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ABSTRACT 

Project management involves various sources of uncer-
tainty that affect planning, execution schedules, and cost. 
At the same time, the influx of information can be em-
ployed to reduce the uncertainty. This can be efficiently 
accomplished within the framework of the Bayesian ap-
proach. This approach also has the advantage of providing 
a seamless synthesis of information coming from the field 
with information generated by data enhancing simulations. 
We demonstrate the use of this approach in an on-line 
simulation that augments a real-life monitoring and plan-
ning system for managing tunneling construction projects. 

1 INTRODUCTION

Uncertainty is an inherent part of project management. It is 
critical for managing large high-risk projects, but can also 
directly affect the bottom line of relatively routine projects. 
In construction, engineering uncertainty and the concomi-
tant risk lurk everywhere: uncertain durations, uncertain 
cost, sudden weather changes, equipment breakdown, 
human resource problems, unexpected changes in project 
scope, etc.

The most common casualty of uncertainty is the pro-
ject schedule. Changes in the durations of specific tasks 
have a ripple effect on the start times of all consecutive 
tasks down the activity chain. Although a certain amount 
of contingency time is normally built in to the schedule of 
all projects, changes in the schedule have to be managed in 
a timely fashion in order to ensure the relatively smooth 
flow of labor and materials. This makes the forecast of task 
execution time an essential ingredient of successful project 
management. 

An important general observation about evolutionary 
processes, and construction projects, in particular, is that 
the level of overall uncertainty normally decreases as time 
advances. This is due both to the decrease of the remaining 
project length and to the increase of the amount of avail-
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able information about the project. As a result, an approach 
that suitably adapts the project variables to the arrival of 
new information could be very helpful in the adequate 
management of uncertainty. In this paper we employ the 
Bayesian method (see for example Gelman (2004), Lancas-
ter (2004)) as an on-line tool for data analysis and forecast. 

The Bayesian approach is a branch of the theory of 
random processes where the uncertain process quantities 
are considered random variables (r.v.) characterized by 
probability density functions (pdf). The approach uses the 
probabilistic framework to make statistical inferences 
about the ensemble averages of the random variables. An 
essential characteristic of Bayesian inference is the consis-
tent method for updating the expected value of the r.v. in 
view of new evidence. Such updating can be done sequen-
tially as the new evidence arrives and is very useful in 
building adaptive on-line monitoring and control systems.  

In this paper we present an application of the Bayesian 
approach to a system for monitoring the productivity in a 
tunneling project and the forecasting of the progress in said 
project, called Construction Synthetic Environment (Co-
SyE). CoSyE is a discrete-event simulation system that 
gives the project planner the ability to produce effective 
project schedules and cost estimates. It allows for the simu-
lation of all production operations with varying degrees of 
detail as well as modeling uncertain quantities as random 
draws from specified distributions.  

The key element in the project is the tunnel boring 
machine (TBM) which drills tunnels of circular cross sec-
tion. The production efficiency of the TBM is character-
ized by its penetration rate, defined as the distance drilled 
per unit of time. Knowledge of the historical penetration 
rate allows for the forecasting of the future position of the 
TBM and the ability to estimate its effect on the project 
schedule. The forecasting accuracy, admittedly, involves a 
high degree of uncertainty, being affected by changes in 
the soil type, variations of the water content, the degree of 
wear on the cutting edge, etc. Incorporation of new infor-
mation as it arrives using the Bayesian method decreases 
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uncertainty and provides a foundation for better manage-
ment of project schedules.   

This paper is organized as follows: In the next section 
we review the Bayesian methodology and describe the ap-
plication of the Monte Carlo method for sampling. In sec-
tion 3 we give an overview of the TBM operations that 
generate the data, while sections 0 and 5 describe how the 
data is modeled and the encompassing simulation frame-
work. The last section presents a brief discussion of the 
possible ways of enriching the model.  

