
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

A MESSAGE-BASED ARCHITECHTURE TO ENABLE RUNTIME USER INTERACTION
ON CONCURRENT SIMULATION-ANIMATIONS OF CONSTRUCTION OPERATIONS

Prasant V. Rekapalli
Julio C. Martinez

School of Civil Engineering
550 Stadium Mall Drive

Purdue University
West Lafayette, IN 47907, U.S.A.
ABSTRACT

This paper describes a preliminary architecture to support
user interaction with 3D animations. These interactions are
able affect the state of the concurrent discrete-event simu-
lation driving the animation. We first explain how user in-
teraction is conceptually split into user-action and user-
intent, and then detail the message-based architecture
adopted to support user interaction.

1 INTRODUCTION

Discrete-event simulation (DES) is a powerful tool to
model and analyze complex construction operations (Mar-
tinez & Ioannou 1999). The aim of any simulation study is
to achieve model credibility. Results from credible models
stand a better chance of being considered by decision-
makers (Law & Kelton 2000). Verification and validation
of simulation models is critical to achieving model credi-
bility. Hence, there is a need to develop powerful tech-
niques to verify and, especially, validate DES models.

Visualization is widely recognized as a powerful tech-
nique to support the validation of simulation models. Re-
cent advances have made it possible to obtain post-
processed animations of simulated construction operations.
Post-processed animation is an animation that is obtained
after the entire simulation model has been processed
(Bishop & Balci 1990, Rohrer 2000). Example systems
(suitable for construction) for post-processed animation in-
clude (2D) PROOF (Henriksen 1998) and (3D) Vitascope
(Kamat 2003).

Despite these advances, the process of validation is
still quite time consuming and inefficient. This is primarily
because post-processed animations show what took place
in the particular simulation run that produced it. A single
simulation run, however, cannot capture all possible com-
bination of events that can actually take place in the simu-
lation model. Hence, more often than not, it becomes nec-
20281-4244-1306-0/07/$25.00 ©2007 IEEE
essary to study animations obtained from several different
simulation runs, and in some cases to study a single anima-
tion multiple times in order to adequately cover spatially
distant areas of the animation. In addition, while immersed
in a 3D animation, questions about the behavior of the
model may come to mind to the person performing the
validation. These questions can often be answered if the
state of the model can be instantly changed, and the subse-
quent behavior observed.

We are currently working to enable visual interactive
simulations for construction operations to enhance model
validation.

2 VISUAL INTERACTIVE SIMULATION

Interactive simulation-animation or visual interactive
simulation (VIS) is visual simulation that includes the ca-
pability for user interaction on the running model (Hurrion
1989). Simulation models with any form of visualization
are termed visual simulations (VS) (Bishop & Balci 1990).
The interaction can be model prompted (i.e. the model ini-
tiates the interaction) or user prompted (i.e. the user initi-
ates the interaction) (Bishop & Balci 1990).

VIS can significantly improve the process of valida-
tion. Rohrer (2000) states “By changing input and viewing
the reaction of the system in an animation, skeptics can get
a feel for the level of accuracy and usability of the model.”
(p. 1214). Furthermore, Bishop & Balci (1990) state “User
initiated interaction allows the user to change model pa-
rameters and continue execution of the model. This ability
to “play” with the model can be crucial for understanding
the system.” (p. 504).

3 VIS FOR CONSTRUCTION: CHALLENGES

Enabling VIS for construction posses some unique chal-
lenges. Advances in post-processed animation technology
have been, by design, independent of simulation tools. This

Rekapalli and Martinez
design philosophy allows users to mix and match tools as
suitable to their circumstances, and to take advantage of
prior investments in mastering specific tools. In continuing
with this philosophy, the current work is designed to be in-
dependent of simulation or animation tool. This adds to the
challenge, but makes the technology useful to broader au-
diences.

Post-processed animation, by its very nature, cannot
support runtime user interaction. This requires enabling
concurrent simulation-animation. Concurrent simulation-
animation or concurrent animation is an animation that can
be viewed as the simulation model is being processed (i.e.,
simulation and animation are synchronized to process si-
multaneously) (Bishop & Balci 1990, Rohrer 2000). Con-
current animation is the backbone for an interactive simu-
lation–animation system. This challenge has been
addressed successfully with the design of a time-advance
algorithm that synchronizes the discrete simulation clock
and continuous animation clock (Rekapalli & Martinez
2007) in a manner that maintains a constant ratio of simu-
lation time to observation time.

Without concurrent simulation-animation it is not pos-
sible to affect the course of a running simulation by inter-
acting with the animation. In addition to concurrency, this
requires an architecture that can support the communica-
tion of a user’s actions from the animation to the simula-
tion.

The architecture described below is designed for use
with simulation and animation systems that are user exten-
sible (i.e., independent developers can extend the function-
ality of the systems). The authors have implemented this
architecture using the Stroboscope simulation system
(Martinez 1996) and the Vitascope++ animation system
(which is an extension of the Vitascope animation system).

