
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

OPTIMAL SCHEDULING OF PROBABILISTIC REPETITIVE PROJECTS
USING COMPLETED UNIT AND GENETIC ALGORITHMS

Chachrist Srisuwanrat
Photios G. Ioannou

Civil & Environmental Engineering Department
2350 G.G. Brown

University of Michigan
Ann Arbor, MI 48109-2125, U.S.A.

ABSTRACT

In this paper we introduce the completed unit algorithm
(CU-AL), a probabilistic scheduling methodology for re-
petitive projects. The algorithm has two main advantages,
simplicity and short computational time, that facilitate and
expedite its use in simulation modeling and optimization.
An integration between CU-AL and genetic algorithm
(GA) is established to optimize the problem of maximiz-
ing profit for repetitive projects with probabilistic activity
durations. This integration between CU-AL and GA is
explained in detail through an example project with 5 ac-
tivities and 10 repetitive units. A simulation model for
this project is developed in Stroboscope, an activity-based
simulation system. The optimization is performed by
ChaStrobeGA, a Stroboscope add-on using genetic algo-
rithm to optimize the overall objective function of project
profit. Discussion of the results provides insight into the
tradeoff between maintaining and relaxing resource conti-
nuity constraints in order to maximize expected project
profit.

1 INTRODUCTION

Repetitive projects where a series of activities repeat from
unit to unit are common in construction. Examples of re-
petitive projects are high-rise buildings, housing projects,
and highways, whose units are floors, houses, and road
sections, respectively. The resources (crews) required by
the various activities advance from one unit to the next,
perform their work and move on until the last unit.

There are two main constraints that control the work
sequence of resources, technological precedence and re-
source availability. Figure 1 shows two production dia-
grams for a repetitive project consisting of 3 units, each
requiring 3 activities (A, B, and C). As shown in Figure
1a, technological constraints necessitate the completion of

21511-4244-1306-0/07/$25.00 ©2007 IEEE
activity A (e.g., A1) before the start of activity B (e.g.,
B1) in the same unit, whereas resource availability con-
straints require activities in a preceding unit (e.g., A1) to
finish before the start of the same activities in the next
unit (e.g., A2). In Figure 1a, there are lags between B1
and B2, B2 and B3, and between C1 and C2. These lags
imply that resources are ready to work, but the activities
cannot start because their predecessors in the same unit
have not been completed yet. In other words, resource
availability constraints are satisfied, but technological
constraints are not. Consequently, resources have to wait
(be idle) until the predecessor activities are finished in
that same unit. This period of waiting is called “idle
time”. The schedule in Figure 1a has a total idle time of 6
days: 4 days for resource B, and 2 days for resource C.

One of the main concerns when scheduling repetitive
projects is how to eliminate idle time, i.e., how to keep
resources working continuously without interruption. In
construction, resources are usually paid from when they
first arrive to the site, until they finish their work and
leave. Thus, paying the cost of resources during waiting
or idle time is unproductive and wasteful. In most cases, it
is not cost effective to lay off resources and hire them
back later because of availability issues and the cost and
time associated with hiring-and-firing.

Therefore, a much more effective solution is to
eliminate or minimize idle time by selectively delaying
activity start dates. In Figure 1b, for example, the start
date of activity B has been deliberately postponed to day
4 by using a lead time of 4 days measured from project
start date (B_CrewLeadTime = 4 days). This decreases
total project idle time from 6 to 2 days, without changing
project duration. In Figure 1c, the start date of B has been
postponed even more to day 6 (B_CrewLeadTime = 6
days). This eliminates idle time completely and provides
continuous resource utilization, but also increases project
duration from 13 to 15 days.

