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ABSTRACT 

Visualization is a powerful method for verifying, validat-
ing, and communicating the results of a simulated model. 
Lack of visual understanding about a simulated model is 
one of the major reasons inhibiting contractors and engi-
neers from using results obtained from discrete-event 
simulation to plan and design  their construction processes 
and commit real resources on the job site. The fast emerg-
ing information technology makes the use of modern visu-
alization applications more appealing to engineers and sci-
entists in different domains. This paper presents the design 
and implementation of an Augmented Reality (AR) visu-
alization application together with an authoring language 
that allows the creation of outdoor AR animated scenes of 
simulated operations while featuring complete user in-
volvement and interaction. The application is based on the 
concept of scene graphs. It also uses a unique general pur-
pose data transmission method to communicate with hard-
ware components of the system. 

1 INTRODUCTION

Discrete-event simulation (DES) has been a commonly 
used method to model operations in different domains in-
cluding construction. The fact that DES tools often provide 
modelers with a large amount of numerical and statistical 
data without any graphical representation often leads to lit-
tle confidence in the results of the simulated model (Kamat 
and Martinez 2002). This usually makes the decision mak-
ers and engineers manually verify the results using tradi-
tional methods of evaluating the productivity and outcome 
of operations. The time spent on manually verifying the 
model, analyzing the numerical data, and fixing any possi-
ble errors can be effectively saved by using modern visu-
alization tools to verify and validate the results of the simu-
lated model. 

The idea of using Augmented Reality (AR) visualiza-
tion to create smooth animations of simulated operations is 
relatively new in the field of construction. Most traditional 
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construction visualization tools use the concept of Virtual 
Reality (VR) in which the entire animated scene is com-
puter generated and there is no interaction of any real ob-
ject involved in the animation (Kamat 2003). In contrast, 
scenes from the real world are used as the background for 
an AR-based animation while computer generated CAD 
objects are superimposed on top to create an augmented 
(i.e. mixed) view of virtual and real objects (Behzadan and 
Kamat 2006). 

A number of researchers have recently used the con-
cept of AR in their work. Webster et al. (1996) presented a 
system that shows locations of columns behind finished 
walls, and steel rebars inside columns. Roberts et al. (2002) 
used AR to overlay locations of subsurface electrical, tele-
phone, gas, and water lines onto real world views. Both 
applications demonstrated AR’s potential in helping main-
tenance workers avoid buried infrastructure and structural 
elements as they make changes to buildings and outdoor 
environments. Webster et al. (1996) also presented an AR 
system to guide workers through assembly of a space 
frame. Hammad et al. (2004) augmented contextual infor-
mation on real views of bridges to help inspectors conduct 
inspections more effectively. Thomas et al. (1998) ex-
plored AR to visualize designs outdoors. Dunston et al. 
(2002) have also demonstrated the value of mixed reality 
AR-CAD in collaborative design. To the authors’ best 
knowledge, the use of AR to animate simulated construc-
tion models at the operations level of detail and in outdoor 
environments has not been investigated before. 

Creating AR animations from the results of a simu-
lated model can lead to significant time savings by reduc-
ing the amount of work required to create CAD models of 
each and every element in the scene. In addition, it pro-
duces a more realistic display of the operations by present-
ing a mixed view of CAD objects performing a set of 
simulated tasks while overlaid on real scenes of the sur-
rounding environment. 

While AR provides simulation modelers with a power-
ful platform to perform simulation-based animations, creat-
ing realistic AR scenes introduces a unique set of chal-
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lenges. Continuous mobile user tracking, accurate registra-
tion of CAD objects, and real time acquisition of site data 
(e.g. site terrain, location of other equipments) are among 
the most important challenges an AR system developer has 
to address during the course of creating an animated scene 
(Kamat and Behzadan 2006). Finding appropriate solutions 
to each of these problems is essential before the animation 
can be relied upon as a tool to validate and verify the simu-
lated model, thereby allowing the involved parties to be 
convinced that the model indeed reflects reality. Having 
achieved this, the model can be described as a credible rep-
resentation of the real operations and the results can be 
conveniently used in real life decision making. 

2 SIMULATION-BASED ANIMATION IN AR 

The authors have been working on design and implementa-
tion of a general purpose visualization system that uses the 
concepts of scene graphs together with the capabilities of  
modern tracking technology to create and display aug-
mented views of simulated operations to a mobile user in 
real time. The result of this ongoing research is presented 
as an AR visualization application called ARVISCOPE 
(acronym for the Augmented Reality VIsualization of 
Simulated Construction OPErations). 

