
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

ENABLING SMOOTH AND SCALABLE DYNAMIC 3D VISUALIZATION OF
DISCRETE-EVENT CONSTRUCTION SIMULATIONS IN OUTDOOR AUGMENTED REALITY

Amir H. Behzadan
Vineet R. Kamat

Department of Civil and Environmental Engineering
University of Michigan

Ann Arbor, M.I. 48109, U.S.A.
ABSTRACT

Visualization is a powerful method for verifying, validat-
ing, and communicating the results of a simulated model.
Lack of visual understanding about a simulated model is
one of the major reasons inhibiting contractors and engi-
neers from using results obtained from discrete-event
simulation to plan and design their construction processes
and commit real resources on the job site. The fast emerg-
ing information technology makes the use of modern visu-
alization applications more appealing to engineers and sci-
entists in different domains. This paper presents the design
and implementation of an Augmented Reality (AR) visu-
alization application together with an authoring language
that allows the creation of outdoor AR animated scenes of
simulated operations while featuring complete user in-
volvement and interaction. The application is based on the
concept of scene graphs. It also uses a unique general pur-
pose data transmission method to communicate with hard-
ware components of the system.

1 INTRODUCTION

Discrete-event simulation (DES) has been a commonly
used method to model operations in different domains in-
cluding construction. The fact that DES tools often provide
modelers with a large amount of numerical and statistical
data without any graphical representation often leads to lit-
tle confidence in the results of the simulated model (Kamat
and Martinez 2002). This usually makes the decision mak-
ers and engineers manually verify the results using tradi-
tional methods of evaluating the productivity and outcome
of operations. The time spent on manually verifying the
model, analyzing the numerical data, and fixing any possi-
ble errors can be effectively saved by using modern visu-
alization tools to verify and validate the results of the simu-
lated model.

The idea of using Augmented Reality (AR) visualiza-
tion to create smooth animations of simulated operations is
relatively new in the field of construction. Most traditional
2161-4244-1306-0/07/$25.00 ©2007 IEEE
construction visualization tools use the concept of Virtual
Reality (VR) in which the entire animated scene is com-
puter generated and there is no interaction of any real ob-
ject involved in the animation (Kamat 2003). In contrast,
scenes from the real world are used as the background for
an AR-based animation while computer generated CAD
objects are superimposed on top to create an augmented
(i.e. mixed) view of virtual and real objects (Behzadan and
Kamat 2006).

A number of researchers have recently used the con-
cept of AR in their work. Webster et al. (1996) presented a
system that shows locations of columns behind finished
walls, and steel rebars inside columns. Roberts et al. (2002)
used AR to overlay locations of subsurface electrical, tele-
phone, gas, and water lines onto real world views. Both
applications demonstrated AR’s potential in helping main-
tenance workers avoid buried infrastructure and structural
elements as they make changes to buildings and outdoor
environments. Webster et al. (1996) also presented an AR
system to guide workers through assembly of a space
frame. Hammad et al. (2004) augmented contextual infor-
mation on real views of bridges to help inspectors conduct
inspections more effectively. Thomas et al. (1998) ex-
plored AR to visualize designs outdoors. Dunston et al.
(2002) have also demonstrated the value of mixed reality
AR-CAD in collaborative design. To the authors’ best
knowledge, the use of AR to animate simulated construc-
tion models at the operations level of detail and in outdoor
environments has not been investigated before.

Creating AR animations from the results of a simu-
lated model can lead to significant time savings by reduc-
ing the amount of work required to create CAD models of
each and every element in the scene. In addition, it pro-
duces a more realistic display of the operations by present-
ing a mixed view of CAD objects performing a set of
simulated tasks while overlaid on real scenes of the sur-
rounding environment.