Srisuwanrat and Ioannou
During the past 20 years, many graphical and nu-
merical methods have been introduced to solve the prob-
lem of continuous resource utilization in repetitive project
scheduling. These methods primarily focus on determinis-
tic scheduling of repetitive projects. Examples of these
methods are Line-Of-Balance (LOB), Linear Scheduling
Method (LSM), and Repetitive Scheduling Method
(RSM). According to these methods, there are two main
approaches used to eliminate idle time: 1) balancing pro-
duction rates (by changing methods or crew sizes) and 2)
delaying activity start dates. Since perfect balancing of

Figure 1: Delaying start date of activity B to eliminate its
idle time
2152
production rates is not always feasible or even an option,
this paper focuses on the ever present problem of elimi-
nating idle time by delaying activity start dates.

The concept of delaying activity start dates for the
probabilistic scheduling of repetitive projects led to the
development of the sequence step algorithm (SQS-AL) by
Ioannou and Srisuwanrat (2006). SQS-AL was designed
for repetitive projects with probabilistic activity durations,
and provides a formal methodology for determining activ-
ity delays to achieve minimum project duration while
achieving a given probability (confidence level) that ac-
tivities will be continuous. SQS-AL uses simulation to de-
termine the probability distributions of activity idle times
and delays activities accordingly, sequence step by se-
quence step. The authors have shown that the algorithm is
quite robust in that its effectiveness does not depend
heavily on user input and judgment (Srisuwanrat and Io-
annou 2007). However, SQS-AL does require significant
computational time, especially for optimization problems
where many alternatives must be tested.

One of the optimization problems in scheduling re-
petitive projects is the tradeoff between saving cost from
eliminating idle time on one hand, and increasing cost due
to increased project duration resulting from delaying ac-
tivities’ start dates on the other hand. This problem is
about maintaining and relaxing resource continuity con-
straints in order to maximize project profit. As shown in
Figure 1, it is obvious that Figure 1b with idle time of 2
days is better than Figure 1a with total idle time of 6 days,
since project duration in both cases are the same. How-
ever, the decision of choosing between Figure 1b (idle
time of 2 days and project duration of 14 days) and Figure
1c (zero idle time but project duration is 16 days) depends
on the cost associated with idle time, interruptions, and
project duration.

This paper introduces a probabilistic scheduling
method called the completed unit algorithm (CU-AL).
The algorithm uses the number of completed units in
predecessors to delay their successors’ start date which, in
turn, reduce idle time in the successors. Since the algo-
rithm does not perform the repetitive process of calculat-
ing idle time, delaying activities, and updating new idle
time, the algorithm has two main advantages: 1) simplic-
ity of simulation model and code, and 2) fast computa-
tional time. However, the algorithm relies on users’ input
(the number of predecessors’ complete units) to eliminate
or minimize idle time. Therefore, collaboration between
CU-AL and a search methodology, Genetic Algorithm
(GA), is necessary to facilitate and expedite the process of
optimization. The integration between CU-AL and GA is
explained in details through an example of repetitive pro-
ject with 5 activities and 10 repetitive units. A simulation
model for the example is developed in Stroboscope, an
activity-based simulation system. The optimization is per-
formed by ChaStrobeGA, a Stroboscope add-on using GA

Srisuwanrat and Ioannou
to optimize objective function. Results and discussions
provide insightful tradeoff between maintaining and re-
laxing resource continuity constraints in order to maxi-
mize expected project profit.

2 COMPLETED UNIT ALGORITHM (CU-AL)

The completed unit algorithm (CU-AL) uses the number
of completed repetitive units in predecessors to delay its
successor’s start date in order to minimize the idle time in
the successor. The algorithm consists of 2 main steps: 1)
determining specific successor’s start date according to
user-specified number of completed units in its predeces-
sors, and 2) calculating idle time of the successor based
on the determined start date from step 1. Figure 2 illus-
trates CU-AL in detail.