2.1 System Description 

ARVISCOPE creates and displays augmented views of a 
simulated system with the passage of time. It is accompa-
nied by an authoring language which allows the animation 
developer to create an ASCII text file referred to as the 
“animation trace file” in this paper. Although the trace file 
is meant to be automatically generated by simulation soft-
ware to avoid dealing with scene complexities and input 
errors the user himself can also manually create one using 
common text editor tools. The trace file is read through by 
the application and the corresponding animation is created 
in real time. ARVISCOPE is capable of importing and us-
ing a wide variety of CAD file formats.  

The application has an Object-Oriented Design (OOD) 
which allows for maximum flexibility in terms of reusabil-
ity of the methods in other AR-based applications. Each 
hardware component (as described in subsection 2.2) is ac-
companied by a software module (i.e. class) which encap-
sulates different functionalities and methods for data 
transmission and extraction. Since the design is modular, 
any hardware/software upgrade or replacement does not 
affect the integrity of the system. 

Also, the methods developed in this work can be eas-
ily customized and reused by any potential AR application 
developer as long as they use the same set of hardware 
components (Behzadan and Kamat 2007a). 
2
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2.2 Hardware Components 

Unlike traditional VR-based animation tools in which 
the final output is displayed on a computer monitor, 
ARVISCOPE takes advantage of a mobile backpack sys-
tem which enables a user to walk in the site while watching 
a continually updating augmented animated scene through 
the Head Mounted Display (HMD) installed in front of the 
user’s eyes. The video of the surrounding environment is 
continuously captured and sent to the application to be lat-
er shown as the real background for the scene. Figure 1 
shows the profile of a mobile user in ARVISCOPE. 

Figure 1: Overview of the hardware components of 
ARVISCOPE 

This hardware configuration also incorporates two im-
portant tracking devices namely a GPS receiver and a head 
orientation tracker. These are the two most important 
pieces of hardware since they capture user’s 6 Degree-of-
Freedom (DOF) data in real time and send them to the 
animation engine to be used for precise registration of 
CAD objects inside the user’s viewing frustum in real time. 
The computing power of the system is provided by a laptop 
which is placed and secured inside the backpack. A small 
touch pad and wrist keyboard have also been provided for 
any potential user input during the animation while there is 
no physical access to the laptop (Behzadan and Kamat 
2007a). 

2.3 Creating AR Animated Scenes 

ARVISCOPE visualization system has been designed us-
ing OpenSceneGraph which is a C++ open source toolkit. 
The video capturing capabilities have been adapted from 
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OSGART, a separate open source library (Looser et al. 
2006). ARVISCOPE authoring language is a high level 
language that allows an external software process (e.g. a 
running DES model) to author a dynamic animation trace 
file. Table 1 lists some basic language statements of 
ARVISCOPE together with a brief explanation of their 
functionality.  

Table 1: Selected ARVISCOPE animation language state-
ments and their functionality 

Statement Functionality 

SIMTIME Indicates the simulation time for a group 
of consequent statements 

LOADMODEL Loads and assigns a CAD file to a class 
of objects 

OBJECT Creates an instance of a certain class 

ROUTE
Defines a route made by a set of points in 
global space (i.e. longitude, latitude, and 
altitude values) 

POSITION Places an object at a certain global point 
or on a route 

ORIENT Changes the local orientation of an object 

TRAVEL Moves an object on a route in a certain 
duration of time 

Figure 2 presents a sample ARVISCOPE trace file 
which results in a simple animated scene consisting of 3 
CAD objects superimposed on a real background. As the 
trace file is read through, a concrete truck, a concrete form, 
and a concrete bucket are eventually placed on the scene.  

