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ABSTRACT

The Cross-Entropy (CE) method is a modern and effective

optimization method well suited to parallel implementa-

tions. There is a vast array of problems today, some of

which are highly complex and can take weeks or even

longer to solve using current optimization techniques. This

paper presents a general method for designing parallel CE

algorithms for Multiple Instruction Multiple Data (MIMD)

distributed memory machines using the Message Passing

Interface (MPI) library routines. We provide examples of its

performance for two well-known test-cases: the (discrete)

Max-Cut problem and (continuous) Rosenbrock problem.

Speedup factors and a comparison to sequential CE methods

are reported.

1 INTRODUCTION

1.1 The Cross Entropy Method

The Cross Entropy method (Rubinstein and Kroese 2004)

or CE method can be used for two types of problems:

• Estimation,

• Optimization.

Here we focus on parallel implementation of the CE method

for optimization problems, although similar techniques will

also be possible for estimation. Suppose we wish to solve

the following maximization problem: Let X be a finite set

of states and S a real-valued performance function on X .

We wish to find the maximum value of S over X and the

state(s) corresponding to this value. Let γ∗ be the maximum
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of S over X and let x∗ be a state at which this maximum

is attained. Then,

S(x∗) = γ∗ = max
x∈X

S(x). (1)

The CE method is an iterative optimization method

that starts with a parameterized sampling distribution f (x;u)
from which a random sample is generated. Each observation

in this sample is scored for its performance as the solution

to a specified optimization problem. A fixed number of the

best of these observations are referred to as the elite sample.

This elite sample is used to update the parameters for the

sampling distribution. A new sample and elite sample are

then generated from the updating sampling distribution. The

sampling distribution eventually converges to a degenerate

distribution about the final locally optimal solution which

ideally will be globally optimal.

The first step of the CE method is to turn the opti-

mization problem (1) into a meaningful estimation problem.

Let I{S(X)≥γ} be a collection of indicator functions for var-

ious levels γ . Then for the discrete case we associate the

estimation of

ℓ(γ) = Pu(S(X) ≥ γ) = ∑
x

I{S(x)≥γ} f (x;u) = Eu

[

I{S(X)≥γ}

]

with (1). Now we use a two-part iterative approach to

obtain γ̂1, γ̂2, . . . , γ̂i and corresponding parameter vectors

v̂1, v̂2, . . . , v̂i such that γ̂i → γ∗ and f (x; v̂i) approaches the

degenerate distribution about x∗. Let ρ be a real number

between 0 and 1 representing the proportion of the sample

taken as the elite sample. For a random sample X1, . . . ,XN

let S(1) ≤ . . . ≤ S(N) be the performances of S(Xi) ordered
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from smallest to largest. Thus, S( j) is called the j-th order-

statistic of the sequence S(X1), . . . ,S(XN).
For fixed γ̂t and v̂t−1, derive v̂t from the solution of

the following program

max
v

D(v) := max
v

1

N

N

∑
i=1

I{S(Xi)≥γ̂t} ln f (Xi;v) (2)

Algorithm 1.1. [CE Algorithm for Optimization]

1. Choose an initial parameter vector v̂0. Set t = 1.

2. Generate a sample X1,X2, . . . ,XN from the density

f (·; v̂t−1) and compute the sample (1−ρ)-quantile

γ̂t of the performance according to γ̂t = S(⌈(1−ρ)N⌉).

3. Using the same sample X1,X2, . . . ,XN solve the

stochastic program (2) and denote the solution v̂t .

4. If for some t ≥ d, say d = 5,

γ̂t = γ̂t−1 = · · · = γ̂t−d , (3)

then stop, otherwise set t = t +1 and iterate from

Step 2.

1.2 The Max-Cut Problem

Given a weighted undirected graph G = (V,E), where V =
{1, . . . ,n} is the set of vertices and E is the set of edges with

associated weights ci j between vertices i and j, the Max-Cut

problem is: what partition of the vertices into two distinct

subsets V1 and V2 maximizes the sum of the weights of the

edges ei j where vertices i and j are in different subsets? We

can assume without loss of generality that the graph G is

complete and weights ci j are non-negative. It can be shown

that the Max-Cut problem is NP-Complete (Karp 1972).

