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ABSTRACT

In this paper we depart from a set of simple assumptions
regarding the behavior of a pool of customers associated
with an enterprise’s contact center. We assume that the
pool of customers can access the contact center through an
array of communication modalities (e.g., email, chat, web,
voice). Based on these assumptions we develop a model
that describes the volume of demand likely to be observed in
such an environment as a function of time. Under the simple
initial assumptions, the model we develop corresponds to
a mean-reverting process of the type frequently used in
energy options pricing. When independence assumptions are
relaxed and correlations between user behavior are included,
a jump-diffusion component appears in the model. The
resulting model constitutes the potential foundation for key
simulation-based analyses of the contact center, like capacity
modeling and risk analysis.

1 MOTIVATION

Given their importance in modern enterprise organizations,
the analysis and study of contact centers (which are modern
versions of call centers capable of handling customer con-
tact using multiple and heterogeneous channels like chat,
web, and email in addition to voice) has become the focus
of increased attention. Like many other important opera-
tions or processes relevant to large enterprises, questions
regarding efficiency, cost, quality, and risk are pivotal in
delivering a better picture of the state and value of these
systems. Furthermore, insights on these operations can
provide guidance in terms of optimization and risk manage-
ment opportunities. Thus, it is important to have models
and methodologies that support the objective and consistent
analysis of contact centers.

The work that exist today related to call center analy-
sis focuses mainly on answering idiosyncratic operational
issues in telephony environments. Specifically, this work
is mostly meant to provide support when dealing with call
arrival modeling, staffing level decisions, and quality of
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service issues (e.g., expected waiting times, average service
duration, probability of users dropping out, etc). Exam-
ples of these analyses and studies include Brown et al.
(2002) and Gans, Koole, and Mandelbaum (2003). Essen-
tially, these approaches see a call center as a telephone-call
queuing system.

Due to the convergence of voice and data in enterprise
communication channels, the emergence of standards like
VoIP and SIP, and the push towards increased utilization
of web oriented communication channels (like web pages,
chat and email) organizations are moving towards the adop-
tion of technologies like universal queues and modality
bridges (e.g., voice-to-text conversion through automatic
speech recognition). Consequently, enterprises are shifting
their perspectives regarding their contact centers into more
holistic ones. Because modern contact centers are about
the convergence of various modes of communication, clas-
sic telephone-centric call center modeling approaches (e.g.,
calculating expected waiting times using traditional queuing
models) could prove insufficient.

In this work, we provide a model of the contact center
based on a different perspective: we look into the set of
customers that is associated with a center and develop a
model of the set of tickets that these customers generate. In
this work, a ticket is an issue or circumstance that is prone to
generate at least one instance of contact center activity (e.g.,
a phone call, an email, a web chat). The motivation for this
approach is related to the fact that in modern contact centers,
agents typically simultaneously address and resolve issues
coming from various channels. Compounding the problem
is the fact that some of these channels are asynchronous
and have substantially longer response times than other
modalities (contrast email and voice). Thus, it is valuable
to model the issues that are likely to generate such contacts
as well as the likelihood of contact generation, rather than
modeling the way that these contacts get realized (with
the exception of self-service contacts, which by definition
avoid agent involvement). In this paper, the terms call or
contact refer to an instance of contact center activity that
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is addressed by an agent, be it text, web-based, email, or
voice-based.

We will model the tickets, which as we said, are the
reasons why customers increase their likelihood of plac-
ing a call into the contact center. We can describe the
probability distribution of call placement using a distribu-
tion conditioned on the state of the ticket state variable.
Without any loss of generality, in this work, for brevity
purposes, we equate the ticket status to call placement (i.e.,
this relationship is deterministic rather than probabilistic).

We derive our initial contact center model making the
assumption that the customers switch ticket status randomly
following an independent and identically distributed random
variable. After relaxing some of our initial assumptions of
independence, our final model reflects the occurrence of
more complex events in the system, like sudden jumps or
spikes in service demand due to underlying correlations in
issue generation. Our model also allows the factoring-in
of parameters like automation rate which is needed when
self-help mechanisms are in place. Thus, our modeling
approach is flexible as well as extensible.