While AR provides simulation modelers with a power-
ful platform to perform simulation-based animations, creat-
ing realistic AR scenes introduces a unique set of chal-
8

Behzadan and Kamat
lenges. Continuous mobile user tracking, accurate registra-
tion of CAD objects, and real time acquisition of site data
(e.g. site terrain, location of other equipments) are among
the most important challenges an AR system developer has
to address during the course of creating an animated scene
(Kamat and Behzadan 2006). Finding appropriate solutions
to each of these problems is essential before the animation
can be relied upon as a tool to validate and verify the simu-
lated model, thereby allowing the involved parties to be
convinced that the model indeed reflects reality. Having
achieved this, the model can be described as a credible rep-
resentation of the real operations and the results can be
conveniently used in real life decision making.

2 SIMULATION-BASED ANIMATION IN AR

The authors have been working on design and implementa-
tion of a general purpose visualization system that uses the
concepts of scene graphs together with the capabilities of
modern tracking technology to create and display aug-
mented views of simulated operations to a mobile user in
real time. The result of this ongoing research is presented
as an AR visualization application called ARVISCOPE
(acronym for the Augmented Reality VIsualization of
Simulated Construction OPErations).

2.1 System Description

ARVISCOPE creates and displays augmented views of a
simulated system with the passage of time. It is accompa-
nied by an authoring language which allows the animation
developer to create an ASCII text file referred to as the
“animation trace file” in this paper. Although the trace file
is meant to be automatically generated by simulation soft-
ware to avoid dealing with scene complexities and input
errors the user himself can also manually create one using
common text editor tools. The trace file is read through by
the application and the corresponding animation is created
in real time. ARVISCOPE is capable of importing and us-
ing a wide variety of CAD file formats.

The application has an Object-Oriented Design (OOD)
which allows for maximum flexibility in terms of reusabil-
ity of the methods in other AR-based applications. Each
hardware component (as described in subsection 2.2) is ac-
companied by a software module (i.e. class) which encap-
sulates different functionalities and methods for data
transmission and extraction. Since the design is modular,
any hardware/software upgrade or replacement does not
affect the integrity of the system.

Also, the methods developed in this work can be eas-
ily customized and reused by any potential AR application
developer as long as they use the same set of hardware
components (Behzadan and Kamat 2007a).
2

216
2.2 Hardware Components

Unlike traditional VR-based animation tools in which
the final output is displayed on a computer monitor,
ARVISCOPE takes advantage of a mobile backpack sys-
tem which enables a user to walk in the site while watching
a continually updating augmented animated scene through
the Head Mounted Display (HMD) installed in front of the
user’s eyes. The video of the surrounding environment is
continuously captured and sent to the application to be lat-
er shown as the real background for the scene. Figure 1
shows the profile of a mobile user in ARVISCOPE.

Figure 1: Overview of the hardware components of
ARVISCOPE

This hardware configuration also incorporates two im-
portant tracking devices namely a GPS receiver and a head
orientation tracker. These are the two most important
pieces of hardware since they capture user’s 6 Degree-of-
Freedom (DOF) data in real time and send them to the
animation engine to be used for precise registration of
CAD objects inside the user’s viewing frustum in real time.
The computing power of the system is provided by a laptop
which is placed and secured inside the backpack. A small
touch pad and wrist keyboard have also been provided for
any potential user input during the animation while there is
no physical access to the laptop (Behzadan and Kamat
2007a).

2.3 Creating AR Animated Scenes

ARVISCOPE visualization system has been designed us-
ing OpenSceneGraph which is a C++ open source toolkit.
The video capturing capabilities have been adapted from
9

Behzadan and Kamat
OSGART, a separate open source library (Looser et al.
2006). ARVISCOPE authoring language is a high level
language that allows an external software process (e.g. a
running DES model) to author a dynamic animation trace
file. Table 1 lists some basic language statements of
ARVISCOPE together with a brief explanation of their
functionality.

