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ABSTRACT 

This research paper presents a new permutation-based Elit-
ist genetic algorithm using serial schedule generation 
scheme for solving a large-sized multiple resource-
constrained project scheduling problem, which is one of 
the most challenging problems in construction engineering. 
A key aspect of the algorithm was the application of the 
elitist roulette selection operator to preserve the best indi-
vidual solution for the next generation so as to obtain the 
improved solution. Serial schedule generation scheme was 
applied to generate a feasible solution to the problem. Re-
sults for large-sized project network problems were pre-
sented to demonstrate the performance and accuracy of the 
algorithm. The computational results indicate that the pro-
posed algorithm not only produces reasonably good solu-
tions for the resource scheduling problem over the heuristic 
method and other GA, but also able to solve large-sized 
multiple resource-constrained project scheduling problems 
applicable to the construction industry. 

1 INTRODUCTION 

The resource-constrained project scheduling problem 
(hereinafter RCPSP) have been solved with the various ex-
act methods, priority-rule based heuristics, and various 
meta-heuristic methods. First, the various exact methods 
employ some form of mathematical programming such as 
dynamic programming and zero-one programming or other 
analytical procedure such as implicit enumeration with 
branch and bound to search for the best possible solutions. 
Relative to the vast amount of research that has been con-
ducted on heuristic procedures, optimal procedures have 
rarely been the focus of such extensive research. Consider-
able progress has been made to produce optimal results by 
depending on strong assumptions for small-sized project 
networks. No optimal procedures have proven to be com-
putationally feasible for large, complex projects that can 
occur in practice (Moselhi and Lorterapong 1993). Heuris-
tic and meta-heuristic approaches are needed for large-
2111-4244-1306-0/07/$25.00 ©2007 IEEE
sized project networks. Second, priority-rule based heuris-
tics employ some rule of thumb or experience to determine 
priorities among activities competing for available re-
sources. They combine one or more priority rules and 
schedule generation scheme (serial or parallel) to generate 
one or more schedule. These heuristic procedures generally 
produce solutions for the RCPSP in a reasonable amount of 
time, even though the size of the project network is large. 
However, they have proven to be inconsistent with regard 
to the quality of results produced on project networks (He-
gazy 1999).  
 Recently, various meta-heuristic methods, such as ge-
netic algorithm (GA), simulated annealing (SA), tabu 
search (TS), and ant colonies (AC), have been applied to 
the RCPSP to overcome the drawbacks of the exact opti-
mal methods and priority-rule based heuristics and to im-
prove the performance of the existing meta-heuristic meth-
ods. Among these method, the GA, a meta-heuristic and 
optimization technique, has emerged as a tool that is bene-
ficial for a variety of study fields including construction 
applications since the introduction in the 1960’s by Hol-
land (Holland 1975). Several studies have been done to 
solve the RCPSP using GA (Hartmann 1998, Kohlmorgen 
et al. 1999, Alcaraz and Maroto 2001, Hindi et al. 2002, 
Toklu 2002). GA has also been used successfully to solve 
construction management problems, including resources 
scheduling with a small number of activities (Chan et al. 
1996, Leu and Yang 1999, Hegazy and Kassab 2003). A 
permutation-based GA proposed by Hartmann (1998) 
makes use of activity list representation. The study also 
proposed additional two encodings, which include priority 
value based GA similar to the work of Lee and Kim (1996) 
and priority-rule based GA similar to the work of Dorndorf 
and Pesch (1995). From their computational results, the 
permutation-based encoding GA outperformed two other 
encoding algorithms. 
 The demand of project scheduling software has con-
tinued to grow at an annual rate of almost 20% (Wallace 
and Halverson 1992). Project scheduling software pack-
ages often consider constrained resources, but their capa-
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bility to solve RCPSP is either fragile or nonexistent (De 
Wit and Herroelen 1990). Thus, there is a need for efficient 
solution approaches that allow for the complexities of real-
world problems, which is an intended contribution of this 
research. This paper presents a new permutation-based 
Elitist genetic algorithm using serial schedule generation 
scheme for solving large-sized multiple RCPSP in con-
struction engineering. A key aspect of the algorithm was 
the development of the elitist roulette selection operator to 
preserve the best individual solution for the next generation 
so as to obtain the improved solution. Serial schedule gen-
eration scheme (hereinafter SGS) was applied to generate a 
feasible solution to the problem. Several large-sized project 
network problems were solved to demonstrate the per-
formance and accuracy of the algorithm over either a heu-
ristic method or other GA method under the constraints of 
single and multiple resources and to verify the capability 
and efficiency of the Elitist genetic algorithm. 

