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ABSTRACT 

This paper describes a preliminary architecture to support 
user interaction with 3D animations. These interactions are 
able affect the state of the concurrent discrete-event simu-
lation driving the animation.  We first explain how user in-
teraction is conceptually split into user-action and user-
intent, and then detail the message-based architecture 
adopted to support user interaction. 

1 INTRODUCTION

Discrete-event simulation (DES) is a powerful tool to 
model and analyze complex construction operations (Mar-
tinez & Ioannou 1999). The aim of any simulation study is 
to achieve model credibility. Results from credible models 
stand a better chance of being considered by decision-
makers (Law & Kelton 2000). Verification and validation 
of simulation models is critical to achieving model credi-
bility. Hence, there is a need to develop powerful tech-
niques to verify and, especially, validate DES models. 

Visualization is widely recognized as a powerful tech-
nique to support the validation of simulation models. Re-
cent advances have made it possible to obtain post-
processed animations of simulated construction operations. 
Post-processed animation is an animation that is obtained 
after the entire simulation model has been processed 
(Bishop & Balci 1990, Rohrer 2000). Example systems 
(suitable for construction) for post-processed animation in-
clude (2D) PROOF (Henriksen 1998) and (3D) Vitascope 
(Kamat 2003). 

Despite these advances, the process of validation is 
still quite time consuming and inefficient. This is primarily 
because post-processed animations show what took place 
in the particular simulation run that produced it. A single 
simulation run, however, cannot capture all possible com-
bination of events that can actually take place in the simu-
lation model. Hence, more often than not, it becomes nec-
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essary to study animations obtained from several different 
simulation runs, and in some cases to study a single anima-
tion multiple times in order to adequately cover spatially 
distant areas of the animation. In addition, while immersed 
in a 3D animation, questions about the behavior of the 
model may come to mind to the person performing the 
validation. These questions can often be answered if the 
state of the model can be instantly changed, and the subse-
quent behavior observed. 

We are currently working to enable visual interactive 
simulations for construction operations to enhance model 
validation. 

2 VISUAL INTERACTIVE SIMULATION 

Interactive simulation-animation or visual interactive 
simulation (VIS) is visual simulation that includes the ca-
pability for user interaction on the running model (Hurrion 
1989). Simulation models with any form of visualization 
are termed visual simulations (VS) (Bishop & Balci 1990). 
The interaction can be model prompted (i.e. the model ini-
tiates the interaction) or user prompted (i.e. the user initi-
ates the interaction) (Bishop & Balci 1990). 

VIS can significantly improve the process of valida-
tion. Rohrer (2000) states “By changing input and viewing 
the reaction of the system in an animation, skeptics can get 
a feel for the level of accuracy and usability of the model.”
(p. 1214). Furthermore, Bishop & Balci (1990) state “User 
initiated interaction allows the user to change model pa-
rameters and continue execution of the model. This ability 
to “play” with the model can be crucial for understanding 
the system.” (p. 504). 

3 VIS FOR CONSTRUCTION: CHALLENGES 

Enabling VIS for construction posses some unique chal-
lenges. Advances in post-processed animation technology 
have been, by design, independent of simulation tools. This 
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design philosophy allows users to mix and match tools as 
suitable to their circumstances, and to take advantage of 
prior investments in mastering specific tools. In continuing 
with this philosophy, the current work is designed to be in-
dependent of simulation or animation tool. This adds to the 
challenge, but makes the technology useful to broader au-
diences. 

Post-processed animation, by its very nature, cannot 
support runtime user interaction. This requires enabling 
concurrent simulation-animation. Concurrent simulation-
animation or concurrent animation is an animation that can 
be viewed as the simulation model is being processed (i.e., 
simulation and animation are synchronized to process si-
multaneously) (Bishop & Balci 1990, Rohrer 2000). Con-
current animation is the backbone for an interactive simu-
lation–animation system. This challenge has been 
addressed successfully with the design of a time-advance 
algorithm that synchronizes the discrete simulation clock 
and continuous animation clock (Rekapalli & Martinez 
2007) in a manner that maintains a constant ratio of simu-
lation time to observation time. 

Without concurrent simulation-animation it is not pos-
sible to affect the course of a running simulation by inter-
acting with the animation. In addition to concurrency, this 
requires an architecture that can support the communica-
tion of a user’s actions from the animation to the simula-
tion. 

The architecture described below is designed for use 
with simulation and animation systems that are user exten-
sible (i.e., independent developers can extend the function-
ality of the systems). The authors have implemented this 
architecture using the Stroboscope simulation system 
(Martinez 1996) and the Vitascope++ animation system 
(which is an extension of the Vitascope animation system).  

4 COMPONENTS OF USER INTERACTION 

The rationale for our message-based architecture is based 
on the concept that user interaction can be viewed as two 
separate components: (a) user-action, and (b) user-intent. 

4.1 User-Action 

User-action refers to the actions performed by the user on 
the concurrent animation using the available input devices. 
For example, double-clicking an animation object may in-
dicate the user-action “animation-object-selected”. 

A user-action can be achieved by various graphical 
user interface (GUI) actions or by combinations of them. 
For example, the “animation-object-selected” user-action 
can be generated by performing a single or double mouse-
click using the left, middle, or right mouse-key, with or 
without holding down a specific key on the keyboard. The 
action can also be generated by user interaction with hard-
ware other than a mouse, such as a joystick or wand. 
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Raw GUI actions are captured by what we call anima-
tion-event-handlers. Independent developers can design 
new animation-event-handlers and register them with the 
animation system to support different types of user-actions. 
The model developer can choose which animation-event-
handlers to use for a particular model. 