We can represent the edge weights via a non-negative,

symmetric cost matrix C = (ci j) where ci j is the weight of

the edge between vertices i and j. The cost of a cut (its

score) is then the sum of the weights of the edges with

vertices i and j in different partitions. For example, if we

had the cut {{1,3},{2,4}} with the following cost matrix









0 c12 0 c14

c21 0 c23 c24

0 c32 0 0

c41 c42 0 0









the cost of the cut would be c12 + c14 + c23.

We represent a cut as a vector x = (x2, . . . ,xn) where

xi = 1 if node i is in the same partition as node 1, and xi = 0

otherwise. To generate our samples we let X2, . . . ,Xn be

independent Bernoulli random variables with success prob-

abilities p2, . . . , pn. The solution to the stochastic program

(2) which is used to update the sampling distribution in
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algorithm 1.1 now becomes

p̂t,i =
∑N

k=1 I{S(Xk)≥γ̂}I{Xki=1}

∑N
k=1 I{S(Xk)≥γ̂}

. (4)

For our Max-Cut experiments we construct an artificial net-

work such that the optimal solution is known. To construct

this network on n nodes for m ∈ {1, . . . ,n} let

C =

(

Z11 B12

B21 Z22

)

,

where Z11 is an m×m symmetric matrix with all the upper-

diagonal elements generated from a U(0,1) distribution.

Z22 is a (n−m)× (n−m) symmetric matrix generated in

the same way as Z11. All other elements are 1 apart from

the diagonal elements which are 0. The optimal cut is given

by V∗ = {V∗
1,V

∗
2} with

V∗
1 = {1, . . . ,m} and V∗

2 = {m+1, . . . ,n},

while the optimal cut value is

γ∗ = m(n−m).

1.3 The Rosenbrock Problem

The n-dimension Rosenbrock function is

S(x) =
n−1

∑
i=1

100(xi+1 − x2
i )

2 +(xi −1)2. (5)

To minimize (5) via the CE method we generate a random

vector X = (X1,X2, . . . ,Xn) where each component Xi is

generated independently from a normal distribution with

parameters µ̂t−1 and σ̂2
t−1. Determine γ̂t = S(⌈(1−ρ)N⌉) and

update µ̂t and σ̂2
t as the sample mean and sample variance

of the corresponding components of samples that exceed

γ̂t . The mean vector µ̂t typically converges to the global

optimum which is the vector of ones. The vector of standard

deviations σ̂t converges to the zero vector as the sampling

converges to the degenerate distribution about the optimal

solution.

2 PARALLEL CE

A common problem when solving complex optimization

problems is the prohibitively large computational time re-

quired. For certain optimization problems, such as large

phylogenetic tree construction, this time is typically of the

order of days or weeks or more. One approach to decrease

this computation time is to use an algorithm that has a

parallel or distributed implementation.
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The CE method is well suited to implementation in a

distributed or parallel fashion due to its inherent parallel

nature, however to date there has been no reported imple-

mentation of the CE method in a parallel fashion. In this

section we will discuss our approaches to parallel imple-

mentation of the CE method and give examples for the

Max-Cut and the Rosenbrock optimization problems.

We choose to use the Message Passing Interface (MPI)

(Pacheco 1997, Gropp, Lusk, and Skjellum 1997) commu-

nication library for our implementation of parallel CE. MPI

has become the de facto industry standard for programming

parallel systems. It is also platform independent and so

optimization routines written with MPI can be transfered

to different architectures with relative ease.

The CE method performs two tasks: the generation

of samples from the sampling density f (·; v̂t−1); and the

updating of this density based on the samples. The first

of these tasks can be parallelized in the following way.

Suppose we wish to generate a sample of size N and are

given s processors. Then each processor can generate a

sample (from the same sampling distribution) of size N
s

.

The second task of updating of the sampling density

can be further broken down into two tasks: the scoring of

the sample to identify the elite sample, and the updating

of the sampling density based on the elite sample. To

parallelize the scoring each CPU scores the sample which

it has generated. Updating of the sampling distribution in

parallel is not possible via the current algorithm 2.1. In

order to complete this step we use a single CPU to update

the sampling density and redistribute it to the other CPUs.