The RCPSP aimed to allocate the available resources 
to activities so as to find the shortest duration of a project 
within the constraints of precedence relationships. The as-
sumptions underlying this problem were that the availabil-
ity of resources is constrained to some maximum value, 
and that the project has to be completed using the given re-
sources. As a result of the RCPSP, a schedule that shows 
the shortest duration with resource limits was created for a 
project network. The objective function was formulated for 
a permutation-based Elitist genetic algorithm for the 
RCPSP. As a constrained optimization problem, the 
RCPSP belongs to one type of sequencing problem. There-
fore, the objective function for the algorithm is to minimize 
the project duration when constrained by precedence rela-
tionships among project activities and the availability of 
resources. 

2 PERMUTATION-BASED ELITIST 
GENETIC ALGORITHM 

The main procedure of the permutation-based Elitist ge-
netic algorithm using serial SGS was shown in Figure 1. 
 

 
Figure 1: Pseudocode for Elitist genetic algorithm 
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Several operators employed in the development of the 
Elitist genetic algorithm include (1) the random number 
generator for producing an initial population, (2) the serial 
SGS for calculating a fitness value of each individual, (3) 
the elitist roulette wheel selection operator for selecting a 
parent individual for the next generation, (4) the one-point 
crossover operator for exchanging parent string segments 
and recombining them to produce two resulting offspring 
individuals, and finally (5) the uniform mutation operator 
for playing a role of random local search which searches 
regardless of the direction of learning to obtain the better 
solution. 

2.1 Encoding and Decoding for the RCPSP 

A schedule has to be represented to encode the RCPSP. In 
addition to the schedule representation, a SGS needs to de-
code the schedule representation into a schedule. A sched-
ule representation is a representation of a priority-structure 
among the activities. A solution for the RCPSP was repre-
sented in a chromosome that represented an activity se-
quence for the problem. A chromosome is also called an 
individual that was given by an activity sequence. Each 
gene in a chromosome stands for an activity number. An 
activity has a lower priority than all preceding activities in 
the sequence and a higher priority than all succeeding ac-
tivities. Thus, an individual becomes precedence feasible 
permutation of the set of activities because an activity can-
not come after the position of one of its successors (prede-
cessors) in the list used for the generation of an individual. 
A precedence feasible permutation was generated using 
random number generator developed in this research. 

This research adopted a permutation-based encoding 
that was appropriate for solving the RCPSP (Hartmann 
1998, Zhuang and Yassine 2004). An initial population 
composed of precedence feasible individuals was produced 
by the random number generator (Kim 2006). The random 
number generator simply provides precedence feasible so-
lutions, but does not give the fitness value (the project du-
ration), a possible starting and finishing time of an activity, 
and the feasibility of resource constraints. Random number 
generator, for example, generates an individual {2, 7, 1, 6, 
4, 3, 8, 9, 5, 11, 10} for 11 non-dummy activities. Worth 
noting is that the fitness function is different from the ob-
jective function for the clarification of a computation proc-
ess of the fitness value. As mentioned previously, the ob-
jective function is to minimize the fitness function, which 
generates the fitness value of a project throughout the 
scheme process. The fitness function is to find the maxi-
mum value out of all fitness values of every activity to be 
scheduled in a project. The maximum value is obtained by 
comparing the finish time of the last activity and the fitness 
value of the activity just before the last activity. 
 The serial SGS proposed by Kelley (1963) was util-
ized to calculate the fitness value of an individual. It con-
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sists of the n stages, which is the same as the number of ac-
tivities to be scheduled. Associated with each stage, a set 
of activity to be scheduled can be classified into two dis-
joint activity sets: scheduled set and decision set. The ac-
tivities that were already scheduled are in the scheduled 
set, and they belong to the partial schedule. The decision 
set contains the unscheduled activities with every prede-
cessor being in the scheduled set. One activity is selected 
according to the order of the activity list representation at 
each stage, and then scheduled at its earliest precedence 
and resource feasible start time. Afterwards, the selected 
activity is removed from the decision set and put into the 
scheduled set. When all activities in an individual are 
scheduled, the fitness value is obtained from the maximum 
value between the finish time of the last activity and the 
fitness value of the activity just before the last activity. The 
purpose of applying the serial SGS to the individuals in a 
population was to obtain schedules that showed the re-
source profile and the project duration. A uniquely deter-
mined schedule (phenotype) computed using the serial 
SGS can be related to more than one individual (genotype). 
A uniquely determined schedule means that it is possible 
for several individuals to have the same fitness value, but 
their starting time should be totally different. The unique 
schedules in the search space as genotypes may be related 
to the same schedule, which is the project duration for the 
RCPSP. 