As shown in Figure 2, step 1 starts by specifying the
number of completed units that are used to delay an activ-
ity. In this paper, the number of completed units that must
be completed by predecessor before its successor can start
the first unit is called “BufferXY”; where X is the prede-
cessor’s name, and Y is the successor’s name. For exam-
ple, the statement “BufferAB equals 5” indicates that ac-
tivity A is a predecessor of activity B and that activity B
can start only when five units or more of activity A are
completed. After BufferXY for each activity is defined by
the user, simulation model is executed for a certain num-
ber of replications, and average activity start dates are de-
termined. It should be noted that these start dates col-
lected from the replications are not early start dates;
instead, they are the dates that their predecessors com-
plete a certain number of units specified by the user.

Step 2 is similar to step 1, except that instead of using
BufferXY, the lead time (X_CrewLeadTime) of each ac-
tivity ,measured from project start date, is assigned to be
the average start date determined in step 1. Note that
BufferXY for each activity is now set to zero. During the
replications performed in step 2, idle times of activities
and project duration are collected to obtain the actual idle
time and project duration corresponding to their lead
times. At the end, the expected project profit is calculated
from a given cost function, the expected idle time of each
activity, and the expected project duration.

3 GENETIC ALGORITHM

The genetic algorithm (GA), developed by John Holland
at the University of Michigan, is a search algorithm based
on the mechanism of natural selection and genetics
(Goldenberg 2004). This mechanism is based on the prin-
ciple that strong creatures are most likely to survive,
while weak creatures are most likely to become extinct.
From one generation to another, survivors will reproduce
offspring whose chromosomes are inherited from its par-
2153
ents. And occasionally, offspring genetically mutates. In-
spired by this natural mechanism, GA is composed of 5

main processes: initialization (creating the first genera-
tion), evaluation (determining chance of surviving), re-
production (producing offspring), crossover (exchanging
chromosomes inherited from parents), and mutation (al-
teration of genetics encodings inside the chromosomes).
Figure 3a demonstrates the steps of a genetic algorithm
using as an example a repetitive project consisting of 10
units requiring 5 activities in each unit. The activity-on-
node network for the example is shown in Figure 3b.

In optimization, an individual (or a member) is a
composition of chromosomes (or decision variables of in-
terest) that results in a particular outcome value using an
objective function. Here, an individual or member is a

Start

Assign nReps
Assign Unit Buffer to all

activities
Set X_CrewLeadTime for

all activities = 0
Set Rep = 1

Initialize Simulation

Execute simulation
(only one replication)

Record
 Start Date of each
repetitive activity

Rep = Rep+1

Rep <= nReps

Yes

Finish

Yes

No

Execute simulation
(only one replication)

Record
 Crew Idle Time of each

repetitive activity

Initialize Simulation

Assign nReps
Set all Unit Buffers = 0

Assign the average value
of the recorded SD to

X_CrewLeadTime for all
activities

Set Rep = 1

Rep = Rep+1

Rep <= nReps

Send new Unit Buffers to
Stroboscope

Calculate expected idle time
of all activities and expected

project duration and profit

Retrieve results from
Stroboscope

ChaStrobeGA

ChaStrobeGA

Average the recorded
start date of all activities

No

Figure 2: CU-AL workflow diagram

Srisuwanrat and Ioannou
possible schedule. Each chromosome is a decision vari-
able whose value may vary within its domain. In this
study, the decision variables are the number of predeces-
sors’ completed units (BufferXY), and their domain of
values are the integers from 1 to 10 (i.e., the total number
of repetitive units).

As shown in Figure 3c, each individual contains 4
decision variables: BufferAB, BufferBC, BufferCD, and
BufferDE. Since each activity has 10 units, each decision
variable has domain values from 1 to 10 in an increment
of 1. Accordingly, before starting optimization, users
must specify the following:

Domains for all decision variables
Total number of generations
Total number of members (individuals) per gen-
eration (i.e. population)
Probabilities of crossover
Probabilities of mutation

In this study, the above parameters are ChaS-
trobeGA’s input variables, defined prior to the first GA
process, which is initialization.

Initialization is the process of creating the first gen-
eration that does not have a preceding generation. To cre-
ate the first generation, ChaStrobeGA uses uniform distri-
butions to assign random values in the decision variables
from their domain.