Table 1: Selected ARVISCOPE animation language state-
ments and their functionality

Statement Functionality

SIMTIME Indicates the simulation time for a group
of consequent statements

LOADMODEL Loads and assigns a CAD file to a class
of objects

OBJECT Creates an instance of a certain class

ROUTE
Defines a route made by a set of points in
global space (i.e. longitude, latitude, and
altitude values)

POSITION Places an object at a certain global point
or on a route

ORIENT Changes the local orientation of an object

TRAVEL Moves an object on a route in a certain
duration of time

Figure 2 presents a sample ARVISCOPE trace file
which results in a simple animated scene consisting of 3
CAD objects superimposed on a real background. As the
trace file is read through, a concrete truck, a concrete form,
and a concrete bucket are eventually placed on the scene.

SIMTIME 10;

ROUTE ConcDelv
(-83.42779,42.54330,285.00)
(-83.42790,42.54315,284.00)
(-83.42820,42.54290,282.00);

LOADMODEL Truck ConcTruck.ac;
OBJECT RedTruck Truck;
POSITION RedTruck ON ConcDelv;

LOADMODEL Form ConcForm.ac;
OBJECT WoodenForm Form;
POSITION WoodenForm AT
(-83.42820,42.54285,282.00);

LOADMODEL Bucket ConcBucket.ac;
OBJECT OrangeBucket Bucket;
POSITION OrangeBucket AT
(-83.42820,42.54287,282.00);

Figure 2: Sample ARVISCOPE trace file
3

217
Figure 3 shows how the augmented view is con-
structed over simulation time and as the trace file is read
by ARVISCOPE. Since all the statements of the trace file
in Figure 2 are executed simultaneously at simulation time
10, what the user really sees through the HMD is the last
snapshot in this figure.

Figure 3: Construction of the augmented scene over the
simulation time in ARVISCOPE

3 THE AUGMENTED VIEW SCENE GRAPH

3.1 Overview and Characteristics

The fact that in a dynamic animated scene, the animation
engine should be capable of manipulating (i.e. positioning,
0

Behzadan and Kamat
orienting, and scaling) each CAD object individually is the
main reason why a scene has to be assembled from discrete
components as opposed to be modeled as a single unit
(Behzadan and Kamat 2007a, Kamat and Martinez 2002).

The concept of scene graphs can be effectively used to
facilitate the creation of assembled scenes. A scene graph
is in fact a hierarchical data structure of objects often re-
ferred to as nodes that can be arranged and manipulated in-
dividually or as a group inside a scene (Kamat and Marti-
nez 2002). Each node encapsulates the semantics of what is
to be drawn. All the elements in the scene graph are con-
nected either directly or indirectly (i.e. through other
nodes) to the root node. Figure 4 shows an illustrative
scene graph structure in a sample VR-based scene.

Figure 4: Scene graph of a sample animated scene in VR

In this figure, the node “Jobsite” is the root node.
Scene sub-graphs are created and attached to the root node
to complete the scene structure by encapsulating the entire
job site. In Figure 4, scene sub-graphs “Dozer”, “Truck”,
and “Terrain” are children of the root node. Nodes “Dozer”
and “Truck” have also their own children nodes connected
to them at the lowest level of the hierarchy. These lowest
level nodes contain the geometrical description of the indi-
vidual components of their parent nodes. By definition.
“Dozer” and “Truck” nodes that group together a number
of geometrical nodes are called group nodes. The low level
nodes containing the geometrical description of the com-
ponents are called leaf nodes. A single CAD file can be as-
signed to each leaf node which contains the geometric
shape, properties, and dimensions of the node.

In a purely VR-based scene, the root node has a fixed
position and orientation in the scene and the CAD objects
connected to this node through the scene graph only
change position and orientation when they move or rotate.
However, in an AR-based scene, the root node itself moves
and/or rotates as a change occurs in the user’s position and
4

2171
orientation. While CAD objects may change their position
and orientation due to them being individually manipulated
in the scene based on the simulation logic, any change in
user’s position and orientation will affect the entire scene
graph and updates the augmented view immediately
(Behzadan and Kamat 2007b). Figure 5 shows an illustra-
tive scene graph structure in a sample AR-based scene.