SIMTIME 10; 

ROUTE ConcDelv
(-83.42779,42.54330,285.00)
(-83.42790,42.54315,284.00)
(-83.42820,42.54290,282.00);

LOADMODEL Truck ConcTruck.ac; 
OBJECT RedTruck Truck; 
POSITION RedTruck ON ConcDelv; 

LOADMODEL Form ConcForm.ac; 
OBJECT WoodenForm Form; 
POSITION WoodenForm AT
(-83.42820,42.54285,282.00);

LOADMODEL Bucket ConcBucket.ac; 
OBJECT OrangeBucket Bucket; 
POSITION OrangeBucket AT
(-83.42820,42.54287,282.00);

Figure 2: Sample ARVISCOPE trace file  
3
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Figure 3 shows how the augmented view is con-
structed over simulation time and as the trace file is read 
by ARVISCOPE. Since all the statements of the trace file 
in Figure 2 are executed simultaneously at simulation time 
10, what the user really sees through the HMD is the last 
snapshot in this figure.  

Figure 3: Construction of the augmented scene over the 
simulation time in ARVISCOPE 

3 THE AUGMENTED VIEW SCENE GRAPH 

3.1 Overview and Characteristics 

The fact that in a dynamic animated scene, the animation 
engine should be capable of manipulating (i.e. positioning, 
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orienting, and scaling) each CAD object individually is the 
main reason why a scene has to be assembled from discrete 
components as opposed to be modeled as a single unit  
(Behzadan and Kamat 2007a, Kamat and Martinez 2002). 

The concept of scene graphs can be effectively used to 
facilitate the creation of assembled scenes. A scene graph 
is in fact a hierarchical data structure of objects often re-
ferred to as nodes that can be arranged and manipulated in-
dividually or as a group inside a scene (Kamat and Marti-
nez 2002). Each node encapsulates the semantics of what is 
to be drawn. All the elements in the scene graph are con-
nected either directly or indirectly (i.e. through other 
nodes) to the root node. Figure 4 shows an illustrative 
scene graph structure in a sample VR-based scene.  

Figure 4: Scene graph of a sample animated scene in VR 

In this figure, the node “Jobsite” is the root node. 
Scene sub-graphs are created and attached to the root node 
to complete the scene structure by encapsulating the entire 
job site. In Figure 4, scene sub-graphs “Dozer”, “Truck”, 
and “Terrain” are children of the root node. Nodes “Dozer” 
and “Truck” have also their own children nodes connected 
to them at the lowest level of the hierarchy. These lowest 
level nodes contain the geometrical description of the indi-
vidual components of their parent nodes. By definition. 
“Dozer” and “Truck” nodes that group together a number 
of geometrical nodes are called group nodes. The low level 
nodes containing the geometrical description of the com-
ponents are called leaf nodes. A single CAD file can be as-
signed to each leaf node which contains the geometric 
shape, properties, and dimensions of the node. 

In a purely VR-based scene, the root node has a fixed 
position and orientation in the scene and the CAD objects 
connected to this node through the scene graph only 
change position and orientation when they move or rotate. 
However, in an AR-based scene, the root node itself moves 
and/or rotates as a change occurs in the user’s position and 
4
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orientation. While CAD objects may change their position 
and orientation due to them being individually manipulated 
in the scene based on the simulation logic, any change in 
user’s position and orientation will affect the entire scene 
graph and updates the augmented view immediately 
(Behzadan and Kamat 2007b). Figure 5 shows an illustra-
tive scene graph structure in a sample AR-based scene. 

Figure 5: Scene graph of a sample animated scene in AR 

In this figure, a new video node is also a part of the 
AR scene graph. Real visual data from the surrounding en-
vironment is captured and stored in this node and the AR 
application uses this data to construct the real background 
of the animation. 

3.2 Creating the Scene Graph 

There are two coordinate systems involved in creating 
every scene graph: world (global) coordinate system, and 
object (local) coordinate system. Since the position of the 
root node in a VR-based scene graph is always fixed, ob-
jects can be placed at a relative distance from the root as-
suming the root coordinates to always be the origin of the 
global coordinate system during the animation. However, 
in an AR-based scene graph, the position and orientation of 
the root node can potentially change over time due to any 
user’s movement in the augmented scene. As a result, the 
global position of the root (i.e. the user) has to be acquired 
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in every frame using accurate tracking devices and the en-
tire scene has to be reconstructed based on the new posi-
tional and orientation values of the root node. (Behzadan 
and Kamat 2007b). These values are mainly obtained from 
the tracking devices connected to the mobile user. Exam-
ples are Global Positioning System (GPS) receivers, head 
orientation trackers, and motion sensors. Authors have 
previously developed a reusable framework for real time 
communication with standard GPS devices and head orien-
tation trackers (Behzadan and Kamat 2007b, Kamat and 
Behzadan 2006). The term “standard device”, in the con-
text of this paper, is defined as a tracking device which 
complies with a certain data transmission protocol. For ex-
ample, the framework developed by the authors is capable 
of establishing real time communication with every type of 
GPS receivers as long as they parse out data streams (con-
taining longitude, latitude, and altitude) following the Na-
tional Marine Electronics Association (NMEA) standards 
(Bennett 2006). Also, the developed framework can com-
municate with a wide range of head orientation tracking 
devices that send binary data packets containing the 3D 
head orientation angles (i.e. yaw, pitch, and roll angles). 