For the example in Figure 3, we choose to have 4
members (or 4 cases) in each generation. ChaStrobeGA
randomly selects 4 values of decision variables for each
of the 4 members. After the values are selected, parame-
ters of each member (or each case study) were coded and
modeled in Stroboscope.

Simulation execution based on the selected decision
variables of a member involves 3 steps: 1) generating a
programming script for the member’s decision variables
in Stroboscope language, 2) executing the simulation
code, and 3) getting results from the simulation. In Figure
3d, the outcome from simulation is an assessment of ex-
pected project profit. As shown in Figure 3d, the first
member with BufferAB=3, BufferBC=6, BufferCD=2,
and BufferDE=4, results in an expected project profit of
123. These steps are repeated until the simulations for all
members are executed. ChaStrobeGA will then start the
evaluation process.

Evaluation is the process of calculating the chance of
survival based on member’s relative performance in the
same generation. Relative performance is the ratio be-
tween the outcome from the simulation of an individual
2154
member and the sum of all outcomes in the same genera-
tion. The larger the ratio, the better chance the member
has to survive. Figure 3e uses project profit to show the
relative performance of each member as a percentage.
Relative performance determines which member will sur-
vive to the next generation through reproduction.

Reproduction is the process of selecting members for
the next generation by using a biased roulette wheel
whose slot sizes are proportional to the members’ relative
performance. As shown in Figure 3f, the wheel is spun 4
times to get 4 members for the new generation. As shown
in Figure 3g, member No 2 with relative performance of
40% is selected twice (from Figure 3f), whereas member
No 3 and No 4 with relative performance of 36% and
15% respectively are each selected once. After reproduc-
tion finishes, the crossover process begins.

Crossover is the process of exchanging values of de-
cision variables between members. This process consists
of two steps. First, two members are randomly selected.
Then, the probability of crossover (given by the user) is
used to determine whether to continue the crossover op-
eration for this pair. If the result is to proceed, one of the
positions of decision variables will be selected at random.
Then, the values of decision variables in that position be-
tween the two members are swapped. Figure 3h shows
how members No. 1 and No. 2 are paired and values for
the decision variables in the forth position are swapped.

Mutation is the process of altering decision variables
to protect premature loss of important notions (Goldberg
2004). In other word, the mutation process ensures that
results from GA are not limited to any specific local
search. This process starts by using the mutation probabil-
ity (given by the user) to determine whether to mutate de-
cision variables of a member. If the decision is to mutate,
one of the decision variables of the member will be se-
lected at random and substituted by one of the parameters
in that decision variable’s domain. Figure 3i shows that
the decision variable of member No. 2 in the second posi-
tion is mutated, as well as the decision variable of mem-
ber No. 4 in the forth position. After GA finishes the mu-
tation operation, a new generation is ready for simulation.

The processes of simulation execution, evaluation,
reproduction, crossover, and mutation are repeated until
the total number of generations specified by the user is
reached. Then, the results from all generations are assem-
bled and arranged in one table and sorted by objective
function (i.e., project profit), to derive the optimum solu-
tion according to GA.

Srisuwanrat and Ioannou
Figure 3: Genetic Algorithm and Collaboration between CU-AL and GA
2155

Srisuwanrat and Ioannou
4 OBJECTIVE FUNCTION AND COST MODEL

Project profit is used as the objective function to evaluate
the combined effectiveness of the two algorithms CU-AL
and GA, and to study the effect of maintaining and relax-
ing resource continuity constraints. The standard objec-
tive function for a lump sum contact is:

Project Profit = Contract Price - Direct Cost –
Indirect Cost

The direct and indirect costs consist of fixed and
variable costs. Moreover, there are costs associated with
idle time. The contract price minus the fixed direct costs
is assumed constant ($280,000), whereas unproductive
direct cost is linear function of resource idle time. The in-
direct cost consists of two parts: a fixed project setup of
$20,000 and a variable cost of $50 per day. The objective
function is shown below.