2 UNCERTAINTY MODELING 

2.1 Bayesian approach 

The Bayesian approach has a long history of successful 
applications in enormously diverse disciplines (see for ex-
ample Congdon (2007). The whole theory is built upon a 
single universally accepted mathematical proposition, 
Bayes’ theorem, which asserts that the conditional prob-
ability that event A occurs given that the event B has al-
ready occurred is given by 

|
|

P B A P A
P A B

P B
. (1) 

For a pair of random variables X and Y with marginal 
probability densities ( )p x , and ( )p y and conditional densi-

ties ( | )p x y , and ( | )p y x  the theorem (1) is written as

|
|

p y x p x
p x y

p y
. (2) 

Usually y is interpreted as the observed ‘data’ and of-

ten is written as obsy , while x plays the role of the vector of 

the parameters of the model, and is denoted by . The 
normalization constant in the denominator in (2), the mar-
ginal distribution of the data, does not depend on and is, 
usually, ignored, which leads to the following form of the 
Bayes’ theorem:  

| |obs obsy p y . (3) 

This is a mathematical expression of the proportionality of 

the posterior distribution | obsy to the product of prior

distribution and the likelihood |obsp y , i.e. 

Posterior pdf Likelihood function Prior pdf . Writ-

ten in this form, Bayes’ theorem provides a recipe for sta-
tistical inference. Here the uncertainty about the unknown 
parameters  before making the observations obsy is cap-

tured by the prior distribution . The information con-

tained in the observations is incorporated in the model by 
applying Bayes’ theorem (3) and results in the modifica-
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tion of the parameter uncertainty, modeled by the posterior 

distribution | obsy .

The prediction of unknown observables in the Bayes-
ian framework is in terms of marginal distributions of data 

|y p y d . (4) 

This is called prior predictive distribution because it does 
not involve previous observations of the r.v. and only takes 
into account the uncertainty about the values of the pa-
rameters  and the conditional uncertainty about the data 
y  when  are known. If the observations of a time-

ordered random variable Y  up to the moment t

are 0 1( , , , )obs
t ty y y y , then the value of a future obser-

vation 1ty can be found from the posterior predictive dis-

tribution:

1 1| | , |obs obs obs
t t t t ty y p y y y d . (5) 

Traditionally, the Bayesian relied on symbolically 
tractable integrals by using conjugate priors. By definition, 
a class of prior distributions is a natural conjugate to a 
class of likelihood functions if the result from their multi-
plication posterior is a distribution of the same class as the 
prior. Popular examples are the pairs Normal-Normal, 
Poisson-Gamma, and Normal-Gamma, among others. Al-
though the catalog of conjugate distributions is quite large, 
often, real life data is best modeled by combinations of dis-
tributions that are not conjugated. Fortunately, the in-
creased power of computers made viable the alternative so-
lution of numerical integration by the Monte Carlo 
method.  

2.2 MCMC method 

Integration is a key mathematical operation in the Bayesian 
approach. It is used to obtain the normalization constant in 
(3), to calculate marginal distributions as in (4) and (5), 
and to find the expected values of quantities of interest 

as ( ) ( ) ( )pE g X g x p x dx , where g is some function of 

the r.v. X , which has a known pdf p .

The general idea of the Monte Carlo approach is to 
draw  samples ( )

1{ }i N
ix of size N from a target distribution 

( )p x  and calculate the mean of the integrand over the 

sampled points, i.e. ( )

1

1
( )

N i
N i

g g x
N

. For i.i.d. samples 

by the law of large numbers ( )N pg E g X  as N .

Critical factors for the accuracy of the Monte Carlo 
approach are the quality of the random number generator, 
and the sampling algorithm of the target distribution p .

The most popular algorithms are importance sampling, re-
jection sampling, inversion, and Markov Chain Monte 
Carlo (MCMC); see for example Andrieu (2003). The last 



Ourdev, Abourizk, and Al-Bataineh 
algorithm is particularly powerful and has already been 
implemented in various statistical packages. 