Figure 5: Scene graph of a sample animated scene in AR

In this figure, a new video node is also a part of the
AR scene graph. Real visual data from the surrounding en-
vironment is captured and stored in this node and the AR
application uses this data to construct the real background
of the animation.

3.2 Creating the Scene Graph

There are two coordinate systems involved in creating
every scene graph: world (global) coordinate system, and
object (local) coordinate system. Since the position of the
root node in a VR-based scene graph is always fixed, ob-
jects can be placed at a relative distance from the root as-
suming the root coordinates to always be the origin of the
global coordinate system during the animation. However,
in an AR-based scene graph, the position and orientation of
the root node can potentially change over time due to any
user’s movement in the augmented scene. As a result, the
global position of the root (i.e. the user) has to be acquired

Behzadan and Kamat
in every frame using accurate tracking devices and the en-
tire scene has to be reconstructed based on the new posi-
tional and orientation values of the root node. (Behzadan
and Kamat 2007b). These values are mainly obtained from
the tracking devices connected to the mobile user. Exam-
ples are Global Positioning System (GPS) receivers, head
orientation trackers, and motion sensors. Authors have
previously developed a reusable framework for real time
communication with standard GPS devices and head orien-
tation trackers (Behzadan and Kamat 2007b, Kamat and
Behzadan 2006). The term “standard device”, in the con-
text of this paper, is defined as a tracking device which
complies with a certain data transmission protocol. For ex-
ample, the framework developed by the authors is capable
of establishing real time communication with every type of
GPS receivers as long as they parse out data streams (con-
taining longitude, latitude, and altitude) following the Na-
tional Marine Electronics Association (NMEA) standards
(Bennett 2006). Also, the developed framework can com-
municate with a wide range of head orientation tracking
devices that send binary data packets containing the 3D
head orientation angles (i.e. yaw, pitch, and roll angles).

Knowing the global coordinates of the user and those
of the CAD objects, a modified version of the Vincenty al-
gorithm is applied to calculate the relative distance be-
tween the user and each of the CAD objects in x, y, and z
directions (Behzadan and Kamat 2007b). The scene is cre-
ated by appropriately placing these geometrical objects
(each created and defined in its own local space) at appro-
priate positions and orientations in the world space relative
to the user. This is accomplished using transformation
nodes. Transformation nodes allow scene graph developers
to manipulate the location (translation), rotation, and scale
of their child nodes. They are basically group type nodes
that translate the local coordinates of their child nodes into
the coordinates of their parent nodes. Transformation
nodes are an implicit part of the scene graph. For example,
in Figures 4 and 5, each of the group nodes “Truck”,
“Dozer”, and “Terrain” has an implicit transformation node
in order to be able to be placed and oriented at desired po-
sitions relative to the node “SceneGroup”. Moreover, the
node “SceneGroup” in Figure 5, has an implicit transfor-
mation node so it can be positioned and oriented relative to
the mobile user at each instant of time.

3.3 Visualizing the Scene Graph

The main difference between a VR-based and an AR-based
scene graph from the visualization point of view is the
mechanism through which different views of the scene are
displayed to the viewer (i.e. the user). In VR, this is done
by changing viewpoints which are basically a set of hidden
cameras in the scene. The user can switch between cameras
in order to view the scene from different perspectives.
Cameras are not parts of the scene graph and hence do not
5

2172
have a nodal representation. They are external mechanisms
for visualizing the encapsulated data in the scene graph.