4.2 User-Intent 

User-intent refers to the intention of the user when per-
forming a particular action. For example, performing the 
user-action “animation-object-selected” may result in the 
breakdown of the equipment that is represented by the se-
lected animation object. This may be achieved in the simu-
lation by preempting the activity that is currently engaging 
the equipment resource. 

User-intent can also be comprised of several model-
specific actions that result in changes to the state of the 
simulation.. The actions that can be performed are deter-
mined by functionality that the simulation system provides 
to allow model developers to affect the state of a running 
simulation. 

5 MESSAGE-BASED ARCHITECTURE 

Since the concurrent animation acts as the front-end to the 
simulation model, it is responsible for capturing user-
actions. Affecting the state of the simulation to reflect the 
user-intent, however, is the responsibility of the simulation 
system. Hence, supporting user interaction requires (a) a 
mechanism to determine user-intent when a user-action is 
performed, and (b) a protocol for communication from the 
animation to the simulation that allows the interpretation 
and processing of user-intent. 

Message-based architectures are used very effectively 
in the graphical user interfaces of operating systems (e.g., 
Microsoft Windows). This architecture was chosen be-
cause it provides the best structure for extensibility by in-
dependent developers. This is important because it does 
not burden the authors with designing a comprehensive set 
of mechanisms that allow users to interact with running 
simulations in a variety of ways to produce a variety of end 
results. This architecture also allows for simulation and 
animation systems to remain independent of each other. 

The central piece to this architecture is the message-
interface, which has four main components: (a) event-
message, (b) message-data, (c) data-packager, and (d) data-
unpackager. 

5.1 Event-Message 

The event-message determines what is communicated from 
animation to simulation for it to react accordingly. After 
exploring different protocols governing the content of an 
event-message, we decided that event-messages should 
9
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represent user-actions. This charges the simulation to both 
interpret and process user-intent. 

This protocol provides the most flexible and extensible 
mechanism to support user interaction because (a) as dem-
onstrated earlier, a user-action can be generated in a wide 
variety of ways, and (b) a wide variety of user-intents can 
be associated with the same user-action. For example, the 
different user-intents associated with the “animation-
object-selected” user-action might include (but not limited 
to): (a) breakdown the associated equipment, (b) change 
the duration of the associated activity, or (c) change the 
properties of the associated resource represented by the 
animation object. 

5.2 Message-Data 

An event-message, when passed from the animation to the 
simulation, is accompanied by message-data that contains 
the details of the user-action performed. For the “anima-
tion-object-selected” user-action, the accompanying mes-
sage-data might include the name of the animation object 
that was selected, and other attributes that can be used to 
identify the uniqueness of user’s raw GUI actions that gen-
erated the event-message. 

5.3 Data-Packager 

The data-packager is responsible for packing the individ-
ual data components together so that they can be passed 
along with the event-message. This data-packager is to be 
provided as an independent module that can be used by any 
animation-event-handler. 

5.4 Data-Unpackager 

The data-unpackager unpackages the message-data such 
that its individual components are available to the model 
developer from within the simulation environment. As de-
scribed earlier, the power of this architecture is the ability 
to associate different user-intents to a particular user-
action. With the data-unpackager, the model developer can, 
based on the details of the user-action (contained in the 
message-data), specify a different user-intent. 

6 PROCESSING USER-INTENT 

This section describes the functionality added to Strobo-
scope for model developers to define user-intent. The 
REGEVENT and ONEVENT statements were added. 

“REGEVENT” allows the model developer to associ-
ate a user-intent with a particular event-message using the 
following syntax: 

REGEVENT <name> <message> <event_expression> 

Where: 
<name>: is the user-defined name of the event. 
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<message>: is the event-message associated with 
the event. 
<event_expression>: an expression that evaluates 
to a number. 

“ONEVENT” allows the model developer to associate 
the actions that need to be performed on the state of the 
simulation to reflect the user-intent using the following 
syntax:

ONEVENT <name> STATEMENT <statement>; 

REGEVENT <name> EXPRESSION <expression>; 

Where: 
<name>: is the name of the event that has been 
previously registered using “REGEVENT”. 
STATEMENT: is a keyword that indicates that 
following action is a Stroboscope statement that 
has to be executed. 
<statement>: the actual statement that has to be 
executed. 
EXPRESSION: a keyword that indicates that fol-
lowing action is an expression that has to be 
evaluated by Stroboscope. 
<expression>: the actual expression that has to be 
evaluated. 

When Stroboscope receives an event-message, it re-
trieves all the events that were registered with that event-
message (i.e., using “REGEVENT”). For each of these 
events, the associated <event_expression> is evaluated, 
and if found to be non-zero - the statements/expressions 
registered with that event (i.e., using “ONEVENT”) are 
processed. If the <event_expression> of more than one 
event evaluate to non-zero, the user is provided with a GUI 
interface to choose which event to process. 

7 CONCLUSIONS AND FUTURE WORK 

We described how user interactions with concurrent simu-
lation-animations of construction operations can be con-
ceptually split into user-action and user-intent. This con-
ceptual view allows for a clear delineation of 
responsibilities between the simulation and animation sys-
tems. 

We also described how a message-based architecture 
can be used to tie together independently developed DES 
and 3D animation tools. This architecture also lends to in-
dependent development of pluggable interfaces that can be 
used by model developers to enable a variety of user inter-
actions that have a variety of end results. 

Future work is required to enable data integration be-
tween simulation and animation systems. This is needed to 
identify the counterpart simulation entities to animation en-
tities, which is crucial for having the concurrent animation 
act as the front-end to the simulation model. 
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