Project Profit ($) = 280,000 – Unproductive
Direct Cost – Indirect Cost

Unproductive Direct Cost ($) = CITB * 100 +
CITC * 120 + CITD * 60 +CITE * 90

Where, CIT = Crew Idle Time in days

Indirect Cost ($) = 20,000 +
 Project Duration (in days) x $ 50/day

5 EXAMPLE PROJECT

An example of a repetitive project consisting of 5 activi-
ties performed over 10 non-identical units is used to dem-
onstrate the application of the completed unit algorithm.
Figure 3b is the activity-on-node network for each repeti-
tive unit for the example. Table 1 shows work amounts
for activities and the mean values of activity productivity.
In each repetitive activity, productivity per day is as-
sumed to follow a normal distribution with the mean
shown in Table 1 and a coefficient of variation of 10%.
The example simulation model and the completed unit al-
gorithm are modeled in Stroboscope. The number of rep-
lications is 3000 for each CU-AL step.

The function of project profit shown in the previous
section is optimized by using a genetic algorithm (GA) as
2156
the search methodology. The decision variables are the
number of predecessor completed units for each prece-
dence link, BufferAB, BufferBC, BufferCD, and
BufferDE. The value domain for these variables includes
the integers from 1 to 10 (the number of repetitive units).
The Stroboscope add-in ChaStrobeGA is used to imple-
ment the GA for maximizing expected project profit.

For the example presented here, the number of gen-
erations and the number of members per generation are
both 30. The probabilities of crossover and mutation op-
erations are 0.6 and 0.05 respectively.

6 DISCUSSION OF RESULTS

Table 2 shows the simulation results for the example pro-
ject. They are grouped into two categories, the results
from ten base cases, and the optimal results from GA.

Base cases are usually employed to experiment with
the scope and the possible range of project duration, pro-
ject profit, and, more generally, the behavior of the sys-
tem. The ten base cases for this example use the same
number of predecessor completed units for all activities as
shown in the first rows of Table 2. Results from GA are
shown in the last row, which is the best solution accord-
ing to the algorithm with the given GA parameters.

In Table 2, the first base case using BufferXY = 1 for
all activities is similar to scheduling activities at their
early start date. Each activity is scheduled to start after its
predecessor completes work in the same unit. This means
that without delaying any activities, this project would
take a minimum 1,049 days to complete, with an expected
profit of $23,046. It should be noted that the associated
total idle time is quite large at 1,989 crew working days.

The first three results in Table 2 indicate that delay-
ing activity start date reduces total idle time significantly
(from 1,989 to 1,394 and to 971 days) without increasing
the expected project duration (which is about 1,050 days).
This indicates clearly that the introduction of lead time (to
decrease idle time) does not necessarily lengthen project
duration. Hence, it is possible to introduce lead times
(X_CrewLeadTime) to delay certain activity start dates
which, in turn, reduce idle time while not increasing pro-
ject duration.

Clearly, the effect of lead times on project duration
Table 1: Crew Production Rates and Activity Work Amount In Each Repetitive Unit
Unit

1 2 3 4 5 6 7 8 9 10 Activity Mean SD
Work Amounts

A 10 1.0 1200 1000 600 800 800 1000 800 1000 1200 600

B 20 2.0 600 400 800 600 600 800 400 600 800 800
C 15 1.5 800 600 200 800 200 400 800 800 600 400

D 15 1.5 600 800 400 600 600 600 600 400 400 600

E 25 2.5 400 600 200 400 800 600 600 200 400 800

Srisuwanrat and Ioannou
Table 2: Expected Project Profit and Duration, Idle Time, and Lead Time (Coefficient of Variation, V= 10%)