In contrast, in an AR-based scene graph the term
viewpoint has a completely different definition. The scene
is viewed by the mobile user as he or she walks in the site.
As such, there is only one moving viewpoint attached to
the user’s eye. This means the only viewpoint in an AR
animation which involves a mobile user is a 6 DOF view-
point attached to the eye of the moving user. The user can
change her global position (i.e. longitude, latitude, and alti-
tude) while she is rotating her head in a 3D global space
(i.e. yaw, pitch, and roll angles) (Kamat and Behzadan
2006). As shown in Figure 5, this single viewpoint has a
nodal representation and in fact, serves as the root of the
scene graph.

3.4 Animating the Scene Graph

Animating a scene graph is achieved by manipulating the
values of the transformation nodes. Position, orientation,
and scale of each component in the scene can be manipu-
lated relative to its parental node. Updating these values at
each frame leads to a dynamically changing scene. Since
this is done continuously over time, a smooth animation is
displayed to and viewed by the user.

To illustrate this fact, consider the dozer in the scene
graph of Figure 5. As described earlier, the relative posi-
tion of the dozer can be changed due to two main reasons:
1) the dozer moves in the scene from one point to another
in a certain duration of time following simulation logic, or
2) the user’s global position changes and a new GPS data
stream is captured by the application. Figure 6 shows the
situation in which the user is fixed in the scene and a CAD
object (a dozer in this figure) changes its position. In fact,
this situation simplifies the AR-based scene graph and
makes it very similar to the VR-based scene graph in
which the root node is fixed in the global space. As the
dozer moves along the x axis, its global coordinates
change. Knowing the global position of the user in terms of
longitude, latitude, and altitude, the relative distance be-
tween the user and the dozer is calculated at each frame.
The values of the dozer transformation node is updated
based on the calculated relative distance and the position of
the dozer is modified accordingly inside the user’s viewing
frustum. As a result, the user views a moving dozer inside
the augmented viewing frustum.

In another situation, the CAD object is fixed and the
user changes position over time. This has been shown in
Figure 7. As the user moves to the left, global coordinates
are continuously acquired from the GPS device. Knowing
the global coordinates of the CAD object (a dozer in this
figure), the relative distance between the user and the dozer
is calculated at each frame. Again, the values of the dozer
transformation node are updated based on the calculated
relative distance and the position of the dozer is modified

Behzadan and Kamat
accordingly inside the user’s viewing frustum. As a result,
the user movement to the left is interpreted as a translation
of the dozer to the right. This is essentially equivalent to
the case in which the user is fixed and the dozer moves to
the right inside the viewing frustum.

Figure 6: Animating a moving CAD object in an AR-based
scene graph while the user is fixed

Figure 7: Animating a fixed CAD object in an AR-based
scene graph while the user is moving

The same procedure is applicable to the case in which
the head orientation of the user changes. Based on the new
values obtained from the orientation tracker device, the
orientation matrix of the node “SceneGroup” is continu-
ously updated and as a result, the entire scene rotates in re-
sponse to the user’s head orientation change.
6

2173
It is obvious that the values of a transformation node
can be manipulated as a result of simultaneous user and
CAD object movements. In this case, each movement is
handled separately and the resulting values are combined
to produce the final animated scene graph. In order to
achieve a realistic animation, every CAD object has to
move smoothly between two points rather than jump from
one point to another. This is achieved by updating the
viewing frame continuously at high refresh rates.

4 CONSTRUCTION OF A SAMPLE
AUGMENTED SCENE GRAPH

Considering the trace file represented in Figure 2, the
construction of an augmented scene graph which serves as
the basis for an AR-based animation starts with reading the
statements in the trace file. Sine the trace file of Figure 2
starts with a SIMTIME statement with a time value of 10,
manipulation of virtual objects over the real background
starts after 10 simulation time units are passed. At this
point, a route ConcDelv is defined by specifying the
start, end, and an intermediate point in terms of longitude,
latitude, and altitude values (i.e. global coordinate system).
Since a route does not have a nodal representation it is not
a part of the scene graph. In general, routes are only used
to compute translation fields of the transformational nodes
that place objects along the route on the scene graph.