The MCMC strategy uses a Markov-chain stochastic 
process with a stationary distribution that converges to-
ward the required target distribution. The generated sam-
ples ( ){ }ix are identically, but not independently, distrib-

uted. The draws are sequential and each one depends on 
the previous value drawn with a distribution 

( ) ( 1)~ ( | )t tx p x x  for 1, 2,t  determined by the transi-

tion kernel p . Thus, at each step of the simulation we 

possess an approximation of the target distribution which is 
better than the approximation at the previous step.  

There are various ways of constructing a Markov 
chain whose stationary distribution is the required target 
distribution. The most popular method is through the use of 
the Metropolis-Hastings (MH) algorithm, which starts 
from some crude starting distribution and proceeds to 
drawing candidate points x from a proposal distribution 

( 1)~ ( | )tx p x x . The candidate point is then accepted 
with acceptance probability

( 1)
( 1)

( 1) ( 1)

( ) ( | )
( , ) min 1,

( ) ( | )

t
t

t t

p x p x x
x x

p x p x x
,

and rejected otherwise, i.e. retains its last value ( 1)tx . See 
Gelman (2004) for more details.  

For practical problems involving complicated distribu-
tions, the sampling algorithm of choice is the Gibbs sam-
pler, which uses the full conditional distributions 

1 1 1( | , , , , , )j j j np x x x x x  at step j of iteration t . The 

Gibbs sampling is interpreted as a special case of Metropo-
lis-Hastings with acceptance probability ( 1)( , ) 1tx x .
This interpretation allows the embedding of MH steps in 
the Gibbs algorithm when dealing with non-standard dis-
tributions. Otherwise, when the full conditional 
distributions belong to some standard distribution class 
(Normal, Beta, etc.) the samples are drawn directly.  

3 DATA 

The data is a subset of the information collected from the 
excavation of the tunnelling project SW3 executed in the 
City of Edmonton, Alberta, Canada using a tunnel boring 
machine. The project involves about 3.5km of sanitary 
sewer tunnels. It started in February of 2006 and is ex-
pected to finish in December of 2007. The tunneling opera-
tions are constantly monitored and data about the produc-
tion progress is collected and all interruptions are recorded.  

The tunneling operation comprises a set of activities, 
each one associated with a specific characteristic time. The 
activities sets are partitioned in cycles corresponding to the 
completion of one segment of the tunnel. The segment 
length is fixed to one meter corresponding to the length of 
the concrete cement liners used to cover the tunnel walls. 
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Each cycle starts with unloading the liner blocks from the 
train. Usually two trains are used during the tunnel excava-
tion, traveling back and forth in opposite directions be-
tween the entrance shaft and the face of the tunnel.   

The empty train is used to collect the dirt from the ex-
cavation. After an excavation the length of one segment, 
the train travels back to the shaft while the TBM starts in-
stalling the liner blocks.  

The loaded train dumps the dirt into a sump pocket, 
while the first train, already loaded with liner blocks starts 
traveling towards the face of the tunnel. The crane will 
hoist the dirt from the sump pocket to the surface, where it 
is stockpiled. After dumping the dirt, the crane lowers 
down the liner blocks for the next segment of the tunnel. 
This completes one cycle of tunnel operations.  

There are two sources of information about the daily 
production of the TBM. One is a surveying system called 
TACS, which gives the total duration for the installation of 
one segment. The other is the set of daily reports of the 
measurement of the total daily production in meters, in-
cluding project delays and interruptions. The latter also 
contains information about the number of work-shifts per 
day (normally one or two), and the length of the shifts 
(normally ten or eight hours).  The information from the 
daily reports is essential for a more accurate estimation of 
the actual proportion of production times recorded by the 
TACS.

After the synthesis of the information from these two 
sources, the obviously erroneous records are marked as 
missing (NA). All records with time durations shorter than 
the mean support time, or longer than one day if there is no 
corresponding information in the daily report, are ignored. 
This is done algorithmically by the data cleaning module 
of the CoSyE.  