Buffer
Idle Time

(in Crew Working Days)
Lead Time

(X_CrewLeadTime)
AB BC CD DE

Expected
Project
Profit

Expected
Project

Duration B C D E B C D E
1 1 1 1 23046 1049 505 448 434 602 121 151 205 246
2 2 2 2 76497 1050 405 328 274 387 222 272 367 461
3 3 3 3 114636 1049 343 226 158 244 283 374 482 603
4 4 4 4 161101 1067 262 114 10 56 364 486 647 809
5 5 5 5 180079 1184 182 15 0 9 444 596 771 973
6 6 6 6 182702 1384 81 0 0 0 546 738 940 1182
7 7 7 7 179787 1579 13 0 0 0 627 839 1095 1377
8 8 8 8 170424 1791 0 0 0 0 727 970 1280 1590
9 9 9 9 158952 2021 0 0 0 0 849 1132 1482 1819

10 10 10 10 150553 2189 0 0 0 0 910 1233 1610 1987
7 1 1 6 200176 1158 12 2 7 0 627 657 711 956

Table 3: Expected Project Profit and Duration, Idle Time, and Lead Time (Coefficient of Variation, V= 20%)

Buffer
Idle Time

(in Crew Working Days)
Lead Time

(X_CrewLeadTime)
AB BC CD DE

Expected
Project
Profit

Expected
Project

Duration B C D E B C D E
1 1 1 1 14118 1089 523 465 451 624 126 158 214 256
2 2 2 2 70084 1088 418 338 284 401 231 283 381 478
3 3 3 3 109125 1089 355 234 165 254 293 388 500 625
4 4 4 4 154022 1120 271 120 28 75 376 502 670 836
5 5 5 5 173691 1235 189 33 2 18 460 617 798 1008
6 6 6 6 178511 1437 89 3 0 5 565 763 972 1223
7 7 7 7 175410 1635 28 0 0 0 649 869 1133 1426
8 8 8 8 166671 1858 4 0 0 0 756 1007 1328 1649
9 9 9 9 155174 2095 0 0 0 0 880 1173 1536 1886

10 10 10 10 146667 2266 0 0 0 0 942 1277 1667 2057
7 2 1 6 192587 1232 29 9 21 7 650 702 758 1016
depends on many factors such as the characteristics of
network, activity productivity and its variability, and the
set of activities to be delayed.

As activities are pushed forward in the first six base
cases in Table 2, expected profit increases from $23,046
(with BufferXY=1) to $182,702 (with BufferXY=6).
However, as activities are pushed beyond 6 units, the ex-
pected profit decreases. A comparison of row 6 (the best
expected project profit from the base cases) and the last
row indicates that the GA results provide greater project
profit with shorter project duration. Based on the example
in this paper and another 3 examples, which are not
shown here, expected project profit from GA is greater
then that of base cases by 5% to 10% approximately.

The GA optimal solution is to use BufferAB=7,
BufferBC=1, BufferCD=1, and BufferDE=6 which yield
an expected project profit of $200,176 with expected pro-
ject duration of 1,158 days. As shown in Table 2, the GA
optimal solution results in 21 days of expected idle time.
I.e., it does not eliminate idle time. This means that in or-
der to achieve maximum project profit, it is necessary to
relax the resource continuity constraints.
2157
Table 3 shows similar results assuming that activity
production rates have a coefficient of variation of 20%. A
comparison between Table 2 (10% coefficient variation)
and Table 3 (20% coefficient variation) shows that vari-
ability in productivity effects idle time, project duration,
and project profit. As expected, an increase in variability
increases idle times and hence lead times, and results in
lower project profit and longer project duration. The
number of predecessor completed units has to be in-
creased in order to minimize the increased idle time
caused by the increased variability. Similarly, the GA op-
timal solution in Table 3 yields less profit ($192,587) than
the GA optimal solution in Table 2 ($200,176).

7 SUMMARY AND CONCLUSIONS

This paper introduced the completed unit algorithm (CU-
AL), a probabilistic scheduling method for repetitive pro-
jects. Its simplicity and fast computational processing ex-
pedites the time required to execute simulation models
and facilitates optimization through a genetic algorithm.