Using our model, it is possible to compute expectations
of ticket pool size at the end of an operation cycle, and thus
produce measurements of expected reward/loss, risk, and
other metrics that can aid in performance projection and
planning, problem prediction (e.g., degradation in the level
of service, etc.), and problem avoidance. Furthermore, these
projections that use the proposed model, can be carried out
in an on-line fashion, i.e., during the course of an actual
operation, and can help measure actual risk conditioned on
the current observed state of the system. In this way, our
model provides a consistent, parsimonious, and efficient
measurement of risk and sensitivity of the ROI (return on
the investment) of the operation to changes in the underlying
variables and assumptions. It can also facilitate the direct
comparison of multiple operations or configurations in a
consistent way, and thus can provide support to operation
diagnostics, operation planning, performance prediction, as
well as business side activities like proposal pricing and sup-
port (in operation outsourcing bidding), and effective risk
management. These are key activities in the ever more com-
petitive area of contact center outsourcing, consolidation,
operation, servicing, consulting, and management.

2 THEORETICAL MODEL

We now derive a model for a contact center departing from
a set of basic assumptions. Our goal is to find an equation
that describes the behavior of tickets, or issues, associated
with a set of customers of an enterprise.
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2.1 Terminology and Definitions

Assume an environment M = {As,Ad ,Q} comprising a
finite number of participants. Assume two types of partici-
pants: supply agents As, and customers (or demand agents)
Ad . A supply agent provides a service in the environment
M , for example answers calls and emails, etc. While a de-
mand agent, or a customer, places the requests for services
in the form of telephone calls and emails, for example.
More specifically, let As represent the number of supply
agents and let Ad the number of customers in M .

Let customers, or demand agents, have associated with
them internal states. For simplicity we consider the case
of only two discrete states: OK and NOT-OK. Let the
probability of a customer placing a service request given
that her internal state is OK during a unit of time be equal to
zero and conversely, equal to one when the state is NOT-OK
as long as no other ticket has been placed by the customer.
A more complex model might describe probabilistically
these relations as well as allowing for multiple tickets being
generated by a single customer. Finally we assume that the
state of a customer is described by a Random Variable and
that these RV’s are independent and identically distributed
across all customers.

Let Q represent the non-priority queue where the tickets
that the customers acquire are centralized. Let Q be of
infinite length so that no tickets are lost. We denote Q
as the ticket pool. This queue does not necessarily have
a physical equivalent in a contact center environment, but
rather, is the logical repository of existing issues. By creating
a model for its expected size at any given time, we can
derive knowledge regarding other measurements which carry
physical meaning, like the expected number of issues active
at a time, or the time elapsed in the pool for each issue.

Depending on its internal status at time t a demand agent
(a customer) can be in either one of two states: requesting
Ad,r

t for customers in NOT-OK status, or non-requesting
Ad,r̄

t state for customers in OK status, so that the sum
Ad = Ad,r̄

t +Ad,r̄
t of demand agents in requesting state and

the demand agents in non-requesting state is always equal
to Ad .

Let us assume at this point that the discrete process that
a non-requesting demand agent follows when switching to a
status state (and thus a requesting state and owning a ticket)
is independent of extraneous factors and has probability p.
Intuitively, at every discrete step a collection of trials (i.e.,
Bernoulli trials) that the set of non requesting agents will
follow when they collectively randomly switch from OK to
NOT-OK is a binomial process.

Let us assume we analyze a period of time T . Let us
discretize this period into N units of length ∆t each, such
that T = N∆t . Thus the variable t has integer values from
1 to N (time steps). At this point we are not making any
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assumption on the smallness of the time step, we are just
discretizing the analysis period.

2.2 Status Switch and Binomial Law

Let us assume that the set of non requesting demand agents
collectively execute the status switch experiment at the
beginning of every time period. Let us assume that the
probability that a specific demand agent will switch its
status from non-requesting to requesting agent in the period
of time ∆t is p∆t = p ∆t , where p denotes the switch
probability per unit of time, i.e., the rate, and p∆t is the
analysis-window-duration adjusted probability.

Thus, at time i, the number of non-requesting demand
agents that switch to requesting status follows a binomial
distribution (i.e., a series of Bernoulli trials), in which the
number of independent trials is equal to the number of
non-requesting customers at that time, Ad,r̄

t .
The probability that at period t, and during an analysis

window equal to one unit of time (i.e., p∆t = p),exactly
kt customers switch their status from non-requesting to
requesting is provided by the binomial law:

b(kt ;Ad,r̄
t , p) =

(
Ad,r̄

t

kt

)
pkt (1− p)Ad,r̄

t −kt

=
Ad,r̄

t !

(Ad,r̄
t − kt)!kt !

pkt (1− p)Ad,r̄
t −kt

where kt is the number of new tickets placed in Q at the
beginning of the t period by demand agents switching status,
and b denotes the binomial law which is the probability of
getting k successes in n independent tries with individual
Bernoulli trial success probability p (Stark and Woods 1986).

