classes which use CBWFQ. In the 
future there may be greater than one class of EF traffic. 
Requests to the Internet Assigned Numbers Authority 
(IANA) for additional EF classes, which could be used for 
disaster response VoIP or video traffic, have been submit-
ted to the Internet Engineering Task Force (IETF) (Baker 
2006; Baker 2007). This research focuses on the modeling 
of LLQ; it is one discipline being studied to determine if it 
can ensure QoS requirements will be met. Figure 1 depicts 
the relationship between the priority queue(s) and the 
class-based weighted fair queue in a router configured with 
the LLQ discipline. 
 The remainder of this paper will discuss the LLQ and 
CBWFQ scheduling algorithms (Section 2), describe the 
simulation tools used in this analysis (Section 3), review 
the assumptions (Section 4), provide numerical examples 
from our simulation models (Section 5) both under normal 
and emergency traffic conditions, and summarize our con-
clusions and next steps in this research (Section 6). 

2 LOW LATENCY QUEUEING AND CASE-
BASED WEIGHTED FAIR QUEUEING 
SCHEDULING ALGORITHMS 

Modeling the priority queueing portion of LLQ, that is, the 
modeling of the EF class having priority over the CBWFQ 
or data classes, is well understood. Analytic queueing 
models exist for priority queues (see the standard non-
preemptive priority queueing model in Gross and Harris, 
1998; Cohen, 1969).  These models can also handle the 
case of more than two priority classes, which arise if addi-
tional EF classes for disaster response VoIP or video traffic 
are used. Cohen (1969) gives the first and second moments  
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Figure 1:  Low Latency Queueing Router Depiction 
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for the queue waiting time; these analytic results for the 
higher priority class apply directly to the EF (voice) class 
in the router configuration that we are studying. Because 
we understand the interaction between the higher priority 
EF queue and the class-based weighted fair queues, and 
how to model that interaction, our focus in this modeling is 
within the CBWFQ portion of the router, which is less well 
understood. 

Under CBWFQ, weights are specified for each class of 
traffic. Each class of traffic is guaranteed to obtain the por-
tion of the bandwidth in accordance with the weight, if 
needed. When one class of traffic is not utilizing its band-
width, other classes are allowed to overflow and use the 
bandwidth.   

The precise rules used by class-based weighted fair 
queues to select which class of packet to transmit when the 
router is available are difficult to determine. We were able 
to obtain some information on the CBWFQ scheduling al-
gorithms used in practice. We initiated a dialogue with a 
major router vendor to determine how these router sched-
ulers select packets under CBWFQ. Router vendors do not 
usually publicize this detailed and sometimes proprietary 
information. The vendor informed us that these CBWFQ 
scheduling rules vary by class of router, but that most plat-
forms implement CBWFQ using a calendar queue or tim-
ing wheel. To associate each packet with the correct slot or 
sequence number in the calendar queue, a “next time” 
value for each packet is computed. As the details on the 
computation of the next time value were not provided, this 
information was not detailed enough for us to build a 
CBWFQ model. We also spoke with OPNET Technolo-
gies, the creator of the OPNET Modeler, a popular dis-
crete-event simulation package which is designed specifi-
cally to model telecommunications networks.  OPNET 
Modeler includes models for CBWFQ. Personnel at 
OPNET Technologies told us that their implementation of 
CBWFQ is based on an academic implementation of 
CBWFQ. In this implementation, each packet is assigned a 
“virtual finish time,” which is computed as the packet 
transmission time divided by the class weight, plus an arri-
val time. The packet having the smallest virtual finish time 
is selected for transmission when the router is free. The de-
tails of what the “arrival time” is were not provided. 

We also researched CBWFQ algorithms discussed in 
the literature. Golestani (1994) describes a CBWFQ algo-
rithm in which a virtual finish time is computed for each 
packet. This virtual finish time is the sum of the packet 
transmission time divided by the class weight, plus the 
maximum of two times which are the virtual finish time of 
the previous packet of the same class, and a class-
independent time which is the tag of the packet in service 
at the arrival time of the current packet of interest. Specifi-

cally, the virtual finish tag i
kF̂ , or service tag, of each 

packet is computed as follows (Golestani 1994): 
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Where i is the packet index, k indicates the class member-

ship of packet i, rk is the weight of class k, i
kL  is the trans-

mission time of packet i, )a(v̂ i
k  is a class-independent vir-

tual finish tag of the packet in service at the arrival time of 

packet i, and 0ˆ 0
kF .   