Knowing the global coordinates of the user and those 
of the CAD objects, a modified version of the Vincenty al-
gorithm is applied to calculate the relative distance be-
tween the user and each of the CAD objects in x, y, and z 
directions (Behzadan and Kamat 2007b). The scene is cre-
ated by appropriately placing these geometrical objects 
(each created and defined in its own local space) at appro-
priate positions and orientations in the world space relative 
to the user. This is accomplished using transformation 
nodes. Transformation nodes allow scene graph developers 
to manipulate the location (translation), rotation, and scale 
of their child nodes. They are basically group type nodes 
that translate the local coordinates of their child nodes into 
the coordinates of their parent nodes. Transformation 
nodes are an implicit part of the scene graph. For example, 
in Figures 4 and 5, each of the group nodes “Truck”, 
“Dozer”, and “Terrain” has an implicit transformation node 
in order to be able to be placed and oriented at desired po-
sitions relative to the node “SceneGroup”. Moreover, the 
node “SceneGroup” in Figure 5, has an implicit transfor-
mation node so it can be positioned and oriented relative to 
the mobile user at each instant of time.  

3.3 Visualizing the Scene Graph 

The main difference between a VR-based and an AR-based 
scene graph from the visualization point of view is the 
mechanism through which different views of the scene are 
displayed to the viewer (i.e. the user). In VR, this is done 
by changing viewpoints which are basically a set of hidden 
cameras in the scene. The user can switch between cameras 
in order to view the scene from different perspectives. 
Cameras are not parts of the scene graph and hence do not 
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have a nodal representation. They are external mechanisms 
for visualizing the encapsulated data in the scene graph. 

In contrast, in an AR-based scene graph the term 
viewpoint has a completely different definition. The scene 
is viewed by the mobile user as he or she walks in the site. 
As such, there is only one moving viewpoint attached to 
the user’s eye. This means the only viewpoint in an AR 
animation which involves a mobile user is a 6 DOF view-
point attached to the eye of the moving user. The user can 
change her global position (i.e. longitude, latitude, and alti-
tude) while she is rotating her head in a 3D global space 
(i.e. yaw, pitch, and roll angles) (Kamat and Behzadan 
2006). As shown in Figure 5, this single viewpoint has a 
nodal representation and in fact, serves as the root of the 
scene graph. 

3.4 Animating the Scene Graph 

Animating a scene graph is achieved by manipulating the 
values of the transformation nodes. Position, orientation, 
and scale of each component in the scene can be manipu-
lated relative to its parental node. Updating these values at 
each frame leads to a dynamically changing scene. Since 
this is done continuously over time, a smooth animation is 
displayed to and viewed by the user. 

To illustrate this fact, consider the dozer in the scene 
graph of Figure 5. As described earlier, the relative posi-
tion of the dozer can be changed due to two main reasons: 
1) the dozer moves in the scene from one point to another 
in a certain duration of time following simulation logic, or 
2) the user’s global position changes and a new GPS data 
stream is captured by the application. Figure 6 shows the 
situation in which the user is fixed in the scene and a CAD 
object (a dozer in this figure) changes its position. In fact, 
this situation simplifies the AR-based scene graph and 
makes it very similar to the VR-based scene graph in 
which the root node is fixed in the global space. As the 
dozer moves along the x axis, its global coordinates 
change. Knowing the global position of the user in terms of 
longitude, latitude, and altitude, the relative distance be-
tween the user and the dozer is calculated at each frame. 
The values of the dozer transformation node is updated 
based on the calculated relative distance and the position of 
the dozer is modified accordingly inside the user’s viewing 
frustum. As a result, the user views a moving dozer inside 
the augmented viewing frustum. 