In an effort to minimize the data transmitted between CPUs,

the number of observations sent from each CPU is either

the size of the sample generated by the CPU or the desirable

size of the elite sample, whichever is lowest. For example,

if N = 1000 and ρ = 0.1 we would want an elite sample

size of 100. If we carried this out on two CPUs, each

CPU would generate 500 observations and transmit its top

100 observations to a single CPU for the updating of the

sampling density. However, if we used 20 CPUs each CPU

would generate 50 observations and transmit all 50 to a

single CPU for updating the sampling density.

Algorithm 2.1 (CE Algorithm for Parallel Optimization).

1. Choose initial parameter vector v̂0. Set t = 1.

2. Generate on each of s CPUs a sample

X1,X2, . . . ,X N
s

from the density f (·; v̂t−1).

3. Pool the best min(N
s
,ρN) samples from each CPU

to a single CPU and compute the sample (1−ρ)-
quantile γ̂t of the performance according to γ̂t =
S(⌈(1−ρ)N⌉).

4. Using the pooled sample X1,X2, . . . ,XN solve the

stochastic program (2) and denote the solution v̂t .
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5. If for some t ≥ d, say d = 5,

γ̂t = γ̂t−1 = · · · = γ̂t−d , (6)

then stop; otherwise set t = t +1 and iterate from

Step 2.

A modification to this algorithm is suggested in Section

4.1 which may allow for the partial parallelization of the

updating of the sampling distribution.

2.1 MRIP vs SRIP

We consider two approaches to parallel optimization using

the CE method. The first method, as described in Algorithm

2.1, splits the same optimization over multiple processors,

and is called single replication in parallel (SRIP). The second

approach is to run statistically independent replications of the

same optimization algorithm, each on a different processor.

This approach is multiple replication in parallel (MRIP).

The key advantages of the SRIP approach are as follows.

• The total elapsed time (the time elapsed between

the start and the end of the program) for any single

run is decreased, allowing results to be obtained

faster.

• For large problems that could be above the memory

constraints of a single processor, the division of the

problem in an appropriate way will also divide the

memory requirements over the processors, allowing

for the optimization of larger problems.

In contrast, the key advantages of the MRIP approach

are as follows.

• Communication requirements are much less than

in the SRIP case, therefore when comparing the

two methods with the same parameters and the

same number of replications MRIP will take less

time on average.

• Running the same optimization with a smaller sam-

ple size (for the MRIP) such that the total elapsed

time taken for both the MRIP and SRIP approaches

is the same has the potential to have the best of

the n MRIP results being better than a single SRIP

results.

Figure 1 shows the SRIP case for n processors. One

processor communicates the initial sampling distribution

parameter vector v̂0 to all other processors. Each processor

then generates a sample and evaluates the performance of

each observation in the sample. The samples are commu-

nicated back to a single processor to update the parameter

vector v̂t for the sampling distribution. This new parameter

vector v̂t is then communicated to all other processors so
8
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that they may draw a new sample. This process continues

until the stopping criteria is satisfied.

Figure 2 shows the MRIP case for n processors. Each

processor runs an independent simulation and produces

statistically independent output.

Figure 1: SRIP CPU timeline. A single processor initializes

the sampling distribution and communicates this to all other

processors. All processors then sample from this distribution

before communicating their elite sample back to a single

processor to update the sampling distribution.

Figure 2: MRIP CPU timeline. All CPUs run a complete

independent optimization before pooling their final results

to a single CPU for reporting. The sequential line shows

the longer total time taken to run each optimization one

after the other.

3 RESULTS

Parallel speedup is defined as the ratio of the elapsed time

for the sequential implementation to the elapsed time for
219
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Figure 3: Speedup of the parallel Max-Cut CE algorithm.

Run using an artificial network with n = 800 nodes and

m = 400, the optimal score is 160000.

Table 1: Average running time of five individual parallel

runs of the discrete Max-Cut CE algorithm on n processors

along with the best and worst final scores.

Number of Average time Best score Worst score

Processors (seconds)

1 63.2 160000 160000

2 29.0 160000 159803

4 18.4 160000 160000

8 9.6 160000 160000

12 6.2 160000 160000

16 4.8 160000 160000

24 4.0 160000 159803

32 3.0 160000 160000

the parallel implementation. A sequential implementation

is one which runs on a single processor with no concurrent

computations. Let Sp be the speedup factor for an algorithm

run on p CPUs where the sequential version takes T1 time,

and the parallel version takes Tp time. Then,

Sp =
T1

Tp

. (7)

Due to variation in the running time for randomized

optimization algorithms such as the CE method, in equation

(7) the average running time over multiple runs is used.