In addition, we hypothesized that a CBWFQ scheduler 
that selects the packet class to transmit randomly, based on 
the class weights, would preserve the fairness of the algo-
rithm as far as allocating to each class the desired share of 
the bandwidth, if required by the packet traffic. For the 
class selected by the random approach, the packet at the 
head of the queue would be transmitted. This approach to 
CBWFQ scheduling would be simple to implement in a 
simulation model, and also the random nature of the packet 
selection may be amenable to development of analytic 
queueing models later on. 

In summary, there are three main approaches to 
CBWFQ scheduling that we have selected for further in-
vestigation and comparison: 

Random selection of the class for transmission based 
on the weights  
Golestani’s virtual finish time approach 
OPNET Modeler’s implementation of CBWFQ 

We noted also that the Golestani algorithm and the OPNET 
algorithm both compute a virtual finish time containing a 
term that is the packet transmission time divided by the 
class weight. In both cases, the packet with the smallest 
value of the virtual finish time is selected for transmission 
when the router is free, and, thus, smaller packets (which 
have smaller transmission times) are given a preference for 
selection if all else is equal. There are similarities between 
these CBWFQ scheduling rules and the shortest processing 
time (SPT) rule in the queueing literature (Gross and Har-
ris 1998; Schrage and Miller 1966), in which priority is 
given to the group of customers which on average has the 
faster service rate.  Such a rule reduces the average wait in 
queue.  

3 SIMULATION TOOLS USED IN ANALYSIS 

Several simulation tools were used in this analysis. It is de-
sirable that each of the simulation tools have the ability to 
compute several measures of effectiveness: latency (mean 
queue wait), jitter (assumed to be the 99.9 percentile of the 
queue wait), and packet loss. The OPNET Modeler has ca-
pabilities to model many of the QoS mechanisms described 
above, and we used it for our initial modeling of LLQ. 
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However, we decided to develop our own custom simula-
tors of the CBWFQ portion of the LLQ for several reasons: 

1. In order to determine if our interpretations of CBWFQ 
were consistent with OPNET Modeler's implementa-
tion 

2. To compare the sensitivity of the performance of 
CBWFQ to possible differing interpretations of how it 
works  

3. To have a simulator that could be run quickly for com-
parisons with analytic results as we develop analytic 
algorithms for CBWFQ, because OPNET Modeler 
runs take some time in execution and post-processing 
of results 

4. To have a flexible simulator that can be modified in 
the future to examine different system configurations 
such as additional priority queues for traffic  

With respect to item 4., the OPNET Modeler router model 
does not support implementing two priority queues (e.g., 
EF plus an EF1 for emergency traffic) as well as CBWFQ.  
To overcome this obstacle for future models with the addi-
tional emergency traffic EF queues, in the simulation 
model two routers would have to be chained together.  The 
first router would provide CBWFQ for the AF1, AF2, and 
BE traffic, and the second router would be configured with 
multiple priority queues.  The output of the CBWFQ router 
would be connected as the input to the lowest priority 
queue of the first router.  Thus, for multiple reasons, a cus-
tom simulator of CBWFQ is desirable. 

As previously mentioned, three main approaches to 
CBWFQ scheduling were selected for further investigation 
and comparison. The custom simulation models were im-
plemented multiple times by analysts working independ-
ently, in order to verify that the implementations were done 
correctly. The specific models are denoted as follows: 

Random_weights_1: Random selection of the class for 
transmission based on the weights, coded in Microsoft 
Access Visual Basic for Applications (MS VBA) 
Random_weights_2: Random selection of the class for 
transmission based on the weights, coded in MS VBA 
by a different analyst independent of Random_ 
weights_1 
Golestani_1: Golestani’s virtual finish time approach, 
coded in MS VBA 
Golestani_2: Golestani’s virtual finish time approach, 
coded in object-oriented RealBasic by a different ana-
lyst independent of Golestani_1 
OPNET Modeler’s implementation of CBWFQ 