In another situation, the CAD object is fixed and the 
user changes position over time. This has been shown in 
Figure 7. As the user moves to the left, global coordinates 
are continuously acquired from the GPS device. Knowing 
the global coordinates of the CAD object (a dozer in this 
figure), the relative distance between the user and the dozer 
is calculated at each frame. Again, the values of the dozer 
transformation node are updated based on the calculated 
relative distance and the position of the dozer is modified 
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accordingly inside the user’s viewing frustum. As a result, 
the user movement to the left is interpreted as a translation 
of the dozer to the right. This is essentially equivalent to 
the case in which the user is fixed and the dozer moves to 
the right inside the viewing frustum. 

Figure 6: Animating a moving CAD object in an AR-based 
scene graph while the user is fixed 

Figure 7: Animating a fixed CAD object in an AR-based 
scene graph while the user is moving 

The same procedure is applicable to the case in which 
the head orientation of the user changes. Based on the new 
values obtained from the orientation tracker device, the 
orientation matrix of the node “SceneGroup” is continu-
ously updated and as a result, the entire scene rotates in re-
sponse to the user’s head orientation change. 
6
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It is obvious that the values of a transformation node 
can be manipulated as a result of simultaneous user and 
CAD object movements. In this case, each movement is 
handled separately and the resulting values are combined 
to produce the final animated scene graph. In order to 
achieve a realistic animation, every CAD object has to 
move smoothly between two points rather than jump from 
one point to another. This is achieved by updating the 
viewing frame continuously at high refresh rates. 

4 CONSTRUCTION OF A SAMPLE 
AUGMENTED SCENE GRAPH 

Considering the trace file represented in Figure 2, the 
construction of an augmented scene graph which serves as 
the basis for an AR-based animation starts with reading the 
statements in the trace file. Sine the trace file of Figure 2 
starts with a SIMTIME statement with a time value of 10, 
manipulation of virtual objects over the real background 
starts after 10 simulation time units are passed. At this 
point, a route ConcDelv is defined by specifying the 
start, end, and an intermediate point in terms of longitude, 
latitude, and altitude values (i.e. global coordinate system). 
Since a route does not have a nodal representation it is not 
a part of the scene graph. In general, routes are only used 
to compute translation fields of the transformational nodes 
that place objects along the route on the scene graph. 

The scene graph starts to take real shape as 
ARVISCOPE reads the first set of LOADMODEL, OBJECT,
and POSITION statements in the trace file. The 
LOADMODEL statement defines a leaf node, Truck, which 
contains a geometry from the CAD file ConcTruck.ac
in AC format. OBJECT statement instantiates a transfor-
mation node RedTruck and adds a child object conform-
ing to the geometry defined by class Truck to it. The 
POSITION statement places the created object in the 
scene by adding  the RedTruck transformation node to a 
parent node called “SceneGroup”. By default, the object is 
placed at the beginning of the route the coordinates of 
which has previously defined in the trace file. The critical 
point in placing CAD objects inside the user’s viewing 
frustum is that they have to be placed relative to where the 
user is standing in the global space. As a result, the global 
coordinates of each CAD object have to be converted to 
relative displacement values between that object and the 
user in terms of x, y, and z. This is continuously done 
in ARVISCOPE using the modified Vincenty algorithm. 

Figure 8 shows the augmented scene graph after the 
first set of LOADMODEL, OBJECT, and POSITION state-
ments are read. The subsequent three statements create and 
place a concrete form in a fixed position. Figure 9 shows 
the augmented scene graph after the second set of 
LOADMODEL, OBJECT, and POSITION statements are 
read.



Behzadan and Kamat 
Figure 8: The AR scene graph after the concrete truck is 
placed on the path 

Figure 9: The AR scene graph after the concrete form is 
placed in the scene 
7
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Finally, the last three statements create and place a 
concrete bucket in a fixed position. Figure 10 shows the 
augmented scene graph after the last set of LOADMODEL,
OBJECT, and POSITION statements are read. 

Figure 10: The AR scene graph after the concrete bucket is 
placed in the scene 

It is worth mentioning that the root node of the scene 
graph is the mobile user which is created immediately be-
fore the animation starts. All CAD objects in the scene are 
placed and any future manipulation on their transformation 
values are done relative to the “SceneGroup” node which 
itself is a grandchild of the root node. The global position 
of the user is first obtained when the data communication 
with the GPS receiver is established as the application 
starts. The initial head orientation values of the user are 
also obtained from the orientation tracker as soon as it is 
initialized at the beginning of the application. 