The available data for the period between 2006-09-14 
and 2007-03-05 was used for building and testing the 
model.  There are 545 time records in the TACS database 
and 134 corresponding daily productivity reports. The re-
cords were divided in two: a training set with a length of 
460, and a test set of the remaining 85 records. The density 
distribution for the time duration over the full period be-
tween 2006-09-14 and 2007-03-05 is shown in Figure 1. 

4 SIMULATION FRAMEWORK 

The CoSyE simulation environment is a .NET implementa-
tion of the HLA (High Level Architecture) standard (Kuhl 
et al., 1999). The HLA architecture supports creation of 
complex virtual environments, called federations, using 
distributed simulation technologies. It provides a standard 
for combining individual components (federates) of such 
environment built by different people and maintaining the 
interoperability between them.  
0
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Figure 1 Density distribution of the time durations. 

The CoSyE architecture is presented in Figure 2. Its 
ore components are a Runtime Infrastructure (RTI) 
erver, an Object Model Template (OMT) editor, the sys-

em framework, and the modeling federates. The modeling 
ederates can either be integral parts of the CoSyE system, 
r external software packages adding specific functional-
ty.

Figure 2 CoSyE architecture with the modeling federates 
comprising the tunnel boring simulation. 

The simulation model of the tunnel boring operations 
s comprised of several federates. The Excavation federate 
imulates the operations at the face of the tunnel, which in-
lude both the excavation and the installation of the liners. 
he Geotechnical federate simulates the creation of tunnel 
ections using the data for the penetration rate. All opera-
ions involved in the removal of the excavated dirt from the 
unnel, including the motion of the trains and the crane op-
rations, are handled by the Removal federate. Equipment 
reakdowns are modeled as interruptions of the normal op-
ration flow by the Breakdown federate.  The Statistical
ederate collects relevant information from the model fed-
rates and produces summary reports,  such as total dura-
213
tion to finish the tunnel, production per shift, equipment 
utilization, etc.

The foundation of the software architecture, the HLA, 
was designed specifically with the purpose of integrating 
diverse computer simulation systems. We employed this 
functionality to implement the penetration rate model using 
a separate simulation system, called WinBUGS (Spiegel-
halter, 1996). 

5 MODEL

The focus of the model is the uncertainty in the durations 
of the various production activities and their effect on the 
production rate of the TBM. From this point of view, all 
operations can be divided in two groups – production op-
erations and supporting activities. The corresponding times 
spent in those operations are called production time and 
support time. The production time pt  is found as the dif-

ference between the total time needed to complete a sec-
tion of the tunnel of length x (usually 1m), minus the 
support time st  spent in supporting activities. Once the 
production time is known, the production rate is easily cal-
culated as the /p pr x t  in cm/min.  

5.1 Support time 

The support time has several components divided into two 
groups, depending on the degree of the uncertainty in their 
estimates. All support time is measured in minutes.  

The first group consists of operations with relatively 
low variation in the estimation of the time it takes for com-
pletion. One such component is a constant that includes the 
time spent in shift start-up (15min) and shut-down (15min) 
as well as the 60min lunch time, in total 90ct min . An-
other component is the time it takes the train to travel the 
distance d  between the entrance shaft and the current po-
sition of the TBM. It is calculated from the known average 
train velocity V 5 /km h , as /trt d V and increases line-
arly with time.  

The second group is comprised of operations with a 
relatively high degree of uncertainty in their time duration. 
Their parameters are modeled as r.v. with empirical distri-
butions determined on the basis of historical data collected 
during tunnelling and the experience of the personnel at the 
City of Edmonton (Ruwanpura et al., 1999). Two of these 
components are modeled by the generalized beta distribu-
tion defined as follows: 

1 1
( ; , , , )

1( , )

x a b x
Beta x a b

B b a
. (6) 

For values of x in the interval between the location pa-
rameter, a , and the scale parameter, b , i.e. for ( , )x a b ,
1
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and for positive shape parameters, 0 , and 0 .  The 

beta function, ( , )B , is a part of the normalization con-
stant and is typically expressed via the gamma function as 