4 COMPONENTS OF USER INTERACTION

The rationale for our message-based architecture is based
on the concept that user interaction can be viewed as two
separate components: (a) user-action, and (b) user-intent.

4.1 User-Action

User-action refers to the actions performed by the user on
the concurrent animation using the available input devices.
For example, double-clicking an animation object may in-
dicate the user-action “animation-object-selected”.

A user-action can be achieved by various graphical
user interface (GUI) actions or by combinations of them.
For example, the “animation-object-selected” user-action
can be generated by performing a single or double mouse-
click using the left, middle, or right mouse-key, with or
without holding down a specific key on the keyboard. The
action can also be generated by user interaction with hard-
ware other than a mouse, such as a joystick or wand.
202
Raw GUI actions are captured by what we call anima-
tion-event-handlers. Independent developers can design
new animation-event-handlers and register them with the
animation system to support different types of user-actions.
The model developer can choose which animation-event-
handlers to use for a particular model.

4.2 User-Intent

User-intent refers to the intention of the user when per-
forming a particular action. For example, performing the
user-action “animation-object-selected” may result in the
breakdown of the equipment that is represented by the se-
lected animation object. This may be achieved in the simu-
lation by preempting the activity that is currently engaging
the equipment resource.

User-intent can also be comprised of several model-
specific actions that result in changes to the state of the
simulation.. The actions that can be performed are deter-
mined by functionality that the simulation system provides
to allow model developers to affect the state of a running
simulation.

5 MESSAGE-BASED ARCHITECTURE

Since the concurrent animation acts as the front-end to the
simulation model, it is responsible for capturing user-
actions. Affecting the state of the simulation to reflect the
user-intent, however, is the responsibility of the simulation
system. Hence, supporting user interaction requires (a) a
mechanism to determine user-intent when a user-action is
performed, and (b) a protocol for communication from the
animation to the simulation that allows the interpretation
and processing of user-intent.

Message-based architectures are used very effectively
in the graphical user interfaces of operating systems (e.g.,
Microsoft Windows). This architecture was chosen be-
cause it provides the best structure for extensibility by in-
dependent developers. This is important because it does
not burden the authors with designing a comprehensive set
of mechanisms that allow users to interact with running
simulations in a variety of ways to produce a variety of end
results. This architecture also allows for simulation and
animation systems to remain independent of each other.

The central piece to this architecture is the message-
interface, which has four main components: (a) event-
message, (b) message-data, (c) data-packager, and (d) data-
unpackager.

5.1 Event-Message

The event-message determines what is communicated from
animation to simulation for it to react accordingly. After
exploring different protocols governing the content of an
event-message, we decided that event-messages should
9

Rekapalli and Martinez
represent user-actions. This charges the simulation to both
interpret and process user-intent.

This protocol provides the most flexible and extensible
mechanism to support user interaction because (a) as dem-
onstrated earlier, a user-action can be generated in a wide
variety of ways, and (b) a wide variety of user-intents can
be associated with the same user-action. For example, the
different user-intents associated with the “animation-
object-selected” user-action might include (but not limited
to): (a) breakdown the associated equipment, (b) change
the duration of the associated activity, or (c) change the
properties of the associated resource represented by the
animation object.

5.2 Message-Data

An event-message, when passed from the animation to the
simulation, is accompanied by message-data that contains
the details of the user-action performed. For the “anima-
tion-object-selected” user-action, the accompanying mes-
sage-data might include the name of the animation object
that was selected, and other attributes that can be used to
identify the uniqueness of user’s raw GUI actions that gen-
erated the event-message.

5.3 Data-Packager

The data-packager is responsible for packing the individ-
ual data components together so that they can be passed
along with the event-message. This data-packager is to be
provided as an independent module that can be used by any
animation-event-handler.

5.4 Data-Unpackager

The data-unpackager unpackages the message-data such
that its individual components are available to the model
developer from within the simulation environment. As de-
scribed earlier, the power of this architecture is the ability
to associate different user-intents to a particular user-
action. With the data-unpackager, the model developer can,
based on the details of the user-action (contained in the
message-data), specify a different user-intent.

6 PROCESSING USER-INTENT

This section describes the functionality added to Strobo-
scope for model developers to define user-intent. The
REGEVENT and ONEVENT statements were added.

“REGEVENT” allows the model developer to associ-
ate a user-intent with a particular event-message using the
following syntax:

REGEVENT <name> <message> <event_expression>

Where:
<name>: is the user-defined name of the event.
2030
<message>: is the event-message associated with
the event.
<event_expression>: an expression that evaluates
to a number.

“ONEVENT” allows the model developer to associate
the actions that need to be performed on the state of the
simulation to reflect the user-intent using the following
syntax:

ONEVENT <name> STATEMENT <statement>;

REGEVENT <name> EXPRESSION <expression>;

Where:
<name>: is the name of the event that has been
previously registered using “REGEVENT”.
STATEMENT: is a keyword that indicates that
following action is a Stroboscope statement that
has to be executed.
<statement>: the actual statement that has to be
executed.
EXPRESSION: a keyword that indicates that fol-
lowing action is an expression that has to be
evaluated by Stroboscope.
<expression>: the actual expression that has to be
evaluated.