Srisuwanrat and Ioannou
An integration of CU-AL and the associated GA was de-
veloped within the Stroboscope simulation system and
was used to solve several examples for this study. An ex-
ample project with 5 probabilistic activities that repeat
over 10 non-identical units was presented in detail to il-
lustrate the tradeoff between the costs due to idle time and
increased project duration. The deliberate introduction of
lead times reduces resource idle time and the associated
cost but may also increase project duration and indirect
cost. The example results illustrate that both maintaining
and relaxing resource continuity constraints must be em-
ployed in order to arrive at an optimum solution.

ACKNOWLEDGEMENTS

The writers would like to thank Sirarat Sarntivijai and
Rita Awwad, graduate student at the University of Michi-
gan for her valuable comments.

REFERENCES

Goldberg, D.E. Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. Addison Wesley Long-
man, Inc., Boston, ISBN 0201157675, 1-65.

Harris, R.B. 1978. Precedence and Arrow Networking
Techniques for Construction. John Wiley & Sons,
Inc., New York, ISBN 0-471-04123-8, 50-51.

Harris, R.B., and Ioannou, P.G. 1998. Scheduling projects
with repeating activities. Journal of Construction En-
gineering and Management, ASCE, July/August
1998, 269-278

Ioannou, P.G., and Likhitruangsilp, V. 2005. Simulation
of multiple-drift tunnel construction with limited re-
sources, In Proceedings of the 2005 Winter Simula-
tion Conference, ed. M.E. Kuhl, N.M. Steiger, F.B.
Arm-strong, and J.A. Joines, 1483-1491.

Ioannou, P.G., and Srisuwanrat, C. 2006. Sequence Step
Algorithm for Continuous Resource Utilization in
Probabilistic Repetitive Project, In Proceedings of the
2006 Winter Simulation Conference, ed. L. F. Per-
rone, F. P. Wieland, J. Liu, B. G. Lawson, D. M.
Nicol, and R. M. Fujimoto, 1731-1740.

Martinez, J.C. 1996. STROBOSCOPE: State and resource
based simulation of construction processes. Doctoral
Dissertation, Dept. of Civil and Environ. Engineer-
ing, University of Michigan, Ann Arbor, Michigan.

Martinez, J.C. and P.G. Ioannou. 1999. General Purpose
Systems For Effective Construction Simulation.
Journal of Construction Engineering and Manage-
ment, ASCE, (125)4, July-August 1999.

Srisuwanrat, C., and Ioannou, P.G., 2007. The Investiga-
tion of Lead-Time Buffering Under Uncertainty Us-
ing Simulation and Cost Optimization, In Proceed-
ings of the 15th International Group of Lean
Construction .
2158
AUTHOR BIOGRAPHIES

CHACHRIST SRISUWANRAT is Ph.D. student in
Construction Engineering Management at the University
of Michigan. His research is in the area of resource utili-
zation and construction simulation under the direction of
P.G. Ioannou. His e-mail is < csrisuwa@umich. edu.>

PHOTIOS G. IOANNOU is Professor of Civil and Envi-
ronmental Engineering at the University of Michigan. He
received a Dipl. Civil Eng. from the National Technical
University of Athens, Greece, in 1979, and a SMCE and
Ph.D. in Civil Engineering from MIT in 1981 and 1984.
From 1989-1995 he served as Chairman of the Computing
in Construction Technical Committee of the ASCE. He
co-developed three construction simulation systems: UM-
CYCLONE with R.I. Carr (1989), COOPS with L.Y. Liu
(1991), and STROBOSCOPE with J.C. Martinez (1996).
His research is in construction engineering and manage-
ment, and in particular in decision support systems and
construction process modeling and simulation. His e-mail
is <photios@umich.edu> and his website is <www.engin.
umich.edu/cem/Ioannou>.