Table 1 shows the average running time from five runs of

the parallel CE Max-Cut algorithm using various numbers

of processors. Figure 3 shows the speedup factors for the

Max-Cut combinatorial optimization problem with n = 800,

m = 400 and an optimal solution of 160000. The speedup

factor S16 is 13.2 which equates to 0.823 of linear speedup.

The speedup factor S32 is 21.1 which equates to 0.658 of

linear speedup. The proportion of linear speedup achieved

starts to decrease after p = 16 processors. This can be seen

in Figure 3 by the decrease in the gradient of the speedup
9
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Figure 4: Speedup of the continuous 5-dimensional Rosen-

brock CE algorithm on x processors.
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Figure 5: Comparison of the best scores for one SRIP run

with sample size 10x and ten MRIP runs with sample size

x of the Max-Cut CE algorithm on 10 CPUs.

achieved line. A likely reason for this is that for a constant

problem size the percentage of time for communication

increases as the number of processors increases. Also,

as the time taken to update the sampling distribution is

constant for a fixed problem, the proportion of time spent

each iteration performing this increases with the number of

processors.

For a rough comparison, speedup factors of 11 to 19.4

were achieved for a network optimization problem using

Parallel Move Simulated Annealing on 32 processors (Lee

1995). Directly comparing this with the parallel CE speedup

of 21.1 for the Max-Cut problem shows the effectiveness

of the parallel CE method. Although the problems opti-

mized were not the same, they were both similar discrete

optimization problems with the network optimization hav-

ing greater complexity. The increased complexity should

allow greater speedup factors due to more computation time
220
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Run using an artificial network with n = 100 nodes and

m = 50.

 0

 2

 4

 6

 8

 10

 12

 0  2  4  6  8  10  12

S
p

e
e

d
u

p
 f

a
c
to

r

Number of processors

Speedup factors for parallel CE Max-Cut optimization

Speedup factor
Linear speedup

Figure 7: Speedup of the parallel Max-Cut CE algorithm.

Run using an artificial network with n = 400 nodes and

m = 200.

being spent on the performance function evaluation which

is parallelizeable. This is discussed further in Section 4.

Figure 4 shows the speedup factor for the parallel CE

method applied to the 5-dimensional Rosenbrock problem.

As can be seen from the figure, the speedup factors for the

Rosenbrock problem are less than that of the 800 node Max-

Cut problem when the number of processors exceeds 8. As

the number of processors increases beyond 8 the speedup

factors start to decrease slightly. This can be attributed to the

size of the problem with our parameters when compared to

the Max-Cut problem, being less as it is a lower dimensional

problem.

The ‘simplicity’ of a problem directly relates to how

well it can be parallelized. In general the simpler a prob-

lem, the lesser the proportion of the computational time

spent generating and evaluating samples and the greater the

proportion of time spent communicating and updating the
0
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sampling distribution. This can be seen in figures 6, 7 and

3. All three are Max-Cut problems run on the same style

artificial network, only the size of the network varies. Figure

6 shows a network of 100 nodes. The speedup factor de-

creases as the number of processors is increased for this size

problem. Figure 7 shows a network of 400 nodes. While

the speedup factor starts by increasing it quickly starts to

decrease again once the number of processors exceeds 4.

Figure 3 is the 800 node network discussed earlier. The

speedup factors for this network increase all the way up to

32 nodes.

Given a particular optimization problem and a fixed

amount of processor time, one may ask the question ‘is it

better to run the simulation multiple times and take the best

result or run a single simulation for the same amount of

processor time?’. To answer this we consider a comparison

between MRIP and SRIP. For comparison purposes we will

compare the best result from ten independent runs (MRIP)

run in parallel, to a single parallel run with a sample size

ten times larger (SRIP). Both these setups should take about

the same amount of elapsed time on ten processors. Figure

5 shows the log of the difference between the simulation

score and the optimal score against the simulation sample

size for the Max-Cut problem. The first of the two lines in

this figure reports results from single runs with ten times

the sample size (SRIP), whereas the second line represents

the best solution from ten independent runs (MRIP). The

first line stops after a sample size of 30 because for larger

sample sizes it produces the optimum solution and so the

log of the distance is undefined. It can clearly be seen

that in this example a single longer run produced the best

results.