We can think of kt(p∆t ,A
d,r̄
t ) as a binomial Random

Variable with parameters p∆t and Ad,r̄
t . To stress out the

fact that p should be normalized we will use the following
notation

p(∆t) = p∆t = p ∆t .

Finally, let us assume that the number of supply agents
is constant for every t and that the amount of work provided
by these agents is r per agent per unit of time, thus during
the course of ∆t , the number of tickets resolved is r∆t . This
deterministic agent productivity characterization can be later
replaced by a more adequate stochastic characterization.

2.3 Pool of Open Tickets

We now derive a stochastic characterization of the size of
the pool of open tickets.

Assume that at time t the pool Q has St open tickets.
At time t + 1 the number of tickets in Q will be affected
226
by the deterministic closing rate r and by kt the number of
tickets opened at time t (i.e., between t−1 and t).

St+1 = St + kt(p(∆t),A
d,r̄
t )− r∆t

= St +∆St

where

∆St = kt(p(∆t),A
d,r̄
t )− r∆t .

Now by making ∆t → dt, ∆St becomes dSt

dSt = kt(p(dt),Ad,r̄
t )− rdt.

2.4 Asymptotical Brownian Motion: A Stochastic
Differential Equation

The R.V. kt follows a binomial law, and for a large N kt
will converge to a Gaussian R.V. kt ∼ N(µ̂t ,σ

2). Then,

dSt = µ̂t − rdt +σdWt .

In the equation above, dWt is Normal and denotes the Brow-
nian motion process as dWt = εt

√
dt and εt ∼ N(0,σ2),

where

µ̂t = Ad,r̄
t p(∆t)

= Ad,r̄
t pdt.

while the standard deviation is

σ =
√

Ad,r̄
t p̂(1− p̂).

p̂ is a convenience notation referring to the normalization
of p for a short period dt. We can relate the size of the
customer set, the size of the ticket pool and the number of
non-requesting agents using Ad,r̄

t = Ad
t −St . Then,

dSt = µ̂t − rdt +σdWt

= ((Ad
t −St)p− r)dt +

√
Ad,r̄

t p̂(1− p̂)dWt .

dSt = (−St p+(Ad
t p− r))dt +

√
Ad,r̄

t p̂(1− p̂)dWt .

dSt = p((Ad
t −

r
p
)−St)dt +

√
Ad,r̄

t p̂(1− p̂)dWt .
1
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2.5 Mean-reverting Brownian Process

The above equation corresponds to a standard mean reverting
process.

dSt = η(m−St)dt +σdWt (1)

where η is the speed of convergence (given by p), m is the
mean to where the process reverts to (given by m = (Ad

t − r
p )).

And σ is defined above. This type of mean reverting
processes (also known as Ornstein-Uhlenbeck processes)are
frequently used as the bases for models to price real options
and energy options (e.g., Lari-Lavassani, Sadeghi, and Ware
2000, Deng 2000).

2.6 The Role of Self-help and Automation Rate

We said that r denotes the ticket closure rate which we
associated directly with the pool of supply agents. More
specifically, r has two components: the work provided by
supply agents and the closure rate provided by self-help
mechanisms (web pages, FAQ’s, IVR etc.). Due to its
potential impact, self-help plays a very important role in
contact centers (e.g., Suhm and Peterson 2002). While
making r = ragent +rsel f hel p, does not change the equations
obtained so far, in reality the agent pool and the self help
mechanisms have stochastic behavior with distributions and
moments that can substantially affect the outcome of the
analysis. We will continue assuming a single deterministic
r but advise the reader to keep in mind that this is a
simplification.

2.7 Relaxing the Customer Independence Assumption

We have assumed that the internal state of the customers that
drive the event placement probability is a set of random vari-
ables independent across customers. This is an unrealistic
assumption, as in typical situations a good number of issues
that trigger contact activity in the contact center are caused
by events that affect groups of users simultaneously (e.g.,
product recalls, local environmental phenomena, regional
service failure, etc.).

Thus, a more realistic model should include the effect
of substantial jumps (up, or down) in the creation of tickets.
As we said, such jumps can be associated to sudden events
occurring through time and whose nature will depend on
events that affect clusters of customers. We model these
peaks in demand as a Poisson process and are additive
to the demand that is generated due to the independence
assumption of the customer status and that we described
previously.