( , ) ( ) ( ) / ( )B .
One such high uncertainty component is the lining

time, which is the time it takes to place the cement liners 
around the newly excavated section of the tunnel. It is 
modeled by a generalized beta distribution with parameters 

(15, 25, 2,5)lint Beta graphically presented in Figure 1(a). 
The time it takes to load the train is represented by sym-
metric generalized beta distribution ~ (3,7,2,2)loadt Beta ,
graphically presented in Figure 1(b). The time for unload-
ing the train is approximately four times longer, i.e. it 
is 4 loadt , so the overall contribution of the loading and 

unloading operations to the total support time is 5 loadt . The 

resetting time is given by the uniform distribu-
tion (2, 4)rest Unif  and presented for completeness in 
Figure 1(c).   
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Figure 3 Density distributions of the various components 
of the support time; (a) lining time, (b) loading time, (c) 
resetting time, and (d) the variable component of the total 
support time. 

The total support time st  is the sum of all time inter-
vals of the operations not directly involved in excavation 

2 5s c tr lin load rest t t t t t . (7) 
Bearing in mind that the last three terms are independent 
random variables, this expression has to be interpreted as a 
convolution of the corresponding probability density func-
tions. The resulting pdf for these three components of the 
total support time is graphically illustrated in Figure 1(d). 
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5.2 Penetration rate 

The penetration rate tr at time t was calculated for fixed 

distance increments 1x m as the ratio of the distance 
and production time. The latter was obtained by subtract-
ing the support time (7) time from the observed total work-
shift times recorded in the daily reports.   

The data was modeled as an autoregressive process of 
the third order, AR(3), within the Bayesian approach as: 

0 1 1 2 2 3 3t t t t tr r r , (8) 
with normally distributed penetration rates 

2( , )t tr Normal , (9) 

with mean t , and variance 2 . The order of the autore-
gressive process was suggested by the results from initial 
experiments with the models of different orders. The re-
gression coefficients k were also assumed normally dis-
tributed

2( , ), 0, ,3k k kNormal k , (10) 

with mean k , and variance 2
k fitted to the data. 

The choice of this particular model was influenced by 
several factors. First, it was influenced by the need to in-
corporate and monitor the uncertainty of the inputs to the 
model. The second influencing factor was the requirement 
for adaptive updating of the model parameters. Thirdly, 
given the changing underground conditions and in particu-
lar the variation of the soil type, we wanted a model that on 
the one side reflects the historical values, but on the other, 
puts a higher weight on the more recent values.  Autore-
gressive models of the type given by (8) adequately reflect 
the effect of the previous observations within the error 
margin t . In addition, the Bayesian formulation allows the 
model parameters to be interpreted as random variables 
and the accuracy of the fit to be indirectly controlled. 

The forecast of the average penetration rate for the 
next day was implemented as a two-step process. In the 
first step, all available data prior to the starting date was 
used to obtain the posterior distributions of the coefficients 

k of the autoregressive process, starting with non-
informative priors:  

4

2 3

(0,10 ), 0 : 3,

(0.1,10 ).

k Normal k

Gamma
 (11) 

Afterwards, the posterior predictive distribution (5) was 
found by sequential application of the Bayesian formula  
and informative priors for the parameters obtained from the 
previous iteration.  

The mean values of the posterior coefficients of the 
model (8) along with the corresponding standard devia-
tions and 95% confidence intervals (CI) are shown in 
Table 1.  
2
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Table 1: Posterior values for the autoregressive model and 
the corresponding standard deviations and 5% confidence 
intervals.

Node Mean Std. dev. 95% CI 

0 3.7820 0.5761 2.7100 4.9960 

1 0.1392 0.0700 0.0036 0.2744 

2 -0.0278 0.0742 -0.1878 0.1133 

3 0.1155 0.0628 -0.0057 0.2364 

Sequential application of the model to the out of sam-
ple data yields a standard error of 17%. Although the abso-
lute value of the prediction error is significant, we consider 
this a promising result because of the high degree of uncer-
tainty in the input values. Also, the large percentage of data 
records that were marked as missing or erroneous, 58% of 
the time durations in the test sample, after combining with 
the information from the daily reports must be noted. 