4 DISCUSSION

A key advantage of the CE method over other optimization

methods is its ease of implementation for a diverse range

of problems. This also applies to the parallel CE method.

When running a parallel CE implementation (SRIP) of

the Max-Cut problem with 800 nodes on ten processors,

a speedup factor of about 8 is achieved. This means ten

independent runs, each on a single processor (MRIP), com-

bine to use slightly less computation time than a single run

with ten times the sample size running in parallel on ten

processors. To make the computation times approximately

the same a multiple of 8 times the sample size can be

used for the SRIP implementation instead of ten. This still

produces results on par with Figure 5.

There are several factors that can influence the speed-up

factor for a particular problem. One of the key factors is

the simplicity of the problem. When solving a very simple

problem a greater proportion of the computation time is used

in communicating the elite samples to a single processor

and then updating the sampling distribution. Since updating
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the sampling distribution is not parallelizable and has to be

carried out on a single processor, all other processors sit

idle while this happens. As the problem gets more complex,

the proportion of time taken to draw and score the samples

increases, while the proportion of time taken to communicate

between the processors and update the sampling distribution

decreases.

Another factor is the computation time used to com-

municate. The main component of this is the sending of

the elite samples from all processors to a single processor

and the sending of the updated sampling distribution from

the single processor to all other processors. As the num-

ber of processors increases, this communication overhead

increases due to the larger total number of messages sent

and received by the processors.

As more processors are used, the time for updating the

sampling distribution remains relatively constant as this is

performed on a single processor with a constant elite sample

size. The time taken for each processor to generate a sample

decreases as the number of processors increases due to the

overall sample size being distributed over more processors.

As mentioned above, the communication time increases as

the number of processors increases. Thus the proportion of

time each processor sits idle waiting for the new sampling

distribution increases. Each processor will spend less time

sampling, more time communicating and about the same

amount of time waiting for a new sampling distribution,

as the number of processors increases. Eventually, these

factors will lead to a ‘plateau’ or even a decrease in the

speedup factor as more processors are added.

4.1 Future Work

The next step is to parallelize the updating of the sampling

distribution. This may be achieved through the calcula-

tion of a local update to the sampling distribution on each

processor. Only these local updated sampling distributions

are communicated to a single processor and not the whole

elite sample. The single processor then treats these as partial

sums to combine them to create the new global sampling

distribution. For example, if our sampling distribution was

a normal distribution, the new global mean µt would be the

mean of the local means. The effect of this is that the global

sampling distribution comes from a different elite sample

when compared to pooling the observations before updating

the sampling distribution. For example, observations not

include in the calculation of one local sampling distribution

may be ’better’ than some observations included in another

local sampling distribution.

The ability to have each processor generate a different

sample size would be advantageous in a situation where

processors may be of different speeds such as in a distributed

environment.
1
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We would like to implement more problems in a parallel

CE fashion, specifically we would like to try biological

problems such as large scale sequence alignment.

Lastly, we would like to develop a model that can

predict the speedup factors expected when a problem is run

on n processors.

5 CONCLUSION

We have shown that the CE method can be successfully

implemented on a parallel computer using MPI and achieve

good speed-up factors. This has been demonstrated with

well known problems in both the continuous and discrete

optimization cases. When comparing the speedup factors

from a 800 node Max-Cut network using parallel CE to the

speedup factors of a complex network optimization problem

optimized with Parallel Move Simulated Annealing on 32

processors the parallel CE method performs better. The

parallel CE method also has the added advantage of being

an easy modification to any CE program.

A problems simplicity was a key factor in its abil-

ity to achieve reasonable speedup factors. The simpler a

problem, the worse its parallel performance. This is not

of critical importance as simple problems generally run in

a short amount of time and do not require parallel im-

plementation. As a problem becomes more complex, the

computational time required increases as does the need for

parallel implementation.

In a comparison of SRIP and MRIP for the example

considered it is clearly better to run a single parallel sim-

ulation with a large sample size over multiple independent

simulations with a smaller sample size. However, this may

not be the case for problems that have a great degree of

variability in their results. The Max-Cut example used con-

sistently converges to the optimal solution and so does not

display variability in its results.
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