When Stroboscope receives an event-message, it re-
trieves all the events that were registered with that event-
message (i.e., using “REGEVENT”). For each of these
events, the associated <event_expression> is evaluated,
and if found to be non-zero - the statements/expressions
registered with that event (i.e., using “ONEVENT”) are
processed. If the <event_expression> of more than one
event evaluate to non-zero, the user is provided with a GUI
interface to choose which event to process.

7 CONCLUSIONS AND FUTURE WORK

We described how user interactions with concurrent simu-
lation-animations of construction operations can be con-
ceptually split into user-action and user-intent. This con-
ceptual view allows for a clear delineation of
responsibilities between the simulation and animation sys-
tems.

We also described how a message-based architecture
can be used to tie together independently developed DES
and 3D animation tools. This architecture also lends to in-
dependent development of pluggable interfaces that can be
used by model developers to enable a variety of user inter-
actions that have a variety of end results.

Future work is required to enable data integration be-
tween simulation and animation systems. This is needed to
identify the counterpart simulation entities to animation en-
tities, which is crucial for having the concurrent animation
act as the front-end to the simulation model.

Rekapalli and Martinez
ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support of the Na-
tional Science Foundation (NSF) (Award # CMMI-
0732560). Any opinions, findings, and conclusions or rec-
ommendations expressed in this paper are those of the au-
thors and do not necessarily reflect the views of the NSF.

REFERENCES

Bishop, J. L., and Balci, O. (1990), “General purpose vis-
ual simulation system: A functional description”, 1990
Winter Simulation Conference, IEEE, Piscataway, NJ,
504-512.

Henriksen, J. O. (1998), “Windows-based animation with
PROOFTM”, 1998 Winter Simulation Conference,
IEEE, Piscataway, NJ, 241-247.

Hurrion, R. D. (1989), “Graphics and interaction”, In
Computer Modeling for Discrete Simulation, M. Pidd,
Ed., John Wiley & Sons, New York, NY, 101-119.

Kamat, V. R. (2003), “VITASCOPE: Extensible and scal-
able 3D visualization of simulated construction opera-
tions”, PhD Dissertation, Virginia Polytechnic Insti-
tute and State University, Blacksburg, VA.

Law, A. M., and Kelton, W. D. (2000), “Simulation Mod-
eling and Analysis”, 3rd Edition, McGraw-Hill, 2000.

Martinez, J. C. (1996), “STROBOSCOPE: State and re-
source based simulation of construction operations”,
PhD Dissertation, University of Michigan, Ann Arbor,
MI.

Martinez, J. C., and Ioannou, P. G. (1999), “General-
purpose systems for effective construction simula-
tion”, Journal of Construction Engineering and Man-
agement, Vol. 125, No. 4, ASCE, Reston, VA, 265-
276.

Rekapalli, P. V., and Martinez, J. C. (2007), “Time ad-
vance synchronization in concurrent discrete-event
simulation and animation of construction operations”,
Eleventh International Conference on Civil, Struc-
tural, and Environmental Engineering Computing,
Civil-Comp Ltd., Stirling, U.K. (Accepted).

Rohrer, M. W. (2000), “Seeing is believing: The impor-
tance of visualization in manufacturing simulation”,
2000 Winter Simulation Conference, IEEE, Piscata-
way, NJ, 1211-1216.

AUTHOR BIOGRAPHIES

PRASANT REKAPALLI is a doctoral candidate in the
School of Civil Engineering at Purdue University. He re-
ceived his MS in Civil Engineering (Construction Engi-
neering and Management) at Virginia Tech in 2004; and a
Bachelor of Technology (B.Tech) degree in Civil Engi-
neering (minored in Engineering Project Management) at
the Indian Institute of Technology – Madras (Chennai, In-
2031
dia) in 2002. His research interests include simulation and
visualization of construction operations, and virtual reality.
He is currently involved is developing a discrete-event
simulation based virtual reality environment for construc-
tion operations for his doctoral dissertation. His email and
web addresses are <prekapal@purdue.edu> and
<http://web.ics.purdue.edu/~prekapal/>.

JULIO MARTINEZ is an associate professor in the
School of Civil Engineering at Purdue University. He re-
ceived his PhD in Civil Engineering at the University of
Michigan in 1996; an MSE in Construction Engineering
and Management from the University of Michigan in 1993;
an MS in Civil Engineering at the University of Nebraska
in 1987; and a Civil Engineer’s degree from Universidad
Catolica Madre y Maestra (Santiago, Dominican Republic)
in 1986. He designed and implemented the
STROBOSCOPE simulation language as part of his doc-
toral dissertation research. In addition to discrete-event
simulation, his research interests include construction
process modeling, decision support systems for construc-
tion, scheduling of complex and risky projects, and con-
struction management information systems. His email and
web addresses are <julio@purdue.edu> and
<http://www.ezstrobe.com/>.