For the Random_weights_1 and Random_weights_2 cus-
tom simulators that we developed, we are assuming that 
when the router is free, the class of the next packet for 
transmission is chosen randomly according to the normal-
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ized weights of the classes that are present. If the mean 
packet sizes differ between classes, the weights are first ad-
justed by dividing by the mean packet size and then nor-
malized. The first packet in the queue of the selected class 
is transmitted.  
 Random_weights_1 generates a series of packet arri-
vals for each of three classes of packets. When the router is 
free, the class of the packet to be transmitted next is deter-
mined by randomly selecting according to the normalized 
class weights. It assumes finite buffers for each class, and 
tracks the number of packets in the system at each arrival 
point and departure point. At each arrival point, it deter-
mines changes in the system that have occurred since the 
last arrival due to packet service completions and depar-
tures from the system. The number of packets in the sys-
tem at arrival points is used to determine if the arrivals are 
blocked due to full buffers or not. Queue wait times are 
tracked for each packet. At the end of the simulation, Ran-
dom_weights_1 collects statistics on the mean queue wait 
(latency) by class, packet loss, and the 99.9 percent quan-
tile of queue wait (jitter) by traffic class. 
 In order to verify we were simulating our random se-
lection interpretation of CBWFQ correctly, a second simu-
lator, Random_weights_2, was developed by an independ-
ent analyst. Random_weights_2 simulates the system 
behavior at successive departure points. The number of 
packet arrivals by traffic class occurring between succes-
sive departure points is estimated. The class of the packet 
transmitted at each departure point is determined by ran-
domly selecting according to the class weights, as men-
tioned above. Random_weights_2 looks at the system at 
packet departure points, and keeps track of the type of 
packet departing and the number of packets of each type 
left behind. It assumes infinite buffers, so is not suitable as 
written for heavy traffic situations where packet buffer 
limitations would be reached in practice. A packet’s trans-
mission time is selected by first determining the packet 
size based on our assumed packet size distribution, and 
thus the packet transmission time. The total number of ar-
rivals independent of class during that transmission time is 
estimated; the binomial distribution is then used to deter-
mine number of packets of each class arriving during the 
transmission time. In this way, the number in the system of 
each class at same-class departure points is tracked.  Lit-
tle’s formula is then used to get the expected buffer delay 
for each class using the number by class at departure 
points.  That is, for the class 1 delay, only use the number 
of class 1 customers in the system at class 1 departure 
points.   
 Random_weights_1 computes mean queue delay, jit-
ter, and packet loss, and, thus, is preferred over Ran-
dom_weights_2, which only computes mean queue delay. 
However, we found it useful to have both simulators of the 
random weights approach, which were developed inde-
pendently by different developers with different ap-
22
proaches, in order to validate the queue delay results gen-
erated by the two simulators.  
 Golestani_1 implements the Golestani CBWFQ ap-
proach (1994) in MS VBA. Golestani_2 is an implementa-
tion of the Golestani algorithm in object-oriented Real-
Basic, developed by a second analyst. 

Lastly, OPNET Modeler was also used. The model 
consisted of a router with CBWFQ, interfaced with three 
sources of packet traffic and a transmission line. OPNET 
Modeler’s raw packet generator was used to generate pack-
ets according to our desired packet size distribution, which 
is described in Section 4. 

4 ASSUMPTIONS AND CASES 

The assumptions and scenarios for our modeling will be 
described. The assumptions below were used in all simula-
tors described in Section 3, so any significant differences 
in the results of the three simulators would reflect differ-
ences in the CBWFQ scheduling algorithms that are as-
sumed.  We used three traffic classes, which will be re-
ferred to as Class 1, Class 2, and Class 3 (rather than AF1, 
AF2, and BE). The voice (EF) traffic is not modeled. Pois-
son arrivals for all three traffic classes were assumed (Cao 
et al. 2002). Packet sizes for data are assumed to have three 
packet sizes; previous research shows that three packet 
sizes are dominant in IP traffic (Masi and Fischer 2005). 
This packet size distribution is 40 bytes (50 percent), 750 
bytes (10 percent), and 1500 bytes (40 percent), with a 
mean packet size of 695 bytes. 
 Scenarios assumed a total line speed of T1 (1,544 
kbps) for all traffic including voice; the remaining band-
width for the data traffic is 1,059 kbps. This line speed was 
chosen because it is viewed as a popular network access 
speed; our experience with a particular large federal 
agency indicates that 75 percent of its locations have ac-
cess speeds of T1 or less.  This speed of 1,059 kbps is used 
for all cases. 
 Table 1 summarizes the input parameters for all cases. 
These scenarios are designed to have realistic baseline and 
overload traffic levels, and also investigate the variation in 
the model results for different methods of implementing 
CBWFQ as the traffic is varied and depending on the suffi-
ciency of the bandwidth allocation to the traffic classes.  
 Case 1—Baseline—has a total line utilization of 74 
percent. Case 1, Class 2’s allocation of the bandwidth is 
much more than required, while Class 1’s allocation of the 
bandwidth is close to what is required and Class 3’s alloca-
tion of the bandwidth is much less than required. Case 2—
Baseline with Equal Weights—adjusts the weights used in  
Case 1 so that the allocated bandwidth for Class 1 is much 
less than required.  Cases 3 and 4 deviate from the total 
utilization of .74 by plus or minus 20 percent. Cases 5 and 
6 further increase the traffic; Case 5 has a total utilization 
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Table 1: Model Parameters 