2.2 Combining Elitist with Roulette Wheel 
Selection 

The elitist preserving selection called elitism proposed by 
De Jong (1975) was adopted to combine with the roulette 
wheel selection operator. The elitist roulette selection is 
operated using the procedure shown in Figure 2. 

 

 
Figure 2: Pseudocode of elitist roulette selection operator 
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 Elitism first preserves the best individual generated up 
to generation t in the current generation t+1, if the fitness 
value of an individual in the current population is larger 
than that of every individual in the current population. The 
roulette wheel selection operator developed by Holland 
(1975) was used, as in many GA studies. The concept of 
the selection was to determine selection probability for 
each individual proportional to the fitness value. 

2.3 One-Point Crossover and Uniform Mutation 
Operators 

Two different types of crossover operators, union cross-
over operator 3 (UX3) (Leu and Yang 1999) and one-point 
crossover (Hartmann 1998), were identified as good meth-
ods for the permutation-based encoding for the solution to 
the RCPSP. They were developed to deal with this type of 
ordering problem that occurred due to crossover operation. 
The one-point crossover is operated using the procedure 
shown in Figure 3. 

 
 

Figure 3: Pseudocode of one-point crossover operator 
 
UX3 fixes character duplication problem after the chromo-
some operation as well as maintains precedence relation-
ships by creating two exclusive sub-individuals from par-
ent individuals and then randomly writing the elements 
directly to the offspring individuals and then taking ac-
counts of activity precedence relationships when writing 
characters from sub-individuals into the offspring indi-
viduals. However, the performance of the UX3 operator 
was reduced since it caused significant change to the indi-
vidual representations of the parent individuals by disrupt-
ing potential building blocks and high fitness schema at 
each generation (Zhuang and Yassine 2004). Their findings 
are reasonable because if better solutions were found with 
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UX3, it is not due to the recombination theories fundamen-
tal to the GA, but to the randomization of UX3. The major 
disadvantage of UX3 operator is that it must change gene 
positions more frequently than the one-point crossover op-
erator. The same issue can be raised when applying the 
one-point crossover operator, but one-point crossover pre-
serves the good schemas by keeping the first half of activi-
ties intact (Reeves 1995, Hartmann 1998). For this reason, 
the one-point crossover operator was selected for the per-
mutation-based encoding to the RCPSP.  

The goal of the uniform mutation is to exchange two 
neighboring genes without violating precedence relation-
ship in order to create an individual that could not have 
been produced by the crossover operator. The uniform mu-
tation operator was operated as follows: for each individual 
from a generation, the operator generates a real random 
number and then swaps an activity after pivot point with 
activity at pivot point if a random number is equal to or 
less than mutation probability. The operator can be ineffec-
tive because the genes in neighboring individual positions 
could be switched while still representing the same sched-
ule. A mutation on an individual does not necessarily 
change the related schedule because interchanging two ac-
tivities that have the same start time in the activity se-
quence is likely to change the individual, but not the re-
lated schedule. 

3 EXPERIMENTAL RESULTS AND ANALYSIS 

Elitist genetic algorithm was programmed using the JAVA 
programming language on the Windows XP operation sys-
tem, and Microsoft® Office Excel 2003 was selected as the 
representation and analysis tool for the data. The parame-
ters of the algorithm include population size, crossover 
probability, and mutation probability for global search. The 
algorithm terminates when the pre-specified number of 
generations is met.  