6 DISCUSSION 

The Bayesian method provides a powerful approach to de-
creasing uncertainty in project timelines and incorporating 
the impact of new information as it arrives. We applied this 
method for the on-line calculation of the penetration rate of 
a TBM within a distributed software framework that com-
bines different sources of data from the field with discrete-
event simulations. Still, the simulation can be improved in 
certain directions. For example, different operations have a 
different impact on the production rate. We expect that ex-
plicit separation of these effects would not only improve 
the accuracy of the forecast, but would also allow model-
ing the mean times of the duration of the effects, such as 
changes in the soil type, and the rate of wear on the cutting 
edge of the TBM. This would also allow for the 
implementation of a better algorithm for filtering out the 
outliers in the data from the field. Finally, we are planning 
on developing a stochastic model for the unplanned inter-
ruptions and breakdowns that also have a significant im-
pact on the project timelines. The model will include simu-
lation of both the mean time of failure and the mean time 
to repair. 

REFERENCES 

Andrieu, C., N. de Freitas, A. Doucet, and M. I. Jordan. 
2003. An introduction to MCMC for machine learn-
ing. Machine Learning, 50: 5–43.  

Congdon, P. 2007. Bayesian statistical modeling. 2nd ed. 
Wiley. 
213
Gelman, A., J. B. Carlin, H.  S.  Stern, and D. B. Rubin. 
2004. Bayesian Data Analysis. 2nd ed. Chapman and 
Hall/CRC.  

Kuhl, F., R. Weatherly, and J. Dahmann. 1999. Creating
computer simulation systems: an introduction to the 
high level architecture. Upper Saddle River, New Jer-
sey: Prentice-Hall, Inc. 

Lancaster, T. 2004. An Introduction to Modern Bayesian 
Econometrics. Blackwell Publishing. 

Ruwanpura J., S. AbouRizk, K. C. Er, and S. Fernando 
1999. Simphony: Special Purpose Simulation Tem-
plate for Utility Tunnel Construction. In Proceedings 
of the 1999 Winter Simulation Conference, Phoenix, 
AZ.

Spiegelhalter, D. J., A. Thomas, N. Best, and W. R. Gilks. 
1996. BUGS: Bayesian inference using Gibbs sam-
pling. Medical Research Council Biostatistics Unit, 
Institute of Public Health, Cambridge.  

AUTHOR BIOGRAPHIES 

IVAN OURDEV is a research associate in the Hole 
School of Construction at University of Alberta. His re-
search interests lie in the area of uncertainty modeling and 
computer simulation of stochastic systems. His email ad-
dress is <iourdev@ualberta.ca>

SIMAAN ABOURIZK is a Professor in the Department 
of Civil and Environmental Engineering at the University 
of Alberta. He holds the NSERC/Alberta Construction In-
dustry Research Chair in Construction Engineering and 
Management, and the Canada Research Chair in Opera-
tional Simulation. He received his BSCE and MSCE in 
Civil Engineering from Georgia Institute of Technology in 
1984 and 1985, respectively; and his Ph.D. degree from 
Purdue University in 1990. His research interests focus on 
the application of computer methods and simulation tech-
niques to the management of construction projects. His 
email address is <abourizk@ualberta.ca> and his 
Web address is <http://www.construction.ual-
berta.ca/Faculty/abourizk.shtml>

MOHAMMED AL-BATAINEH is a Ph.D. candidate in 
the Department of Civil and Environmental Engineering at 
the University of Alberta. He received his BSc in Civil En-
gineering-Structural Engineering from Jordan University 
of Science and Technology, Jordan in 1999 and an M.Sc. 
in Construction Management from Western Michigan Uni-
versity in 2002. His research interests are in the application 
of simulation in construction management. His email ad-
dress is <mta1@ualberta.ca>.
3