Lambda1 
(ppms)

Buffer 
Size 1 (k1)

Weight 1 
(w1) Rho1

Lambda2 
(ppms)

Buffer 
Size 2 (k2)

Weight 2 
(w2) Rho2

Lambda3 
(ppms)

Buffer 
Size 3 (k3)

Weight 3 
(w3) Rho3

1 Baseline 0.08 20 0.4 0.42 0.015 512 0.45 0.08 0.045 512 0.15 0.24 0.74

2
Baseline with Equal 
Weights 0.08 20 0.33 0.42 0.015 512 0.33 0.08 0.045 512 0.33 0.24 0.74

3
Baseline Plus 20% 
Traffic 0.096 20 0.4 0.50 0.018 512 0.45 0.09 0.054 512 0.15 0.28 0.88

4
Baseline Minus 
20% Traffic 0.064 20 0.4 0.34 0.012 512 0.45 0.06 0.036 512 0.15 0.19 0.59

5 Heavy Traffic 0.1056 20 0.4 0.55 0.0198 512 0.45 0.10 0.0594 512 0.15 0.31 0.97
6 10x Overload 0.8 20 0.4 4.20 0.015 512 0.45 0.08 0.45 512 0.15 2.36 6.64

Case
Number/ 
Scenario
Number Case Name

Total 
Utilization, 

Rho

Class 1 Class 2 Class 3
of 97 percent. However, disaster response traffic can be up 
to 10 times the normal load. Case 6 represents a disaster 
situation, and increases the Case 1 traffic levels for Classes 
1 and 3 by a factor of ten. Class 2 is assumed to be a con-
trolled class for business applications and is not subject to 
the traffic increase in Case 6.  

5 NUMERICAL RESULTS 

Figure 2 compares the mean queue waits under Case 1 for 
the five simulators. Figure 3 shows the 99.9 percentile of 
the queue wait (often referred to as Jitter) for this scenario. 
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As is seen in Figure 2, the Random_weights_1 and Ran-
dom_weights_2 simulators are in agreement which verifies 
our implementation of this CBWFQ scheduling approach; 
hence, we will report only results from Random_weights_1 
for subsequent examples.  Also in Figures 2 and 3, the Go-
lestani_1 and Golestani_2 simulators are in agreement 
which verifies our implementation of that CBWFQ sched-
uling approach, so we will report only results from Go-
lestani_1 for subsequent cases. The more interesting com-
parisons are between the Random Weights, Golestani, and 
OPNET Modeler results.  The Random Weights approach 
gives higher mean queue waits (between 6 percent and 31 
percent higher, depending on the class) and a higher 99.9 
percentile of the queue wait (between 3 percent and 38 
percent higher) for all three traffic classes than the Go-
lestani or OPNET Modeler approaches. We had suspected 
that the Golestani approach would yield lower queue waits 
based on its relationship to the shortest processing time 
rule. In addition, the variance of the queue waits were 
compared (Figure 4), and the Random Weights approach 
has a higher variance than Golestani or OPNET Modeler. 
For Case 1, packet loss was zero for all models. Also, the 
OPNET Modeler and Golestani results are close; differ-
ences are less than 3 percent for mean queue waits and less 
than 7 percent for the jitter. As we suspected, the OPNET 
Modeler is likely using the Golestani approach to model 
CBWFQ.
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When the CBWFQ weights are equal for all cases (Case 2), 
that is, the weights decrease for Classes 1 and 2 and in-
crease for Class 3, queue waits increase significantly for 
Classes 1 and 2 and decrease for Class 3 for both the Ran-
dom Weights and Golestani approaches (Table 2). Thus, 
the importance of selecting weights that are appropriate for 
the performance needs of the various classes of traffic are 
seen. The Random_weights_1 mean queue waits remain 
higher than the Golestani_1 mean queue waits for this case 
(between 8 percent and 21 percent higher), as was also 
seen in the Case 1. Similar increases in jitter versus the 
Case 1 are also seen, with Random_weights_1 giving 
higher jitter values than Golestani_1 for this case (Table 3). 
 Table 4 summarizes the mean queue waits for the 
various cases having unequal class weights, and Table 5 
shows the 99.9 percent jitter for the same cases. Table 6 
gives the packet loss probabilities, which are non-zero for 
the heavier traffic cases. Percent differences are also given 
in all tables. The decreasing percent differences between 
the two approaches as the total load increases is evident. 
Figures 5 and 6 show these results in graphical form, only 
for the cases with total offered load less than one, and the 
fairly close tracking of the Random_weights_1 and Go-
lestani_1 results are seen.  
 Run speeds are significantly less for our custom simu-
lators versus the OPNET Modeler, especially when the 
OPNET Modeler post-processing that is required to sum-
marize the measures of interest is considered. Table 7 gives 
the CPU time required for the Random_weights_1 custom 
simulator a per-packet basis due to the differing numbers 
of packets used in runs from the two simulators. CPU 
times are longer for the OPNET Modeler than our own 
simulator written in VBA (e.g., about 20 seconds for our 
simulator versus 322 seconds for the OPNET Modeler, 
with similar numbers of packets). After the OPNET Mod-
els are run, the results must be exported to a text file for 
each traffic class and statistic type (queueing delay by 
packet and traffic dropped over time). The data is then im-
ported into Microsoft Access due to the large number of 
records in each of the exported text files and the limitations 
in the number of records in a Microsoft Excel spreadsheet. 
Queries must then be run in Microsoft Access to summa-
rize the mean queue wait, extract the 99.9 percentile of 
queue wait, and obtain the mean packet loss. This whole 
process takes about an hour. Our own simulators in VBA 
were easily programmed to compute all performance 
measures of interest within the CPU times given in Table 
7, so additional post-processing is not required. The Ran-
dom_weights_1 and Golestani_1 simulators have similar 
CPU times. The custom simulators were run on a Dell 
Latitude D810 laptop (with a 2.13 Ghz CPU and 1.0 GB of 
22
 RAM), while the OPNET Models were run on a work-
station with a 2.8 Ghz CPU and 3.5 GB of RAM.  