ARVISCOPE handles the scene graph in a completely 
scalable manner. All CAD objects in the scene that use the 
same geometrical representation can be conveniently cre-
ated by making instances of a single CAD file associated to 
a class of objects. As a result, the CAD file needs to be 
loaded only once by the application which saves a lot of 
memory and running time. Hence, even very complex 
scenes such as an entire steel frame structure consisting of 
hundreds of beams and columns can be depicted by load-
ing only a few CAD models of beams and columns and 
placing them repeatedly at appropriate locations using mul-
tiple transformation nodes. This is due to the capability of 
4
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the transformation nodes to scale and rotate objects of the 
same geometry. 

5 TIME TRACKING IN ARVISCOPE  

ARVISCOPE measures time in terms of animated 
time units. One animated time unit can equal whatever du-
ration is most suitable for the animation (e.g. a second, a 
minute, or a day) as long as it matches the time unit in the 
simulation model that is driving the animation. The pri-
mary time-tracking ARVISCOPE statement is SIMTIME.
The syntax of the SIMTIME command is as follows: 

SIMTIME timevalue;

The SIMTIME statement waits for the animation clock 
to reach the new value specified. ARVISCOPE then exe-
cutes the statements that follow it until next SIMTIME
statement is reached. After verifying that the timevalue
is greater than or equal to the current animated time, 
ARVISCOPE suspends the reading of any more lines from 
the trace file until the animation time specified by the 
SIMTIME statement has been reached or exceeded. When 
that happens, ARVISCOPE reads and processes the next 
line(s) in the trace file until another SIMTIME statement is 
encountered. This procedure repeats until the end of the 
trace file is reached. Figure 11 shows how a sample trace 
file is being read and processed by ARVISCOPE.

Figure 11: Processing of statements in a trace file contain-
ing various SIMTIME statements 
8
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By default, the augmented animation runs at a 1:1 time 
ratio in ARVISCOPE. This essentially means that one real 
clock second corresponds to one simulation time unit. 
Thus, if a truck is set to move along a path for 2 minutes, 
its moving duration has to set to 120 units inside the ani-
mation trace file. This is mainly due to the fact that the 
main objective of this application is to have the user inter-
act with the scene by walking inside the augmented anima-
tion. Hence, a too low or too high animation speed keeps 
the user from being involved at normal rate of walking or 
head rotation. The exception, however, is the case in which 
the user is only an observer of the animation with no real 
interaction with the scene. In this case, the animation speed 
can be set to be higher or lower than the normal rate to 
animate very slow or very fast operations respectively.

6 CONCLUSION  

The authors introduced an AR-based application called 
ARVISCOPE as a scalable visualization tool which is ca-
pable of creating smooth animations of simulated construc-
tion models in AR. ARVISCOPE takes advantage of four 
critical components to achieve this capability: 1) the results 
of a DES model which can be used to automatically gener-
ate the animation trace file, 2) a scene graph structure of 
CAD objects in order to provide required functionality to 
manipulate them inside the user’s viewing frustum in a hi-
erarchical manner, 3) robust and precise position and ori-
entation tracking methods to obtain real time 6 DOF of the 
user and appropriately register CAD objects inside the 
augmented  dynamic scene, and 4) an efficient time keep-
ing technique to keep track of the animation and simulation 
time passage. 

The main challenge in  creating a smooth animation of 
DES models is the fact that DES systems can communicate 
with other processes only at discrete simulated time points 
which are typically start and finish points of activities. 
Transforming such a discrete system to a continuous and 
smooth set of animated scenes when combined with the re-
quirements of AR-based visualization introduces unique 
set of challenges. These are including but not limited to 
continuous mobile user tracking using GPS and head orien-
tation devices, accurate registration of CAD objects inside 
the user’s viewing frustum, and real time acquisition of site 
data (e.g. site terrain, location of other equipment) to up-
date the contents of the AR scene.  

Using the concept of scene graphs inside 
ARVISCOPE allows the effective creation, organization, 
manipulation, and maintenance of  the graphical data of 
CAD objects inside an AR scene which is the primary re-
quirement to depict a dynamic animation. A sample anima-
tion was described and illustrated in detail to display the 
capabilities of the application and the mechanism it uses to 
handle a dynamically changing AR animated scene. 
5
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