In this way, our model becomes a jump-diffusion pro-
cess, which is a combination of a generalized Wiener process
and a Poisson process and is frequently used in Energy Op-
tions pricing (Deng 2000). The general form of the equation
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is

dSt = a(St , t)dt +b(St , t)dz+(Φ−1)Stdq.

In our case,

dSt = η(m−St)dt +σdWt +(Φ−1)Stdq.

We now make a few modifications in our equation,

dSt = η(m−St)dt +σdWt + Φ̂Stdq, (2)

which more closely resembles the formulation in Cartea
and Figueroa (2005) and where dq is the Poisson arrival
term with parameter λJ defined by:

dq =
{

0 with probability 1−λJdt;
1 with probability λJdt.

and Φ̂ follows a log-normal process, i.e., Φ̂ ≡ lnJ ∼
N(µJ ,σ

2
J )

The above equation is the final model we assume for
our pool of tickets. Depending on the nature of the business
that the contact center M is servicing, one can eventually
factor seasonality of the demand placed by the customers
into the model (Cartea and Figueroa 2005).

3 EXPECTATION, SENSITIVITY, AND PAYOFFS

3.1 Expected Pool Size at Time T and Payoff

Given the model shown in Equation 2, we are now now
interested in being able to compute F(T ) which is the
expected pool size at the end of the period T ,

F(T ) = Et [ST ]. (3)

A more interesting metric, however, relates a cost (or reward)
function associated with the number of tickets in the pool.
The most straightforward assumption is that the cost or
reward attained at time T is directly related to the size of
the pool at that time. Then the expected cost-reward after
the period T is simply,

CT = E[ f (ST )], (4)

where f (St) represents the cost-benefit function of the pool
size and CT is the expected cost at time T . We define
the expected payoff of the contact center as −CT , i.e., the
negative of the expected cost.

Other more realistic payoffs would consist of trigger
functions that become active if the number of tickets go above
(or below) certain thresholds. While making more difficult
to compute payoff, these non-linear kind of functions are
more realistic.
2
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3.2 Sensitivity to Changes in Parameters and Risk
Interpretation

Besides of the contact center expected payoff after time T ,
we are interested in assessing the sensitivity of this payoff
to the model parameters. These metrics reflect the risk
of operating a contact center. This situation is analogous
to option pricing risk assessment using what collectively
is know as the Greeks (Crouhy, Galai, and Mark 2001),
because they have names taken from the Greek alphabet,
which are the family of partial derivatives of C with respect
to the parameters of the model (in options pricing C denotes
the expected payoff of the instrument). In table 3.2 we
show the basic list of Greeks frequently used in financial
options modeling as well as the additional partial derivatives
that we introduce for our contact center model (last 3 rows
in the table).

Table 1: Partial derivatives for risk and sensitivity analysis.
Name (Options Pricing) Expression
Delta, or price risk δ = ∂C

∂S
Gamma, or convexity risk γ = ∂ 2C

∂S2

Vega, or volatility risk ν = ∂C
∂σ

Theta, or time decay risk θ = ∂C
∂T

Rho, or discount rate risk ρ̄ = ∂C
∂ r

Automation risk ρ̄A = ∂C
∂ rsel f hel p

Magnitude of Jump Risk ρ̄M = ∂C
∂ µJ

Frequency of Jump Risk ρ̄F = ∂C
∂λJ

The most relevant partial derivatives for a contact center
are described below:

• Automation or Resolution risk: For contact cen-
ters experimenting with self-help technologies (e.g.,
IVR, language technologies) it is important to mea-
sure how sensitive the expected payoff is to au-
tomation or resolution rate. The Automation rate
rsel f hel p reflects many underlying variables like
complexity of the domain, robustness of the ap-
plication (or training of the agent, if it’s an agent
oriented environment), and quality of the User
Interface (Suhm and Peterson 2002). An envi-
ronment with low predictability or high variance
of the automation rate and high sensitivity to it,
would reflect a risky environment to deploy these
technologies. Another useful interpretation would
be the change in payoff given a change in the au-
tomation, providing some guidance on the potential
value of investing on technology and improving
and robustifying the applications that provide au-
tomation.
226
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Figure 1: Sample paths.

• Magnitude and Frequency of Jump Risk: This
indicator can reveal information on how sensitive
our contact center is to bursty call arrival behavior.
It could be that a certain contact center provides
good expected payoff as long as the call volume
is relatively constant and not many peaks of calls
occur and becomes unstable when the frequency
increases.

• Time decay risk: Relates the sensitivity of the
payoff as the closure of the term T approaches.