6 SUMMARY AND NEXT STEPS 

We infer from the results of the above simulations that 
there are some differences between our Random Selection 
based on the weights method of modeling CBWFQ and the 
other methods investigated. The Golestani approach and 
the OPNET Modeler’s implementation of CBWFQ have 
lower estimated packet queue waits than our Random Se-
lection based on the weights method of modeling CBWFQ. 
In the cases we investigated, our Random Selection 
method gave especially higher estimates than the Golestani 
approach for classes with more than enough allocated 
bandwidth to carry the offered traffic. The Golestani ap-
proach to CBWFQ scheduling appears to be similar to the 
OPNET Modeler’s implementation. Under emergency con-
ditions with traffic up to 10 times the normal load, and for 
classes whose weights do not provide sufficient bandwidth 
to handle their traffic load, differences between the 
Random Selection based on weights method and the Go-
lestani method decrease. Based on the scenarios we mod-
eled, the OPNET Modeler appears to utilize the Golestani 
method for CBWFQ. 
 Our custom simulators provide more efficient analysis 
capabilities than the commercial simulator for several rea-
sons. The custom simulator run times are faster than the 
commercial simulator, and they also can be programmed to 
quickly compute the desired measures of effectiveness to 
minimize or eliminate the need for post-processing of out-
put data. The OPNET Modeler appears to use the Golestani 
approach for CBWFQ, and thus we suggest using the Go-
lestani approach for custom simulators. The Random Se-
lection based on the weights method gives similar results 
to the Golestani method in emergency-type overload traf-
fic, but may have the advantage of being more amenable as 
a model for developing analytic queueing models of 
CBWFQ.
 We plan to conduct additional work in several areas. 
We have begun researching more appropriate statistical 
distributions for modeling video traffic, using actual packet 
trace data from video equipment. Our simulation model 
will then be enhanced to utilize the selected video distribu-
tions. In addition, we are investigating several approaches 
to analytic approximations of CBWFQ, one of which is a 
Markov Chain approach. Our custom simulators are being 
used to calibrate the analytic results with greater speed and 
flexibility than the commercial CBWFQ models, and, thus 
provide needed capabilities for future work.   
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Table 2:  Mean Queue Waits for Original Weights Versus Equal Weights Cases 

Mean Queue Wait (ms) 