The scene graph starts to take real shape as
ARVISCOPE reads the first set of LOADMODEL, OBJECT,
and POSITION statements in the trace file. The
LOADMODEL statement defines a leaf node, Truck, which
contains a geometry from the CAD file ConcTruck.ac
in AC format. OBJECT statement instantiates a transfor-
mation node RedTruck and adds a child object conform-
ing to the geometry defined by class Truck to it. The
POSITION statement places the created object in the
scene by adding the RedTruck transformation node to a
parent node called “SceneGroup”. By default, the object is
placed at the beginning of the route the coordinates of
which has previously defined in the trace file. The critical
point in placing CAD objects inside the user’s viewing
frustum is that they have to be placed relative to where the
user is standing in the global space. As a result, the global
coordinates of each CAD object have to be converted to
relative displacement values between that object and the
user in terms of x, y, and z. This is continuously done
in ARVISCOPE using the modified Vincenty algorithm.

Figure 8 shows the augmented scene graph after the
first set of LOADMODEL, OBJECT, and POSITION state-
ments are read. The subsequent three statements create and
place a concrete form in a fixed position. Figure 9 shows
the augmented scene graph after the second set of
LOADMODEL, OBJECT, and POSITION statements are
read.

Behzadan and Kamat
Figure 8: The AR scene graph after the concrete truck is
placed on the path

Figure 9: The AR scene graph after the concrete form is
placed in the scene
7

217
Finally, the last three statements create and place a
concrete bucket in a fixed position. Figure 10 shows the
augmented scene graph after the last set of LOADMODEL,
OBJECT, and POSITION statements are read.

Figure 10: The AR scene graph after the concrete bucket is
placed in the scene

It is worth mentioning that the root node of the scene
graph is the mobile user which is created immediately be-
fore the animation starts. All CAD objects in the scene are
placed and any future manipulation on their transformation
values are done relative to the “SceneGroup” node which
itself is a grandchild of the root node. The global position
of the user is first obtained when the data communication
with the GPS receiver is established as the application
starts. The initial head orientation values of the user are
also obtained from the orientation tracker as soon as it is
initialized at the beginning of the application.

ARVISCOPE handles the scene graph in a completely
scalable manner. All CAD objects in the scene that use the
same geometrical representation can be conveniently cre-
ated by making instances of a single CAD file associated to
a class of objects. As a result, the CAD file needs to be
loaded only once by the application which saves a lot of
memory and running time. Hence, even very complex
scenes such as an entire steel frame structure consisting of
hundreds of beams and columns can be depicted by load-
ing only a few CAD models of beams and columns and
placing them repeatedly at appropriate locations using mul-
tiple transformation nodes. This is due to the capability of
4

Behzadan and Kamat
the transformation nodes to scale and rotate objects of the
same geometry.

5 TIME TRACKING IN ARVISCOPE

ARVISCOPE measures time in terms of animated
time units. One animated time unit can equal whatever du-
ration is most suitable for the animation (e.g. a second, a
minute, or a day) as long as it matches the time unit in the
simulation model that is driving the animation. The pri-
mary time-tracking ARVISCOPE statement is SIMTIME.
The syntax of the SIMTIME command is as follows:

SIMTIME timevalue;

The SIMTIME statement waits for the animation clock
to reach the new value specified. ARVISCOPE then exe-
cutes the statements that follow it until next SIMTIME
statement is reached. After verifying that the timevalue
is greater than or equal to the current animated time,
ARVISCOPE suspends the reading of any more lines from
the trace file until the animation time specified by the
SIMTIME statement has been reached or exceeded. When
that happens, ARVISCOPE reads and processes the next
line(s) in the trace file until another SIMTIME statement is
encountered. This procedure repeats until the end of the
trace file is reached. Figure 11 shows how a sample trace
file is being read and processed by ARVISCOPE.