4 SIMULATION BASED ANALYSIS

4.1 Expected Final Pool Size and Expected Payoff

We now illustrate the application of the model to contact
center simulation based analysis. We assume an environment
with a starting pool containing 6750 open tickets. We are
interested in carrying out an analysis spanning 200 units of
time (e.g., days).

Figure 1 shows a set of nine sample paths of a Monte
Carlo simulation of the Eulerized version of equation 2 with
the following parameters: 1000 analysis steps (spanning
200 units of time), the initial ticket pool is 6750 open
tickets, tickets are consumed at a rate of 0.4 tickets per time
step (η dt = 0.4), the standard deviation for the Brownian
process is 100, while the log-Jump process follows a normal
distribution with mean 0.75 and variance 0.2. The parameter
lambda for the Poisson jump process is 0.0003.

We now compute the distribution of the value of ST
running a total of 100,000 sample path simulations. Figure 3
shows a histogram of the distribution of the ending values.
Averaging the results yields an average of 8917 ending
tickets while the peak shows at around 4000 tickets.

To compute CT , the expected cost of operating the
contact center, we assume a negative payoff function shown
in Figure 2. This simple function means that ST is larger
than the initial number of tickets in the pool S0, the cost
3
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Figure 2: Cost function.

(or negative payoff) is directly proportional to ST −S0 and
is zero otherwise. This function resembles the payoff of a
long position of an European call option. We can simply
combine Figures 3 and 2 to obtain this value. This type of
cost function is valuable for analysis of final contact center
state after a fixed period of time T . Another interesting
insight, is that it is very easy to evaluate this cost using
only the histogram distribution of the values of ST .

A different kind of cost function triggers a reward/cost
only if the path of St crosses a certain level (up, down, or
either). Let us assume that the function triggers a cost of
10000 if St goes above 10000 tickets at anytime and zero
otherwise. From Figure1, we can compute this final value
by observing that twice the paths crossed the threshold
out of nine times, thus the computation of this cost is
results in 2222. This cost function is equivalent to a long
position in knock-in barrier option. This kind of analysis
is valuable when assessing the risk assumed in the contact
center operation of going above operation points that can
result in failures in Service Level Agreement delivery.

4.2 Sensitivity Analysis

To perform sensitivity analysis we need to compute the
partial derivatives described in Table 3.2. To avoid simulat-
ing at multiple parameter values the method of path-wise
derivative estimation (or infinitesimal perturbation analysis)
should be considered (Broadie and Glasserman 1996). We
now assume that we are interested in computing the sensi-
tivity of the payoff to changes in S0 when the payoff CT
follows the equation below, (i.e., an Asian option)

CT = [S̄−K]+, S̄ =
1
m

m

∑
i=1

Sti ,0 < t1 < ... < tm < T.

Following an infinitesimal perturbation approach not only
yields an unbiased estimator, but it requires very small
computational cost in addition to the path simulation.
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5 DISCUSSION AND FUTURE WORK

In this work we have departed from a set of basic assumptions
regarding a contact center environment and arrived at a model
that reflects the size of the tickets, or issues, that generate
traffic in such environment. This model can be used as a
tool to obtain analysis of expected values, expected payoffs,
sensitivity and risks. The simulation and analysis methods
used on this model are similar to those used in option pricing
in general, and electricity options in particular. Thus there
is the opportunity to leverage the large amount of work
developed in option pricing.

There are two future directions to take the proposed
model. The first is about revisiting the underlying assump-
tions especially those related to independence in issue gener-
ation, resolution rate (going from deterministic to stochastic
characterizations), seasonality, as well as developing a more
accurate description of the contact generation given the sta-
tus of the user. Additionally, the assumption that only one
ticket is held per user can be generalized into a probabilis-
tic model that allows for more than one concurrent ticket
per customer; also a set of variable size of demand agents
(i.e., customers) could be assumed, which is the reality in
enterprises: customer sets grow and shrink.

The second direction takes the model that the current
assumptions have taken us to, and focuses on pursuing more
computationally efficient and powerful analysis techniques.
One example is of course, the application of modeling
techniques like binomial trees. But other areas might explore
the question of parameter estimation and inference. Bayesian
Network frameworks can be used to model and reflect the
conditional dependencies across data in the environment.

While the above are just some ideas of where the take
the current work, the significance and contribution of this
work lies in developing a model that provides the ability
of modeling disparate, heterogeneous, and asynchronous
modes of accessing a contact center in a consistent, objective,
parsimonious, and relatively well justified model. We have
64
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also elaborated on and illustrated how this model can be
applied in simulation and risk-focused analyses.
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