Case w1 w2 w3 Random_ 
Weights_1, 

Class 1 

Random_ 
Weights_1, 

Class 2 

Random_ 
Weights_1, 

Class 3 

Golestani_ 
1,

Class 1 

Golestani 
_1,  

Class 2 

Golestani_
1,

Class 3 

1 0.40 0.45 0.15 12.38 7.88 20.57 10.50 5.37 19.20 
2 0.33 0.33 0.33 16.68 9.79 12.31 15.36 8.11 10.76 
Table 3:  99.9 Percent Jitter for Original Weights Versus Equal Weights Cases 

99.9 Percent Jitter (ms) 

Case w1 w2 w3 Random_ 
Weights_1, 

Class 1 

Random_ 
Weights_1, 

Class 2 

Random_ 
Weights_1, 

Class 3 

Golestani_ 
1,

Class 1 

Golestani_ 
1,

Class 2 

Golestani_ 
1,

Class 3 

1 0.40 0.45 0.15 122.82 73.72 238.77 110.48 47.20 228.02 
2 0.33 0.33 0.33 167.70 101.02 127.39 161.97 69.01 108.12 
Table 4:  Mean Queue Waits 
Percent Differences 

Case
Total
Rho

Random_ 
Weights_
1, Class 1 

Random_ 
Weights_ 
1, Class 2 

Random_
Weights_
1, Class 3 

Golestani_1,
Class 1 

Golestani_1,
Class 2 

Golestani_1,
Class 3 

Class
1

Class
2

Class
3

4 0.59 6.72 5.35 9.45 5.83 3.80 8.65 15.2 40.9 9.2 

1 0.74 12.38 7.88 20.57 10.50 5.37 19.20 17.9 46.6 7.1 

3 0.88 26.52 11.28 70.19 22.95 7.69 67.74 15.5 46.6 3.6 

5 0.97 46.37 13.65 334.60 42.42 9.72 342.02 9.3 40.5 -2.2 

6 6.64 154.67 14.18 10615.43 155.74 10.57 10703.80 -0.7 34.2 -0.8 
Table 5:  99.9 Percent Jitter 
 Percent Differences 

Case
Total
Rho

Random_ 
Weights_
1, Class 1 

Random_ 
Weights_ 
1, Class 2 

Random_
Weights_
1, Class 3 

Golestani_1,
Class 1 

Golestani_1,
Class 2 

Golestani_1,
Class 3 

Class
1

Class
2

Class
3

4 0.59 73.65 57.98 123.21 66.46 35.58 115.42 10.8 63.0 6.7 

1 0.74 122.82 73.72 238.77 110.48 47.20 228.02 11.2 56.2 4.7 

3 0.88 189.82 87.77 726.60 183.44 57.94 660.46 3.5 51.5 10.0 

5 0.97 227.65 96.31 2110.48 221.06 66.85 2141.63 3.0 44.1 -1.5 

6 6.64 282.11 88.78 12283.85 274.51 62.11 12366.07 2.8 42.9 -0.7 
Table 6:  Packet Loss Probabilities 
 Percent Differences 

Case
Total
Rho

Random_ 
Weights_
1, Class 1 

Random_ 
Weights_ 
1, Class 2 

Random_
Weights_
1, Class 3 

Golestani_1,
Class 1 

Golestani_1,
Class 2 

Golestani_1,
Class 3 

Class
1

Class
2

Class
3

4 0.59 0.000 0.000 0.000 0.000 0.000 0.000 N/A N/A N/A 

1 0.74 0.000 0.000 0.000 0.000 0.000 0.000 N/A N/A N/A 

3 0.88 0.001 0.000 0.000 0.001 0.000 0.000 29.0 N/A N/A 

5 0.97 0.007 0.000 0.000 0.006 0.000 0.000 23.3 N/A N/A 

6 6.64 0.840 0.000 0.893 0.842 0.000 0.893 -0.1 N/A -0.1 
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Mean Queue Wait for CBWFQ Models 
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Figure 5:  Mean Queue Wait Time 
99.9 Percent Jitter for CBWFQ Models
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Table 7:  Simulator Execution and Processing Time Requirements 

Random_Weights_1 OPNET Modeler 

Packets
Simulated 

CPU
Time 
(sec)

CPU
Seconds

Per
Packet

Packets
Simulated 

CPU
Time 
(sec)

CPU
Seconds

Per
Packet

Post Processing 
Time (hrs) 

1,000,000 19.8 2.0E-05 999,986 322.0 3.2E-04 1 hour 
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