 
Figure 4: Example of schedule network 
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 In order to test the overall procedure of the algorithm, 
a case example of a small construction project schedule 
was extracted from the work of Shanmuganayagam (1989). 
Figure 4 shows the schedule network, which includes ac-
tivity name, duration, and resource requirements. 

3.1 Effects of Elitist Roulette Selection Operator on 
the Performance 

This section describes the effects of the elitist roulette se-
lection operator on the performance of the Elitist genetic 
algorithm. The default set of the parameters as follows: the 
population size, crossover and mutation probability were 
set to 30, 0.5, and 0.03, respectively. The algorithm was 
terminated with the number of generation of 100 using the 
serial SGS. Figure 5 shows the profile of the schedule ob-
tained from the elitist individual, which was produced from 
the last generation of 100. The project duration was found 
at 38 days, which can be considered near-optimal solution 
to the example problem. 
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Figure 5: Profile of the schedule produced by the elitist 

3.2 Comparison with Heuristic Methods and 
Other GAs 

The case example was also used to verify the mechanism 
of the Elitist genetic algorithm. All activities of the project 
network were scheduled using just one resource with a 
fixed resource profile to make an impartial comparison 
with the results obtained from the work of Chan et al. 
(1996). The population size is set to 50 and the total num-
ber of generation was set to 40 experimental runs so the 
total trial size of 2,000 was performed. The crossover and 
mutation rates were set to 0.5 and 0.03, respectively. Table 
1 shows the various schedules in comparison to the single 
schedule obtained by the heuristic rule (Shanmuganayagam 
1989) and three schedules produced by GA-scheduler 
(Chan et al. 1996). Elitist genetic algorithm produced the 
project duration of 38 days, which is same as those ob-
tained either by the heuristic rule or by the GA-scheduler.  
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Table 1: Comparison of Various Schedules by Method 

Activity Starting times of activities obtained by 
Heuristic method 

(Shanmuganayagam 1989) 
GA-scheduler 

(Chan et al. 1996) 
Elitist genetic algorithm 

(this research) No. Resource 
requirement S1 S1 S2 S3 Elitist S1 S2 S3 

1 3 6 6 7 8 8 6 8 6 
2 6 0 0 0 0 2 0 0 0 
3 4 10 10 11 14 0 10 6 6 
4 2 10 15 15 19 12 12 12 10 
5 4 28 28 28 28 28 28 28 26 
6 2 6 6 7 8 12 12 12 10 
7 4 6 6 6 6 8 6 6 8 
8 2 16 17 18 18 24 22 22 20 
9 4 32 32 32 32 22 22 22 20 

10 5 22 22 22 22 32 32 32 32 
11 2 28 28 28 28 28 28 28 26 
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Figure 6: Scheduling procedure for multiple resources 
 
 It also generated 1,387 unique schedules, which 
amounts to 69.35% of the total schedules of 2000. It took 
the total CPU time of 531 milliseconds for the algorithm to 
solve the RCPSP with single resource. Elitist genetic algo-
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rithm is able to provide several equally good and feasible 
scheduling alternatives, which indicate the similar result to 
GA-scheduler (Chan et al. 1996). The result is reasonable 
in that there is a significant difference between the genetic 
algorithm approach and the heuristic approach (Leu et al. 
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1999). Elitist genetic algorithm does not require applying 
any type of penalty factor since the schedules were 
uniquely determined by the algorithm. The algorithm does 
not also depend on any set of heuristic rules. 