Figure 11: Processing of statements in a trace file contain-
ing various SIMTIME statements
8

217
By default, the augmented animation runs at a 1:1 time
ratio in ARVISCOPE. This essentially means that one real
clock second corresponds to one simulation time unit.
Thus, if a truck is set to move along a path for 2 minutes,
its moving duration has to set to 120 units inside the ani-
mation trace file. This is mainly due to the fact that the
main objective of this application is to have the user inter-
act with the scene by walking inside the augmented anima-
tion. Hence, a too low or too high animation speed keeps
the user from being involved at normal rate of walking or
head rotation. The exception, however, is the case in which
the user is only an observer of the animation with no real
interaction with the scene. In this case, the animation speed
can be set to be higher or lower than the normal rate to
animate very slow or very fast operations respectively.

6 CONCLUSION

The authors introduced an AR-based application called
ARVISCOPE as a scalable visualization tool which is ca-
pable of creating smooth animations of simulated construc-
tion models in AR. ARVISCOPE takes advantage of four
critical components to achieve this capability: 1) the results
of a DES model which can be used to automatically gener-
ate the animation trace file, 2) a scene graph structure of
CAD objects in order to provide required functionality to
manipulate them inside the user’s viewing frustum in a hi-
erarchical manner, 3) robust and precise position and ori-
entation tracking methods to obtain real time 6 DOF of the
user and appropriately register CAD objects inside the
augmented dynamic scene, and 4) an efficient time keep-
ing technique to keep track of the animation and simulation
time passage.

The main challenge in creating a smooth animation of
DES models is the fact that DES systems can communicate
with other processes only at discrete simulated time points
which are typically start and finish points of activities.
Transforming such a discrete system to a continuous and
smooth set of animated scenes when combined with the re-
quirements of AR-based visualization introduces unique
set of challenges. These are including but not limited to
continuous mobile user tracking using GPS and head orien-
tation devices, accurate registration of CAD objects inside
the user’s viewing frustum, and real time acquisition of site
data (e.g. site terrain, location of other equipment) to up-
date the contents of the AR scene.

Using the concept of scene graphs inside
ARVISCOPE allows the effective creation, organization,
manipulation, and maintenance of the graphical data of
CAD objects inside an AR scene which is the primary re-
quirement to depict a dynamic animation. A sample anima-
tion was described and illustrated in detail to display the
capabilities of the application and the mechanism it uses to
handle a dynamically changing AR animated scene.
5

Behzadan and Kamat
ACKNOWLEDGMENTS

The presented work has been supported by the National
Science Foundation (NSF) through grant CMS-0448762.
The authors gratefully recognize this support from the
NSF. Any opinions, findings, conclusions, and recommen-
dations expressed by the authors in this paper do not neces-
sarily reflect the views of the NSF.

REFERENCES

Behzadan, A. H., and V. R. Kamat. 2007a. General Pur-
pose Modular Hardware and Software Framework for
Mobile Outdoor Augmented Reality Applications in
Engineering, Advanced Engineering Informatics, New
York, NY: Elsevier Science. (In Review)

Behzadan, A. H., and V. R. Kamat. 2007b. Georeferenced
Registration of Construction Graphics in Mobile out-
door Augmented Reality, ASCE Journal of Computing
in Civil Engineering, Reston, VA. (In Press)

Behzadan, A. H., and V. R. Kamat. 2006. Animation of
Construction Activities in Outdoor Augmented Real-
ity, In Proceedings of the 11th International Confer-
ence on Computing and Decision Making in Civil and
Building Engineering (ICCCBE-XI), Montreal, QB,
Canada.

Bennett, P. (2006). National Marine Electronics Associa-
tion - FAQ. Edge of Space Science. Available via
<http://www.eoss.org/pubs/nmeafaq.ht
m> [accessed December 5, 2006].