3.3 Scheduling Project with Multiple Resources 

Elitist genetic algorithm was run to take into account of the 
multiple resources to the same case example. Three differ-
ent types of resources were considered. When multiple re-
sources are required, project duration will make changes, 
depending on the resource availability and requirements. 
As the case of single resource, the resource availabilities 
are constant over the project duration and the resource 
availabilities of three resources are assumed to be 8, 1, and 
1, respectively. The population size, crossover rate, and 
mutation rate were set to 50, 0.5, and 0.03, respectively. 
The overall fitness value, which is the project duration of 
the individual considered, was obtained for multiple re-
sources using the serial SGS. Figure 6 shows the result of 
scheduling the case example with multiple resources. The 
project duration was 50 days because the finish time (50 
days) of the last activity (activity 10) is greater than the fit-
ness value (44 days) of the activity (activity 11) just before 
the last activity. As a result of scheduling with multiple re-
sources, it was found that activities 4, 9, and 5 were de-
layed for 10, 4, and 6 days due to resource conflicts with 
R2, respectively. It was also found that activity 8 and 10 
were postponed for 4 and 6 days due to resource conflicts 
with R3, respectively. 

3.4 Scheduling Large-sized Projects with Multiple 
Resources 

An experiment was conducted to verify the performance of 
the Elitist genetic algorithm. Three large-sized project 
scheduling problems obtained from the PSPLIB (Kolisch 
and Sprecher 1996) were used in this experiment. The pro-
jects consist of 30, 60, and 120 activities, respectively. For 
each problem size, a problem instance has four renewable 
resources. The overall performance of the Elitist genetic 
algorithm was measured by the means of finding the best 
fitness value, which can be considered a near-optimal solu-
tion to the RCPSP. The input parameter values for the al-
gorithm were set as follows: Initial population size, cross-
over rate, mutation rate were set to 100, 0.5, and 0.03, 
respectively. The termination condition was set to the 
maximum number of generations of 100. Table 2 shows 
the minimum fitness values, total algorithm runtime in mil-
lisecond (ms), and the number of unique schedules as a re-
sult of scheduling three large-sized multiple RCPSP. Elitist 
genetic algorithm found 43, 77, and 119 minimum fitness 
values for 30-Activity, 60-Activity, and 120-Activity, re-
spectively, as they converges to a single point across the 
number of generation. The optimal solution for the prob-
211
lem with 30 non-dummy activities is known (Demeule-
meester and Herroelen 1997), while for the problem in-
stances with 60 and 120 non-dummy activities, only 
heuristic solutions, which are lower bound solutions (Klein 
and Scholl 1999 for 60-Activity and Brucker and Knust 
2003 for 120-Activity), are known. The algorithm required 
more time to solve a larger problem than a smaller one as 
expected. It also generated 3,490, 3,483, and 3,478 unique 
schedules, which amounts to 69.8%, 69.7%, and 69.6% of 
the total schedules of 5000, respectively. 

 
Table 2: Results for Scheduling Large-sized Projects 

Project size 30-Activity 60-Activity 120-Activity 
Minimum 

fitness 
(Makespan) 

43 77 119 

Optimality 43 77 99 
Total algo-
rithm run-
time (ms) 

23,797 23,641 23,297 

No. of 
unique 

schedules 
3,490 3,483 3,478 

 

4 CONCLUSIONS 

This paper introduced a permutation-based Elitist genetic 
algorithm using serial schedule generation scheme for 
solving a large-sized multiple RCPSP. Compared with a 
heuristic method and other GA method, the developed Elit-
ist genetic algorithm produces reasonably good solutions 
for the RCPSP. The computational results based on several 
large-sized multiple RCPSP indicate that the proposed al-
gorithm not only provides several equally good scheduling 
alternatives but also is capable to solve large-sized RCPSP 
within a reasonable time. Several equally good scheduling 
alternatives generated by the proposed algorithm will pro-
vide more information for decision making than the only 
one schedule produced by the heuristic method. 

For the improvement of the Elitist genetic algorithm 
application, two point or other crossover methods may also 
be employed on a random basis to improve the integrity of 
building blocks, even though Elitist genetic algorithm used 
only one-point crossover to apply the recombination theo-
ries fundamental to the GA. The use of the elitism in GA is 
to ensure that small populations do not lose the current best 
solution in the population. However, roulette wheel selec-
tion has an exponential selection pressure which drives a 
solution to convergence prior to sufficient exploration of 
the solution space. The tournament selection can be ap-
plied to overcome the stochastic nature of the selection 
process in the Elitist genetic algorithm since the selection 
pressure of pair-wise tournament selection is consistent re-
gardless of the contents of the population. 
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