Dunston P., X. Wang, M. Billinghusrt, and B. Hampson.
2002. Mixed Reality benefits for design perception. In
Proceedings of 19th International Symposium on
Automation and Robotics Construction (ISARC
2002),191-196, Gaithersburg, MD: NIST.

Hammad A., J. H. Garrett, and H. Karimi. 2004. Location-
based computing for infrastructure field tasks.
Telegeoinformatics: Location-based computing and
services, 287-314. CRC Press.

Kamat, V. R. 2003. VITASCOPE: Extensible and Scalable
3D Visualization of Simulated Construction Opera-
tions. PhD dissertation, Department of Civil and Envi-
ronmental Eng., Virginia Tech, Blacksburg, VA.

Kamat, V. R., and A. H. Behzadan. 2006. GPS and 3DOF
Tracking for Georeferenced Registeration of Construc-
tion Graphics in Outdoor Augmented Reality, In Pro-
ceedings of the 13th EG-ICE Workshop of Intelligent
Computing in Engineering and Architecture, Ascona,
Switzerland.

Kamat, V. R., and J. C. Martinez. 2002. Scene Graph and
frame update algorithms for smooth and scalable 3D
visualization of simulated construction operations,
9

2176
Journal of Computer-Aided Civil and Infrastructure
Engineering 17(4): 228-245, Malden, VA:

Looser J., R. Grasset, H. Seichter, and P. Lamb (2006).
OSGAT: ARToolkit for OpenSceneGraph. Available
at < http://www.artoolworks.com/ com-
munity/osgart/> [accessed April 10, 2007].

Roberts G. W., A. Evans, A. Dodson, B. Denby, S. Coo-
per, and R. Hollands. 2002. The use of Augmented
Reality, GPS, and INS for subsurface data visualiza-
tion. International Congress, Washington, D.C.

Thomas B., W. Piekarski, and B. Gunther. 1998. Using
Augmented Reality to visualize architectural designs
in an outdoor environment. DCNet'98 Online Confer-
ence, Available via <http://www.arch.usyd.
edu.au/kcdc/journal/vol2/dcnet/sub8>
[accessed: March 10, 2003].

Webster A., S. Feiner, B. MacIntyre, W. Massie, and T.
Krueger. 1996. Augmented reality in architectural
construction, inspection and renovation. In Proceed-
ings of 3rd Congress on Computing in Civil Engineer-
ing, 913-919. Reston, VA: ASCE.

AUTHOR BIOGRAPHIES

AMIR H. BEHZADAN is a Ph.D. Candidate in the De-
partment of Civil and Environmental Engineering at the
University of Michigan. He got his Master’s degree in
Construction Engineering and Management from the same
university in 2005. He also holds a BE degree in Civil En-
gineering from Sharif University of Technology (Tehran,
Iran). His current research interests are Augmented Reality
visualization of construction operations, discrete-event si-
mulation and Information Technology. He is an associate
member of ASCE Construction Institute and a student
member of CMAA and PMI. His e-mail address is
<abehzada@umich.edu> and his web address is
<http://www-personal.umich.edu/~ abehzada>.

VINEET R. KAMAT is an Assistant Professor in the De-
partment of Civil and Environmental Engineering at the
University of Michigan. He received an MS and Ph.D. in
Civil Engineering at Virginia Tech in 2000 and 2003, re-
spectively; and a B.E. in Civil Engineering from Goa Uni-
versity (Goa, India) in 1998. His primary research interests
include virtual and augmented reality, simulation, informa-
tion technology, and their applications in Civil Engineer-
ing. He designed and implemented the VITASCOPE visu-
alization system with J. Martinez as part of his doctoral
research and is currently supervising the design and im-
plementation of the ARVISCOPE augmented reality sys-
tem as part of A. Behzadan's doctoral research. His email
and web addresses are <vkamat@umich.edu> and
<http://pathfinder.engin. umich.edu>

