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ABSTRACT 

Effectively managing a supply chain requires visibility to 
detect unexpected variations in the dynamics of the supply 
chain environment at an early stage. This paper proposes a 
methodology that captures the dynamics of the supply 
chain, predicts and analyzes future behavior modes, and 
indicates potentials for modifications in the supply chain 
parameters in order to avoid or mitigate possible oscilla-
tory behaviors. Neural networks are used to capture the 
dynamics from the system dynamic models and analyze 
simulation results in order to predict changes before they 
take place. Optimization techniques based on genetic algo-
rithms are applied to find the best setting of the supply 
chain parameters that minimize the oscillations. A case 
study in the electronics manufacturing industry is used to 
illustrate the methodology. 

1 INTRODUCTION

During the last decade, manufacturing enterprises have 
been under pressure to competently cope with a market 
that is rapidly changing due to global competition, shorter 
product life cycles, dynamic changes of demand patterns 
and product varieties and environmental standards. In these 
global markets, competition is ever increasing and compa-
nies are widely adopting customer-focused strategies in in-
tegrated-system approaches (Shin and Leem 2002). In ad-
dition, push manufacturing concepts are being replaced by 
pull concepts, and notions of quality systems are getting 
more and more significant. 
 Globalization of products and services and the rapid 
changes in technology have also resulted in increasingly 
dynamic markets and greater uncertainty in customer de-
mand. The enlarged geographic scope of facilities that are 
consequence of this globalization process has increased the 
difficulty of managing and controlling supply chains.  
Moreover, competition has evolved from one company 
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against other companies to one supply chain against other 
supply chains. 

Supply chain management (SCM) is seen as a mecha-
nism that will allow companies to respond to these envi-
ronmental changes and has become one of the top priorities 
on the strategic agenda of industrial and service businesses. 
The objective of SCM activities is to provide right quality 
of the right product at the right time. The attempt is to im-
prove responsiveness, understand customer demand, con-
trol production or service processes, and align together the 
objectives of all partners in the supply chain. To achieve 
this goal, companies need to have the ability to predict and 
control unexpected events taking place in the supply chain 
(SC).

Effectively managing a supply chain requires visibility 
to detect unexpected variations at an early stage. This pa-
per introduces a methodology that first uses system dynam-
ics (SD) to model dynamic behavior of the SC. Then neu-
ral networks (NNs) are used to capture the knowledge of 
the SC model and make it available to the enterprise to de-
tect changes and predict the future behavior of the SC. Fi-
nally, optimization is applied to make modifications in the 
SC settings in order to avoid (or mitigate) the undesirable 
behaviors and performances. 

The integration of these techniques to detect and re-
duce oscillatory behavior of the SC has been proposed in 
the literature (Rabelo et al. 2006; Moraga et al. 2007).  
However, in most cases sensitivity analysis is used to de-
termine the changes in the model parameters required to 
stabilize the system. We propose a genetic algorithm based 
approach that minimizes the area under the curve of the 
state variable of interest in order to achieve stability. This 
represents an alternative to the concept of using the norm 
of the state vector in which the control theory relies on 
(Khalil 1996). 
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2 STRUCTURE OF THE METHODOLOGY 

The proposed approach is a procedure that detects and re-
duces SC undesired behaviors based on the dynamics of 
the supply chain environment. The general functioning of 
the approach is depicted in Figure 1.  
 The Supply Chain Environment is characterized by 
exogenous and endogenous factors that make the actual 
supply chain have certain behavior patterns. From this en-
vironment, a supply chain configuration described through 
the input vector is taken and entered to the Behavior Moni-
tor Module (BMM), which is based on the use of Neural 
Networks and their pattern recognition capabilities. This 
monitor system predicts the supply chain behavior that the 
actual configuration may cause in the future (mid-long 
range terms). If the predicted behavior is a desired pattern 
no action is taken over the actual supply chain operations, 
otherwise the optimization module is used to search for the 
best configuration of the decision variables. Actions would 
be required over the actual supply chain operations to ap-
ply the best configuration found and get the desired behav-
ior pattern in practice. 

2.1 SD Model of the Supply Chain 

The SC environment represents the actual participants, 
structure, strategies, policies, objectives, variables, con-
1969
straints and parameters that configure different scenarios of 
the supply chain over time. The SC environment and its 
dynamics are represented by a SD model. The output of the 
SD simulation is composed by the SC state variables (state 
vector), which will be used as inputs to the BMM and the 
Optimization module. SD modeling is a methodology for 
studying the dynamics of real-world systems. It was intro-
duced by Jay Forrester (1961) and has its origins in control 
engineering and management. The essential idea in SD is 
that all objects in a system interact through causal relation-
ships that form the structure of any system. 

System dynamics modeling requires the identification 
of the causal relationships that capture the system feedback 
mechanisms or loops. The system dynamics arise from the 
interaction of two types of feedback loops: positive and 
negative loops. Positive feedbacks tend to amplify distur-
bances in the system, while negative loops force the system 
behavior toward a certain goal level. From the causal 
loops, the stock and flow structure is developed. Stocks are 
accumulators of information that describe the state of the 
system at any particular time. Flows are rates that are 
added to (inflows) or subtracted (outflows) from a stock, 
and they represent the management policies to control and 
regulate the state of the system. The stock and flow struc-
ture is converted into a system of differential equations, 
which is numerically solved by simulation. 
Behavior Monitor 
Module Desired?

Optimization
Module

Supply Chain
Environment

SD model of
the SC

SD model of
the SC

Current setting of
Input Vector

No actions needed

No

Yes

Predicted SC
behavior

Best setting of
Decision vector

Figure 1: General Procedure of the Methodology 
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2.2 The Behavior Monitor Module 

The BMM is a neural network that is used to capture the 
knowledge of the SC model and make it available to the 
enterprise to detect changes and predict the future behavior 
of the SC. This use of NNs can be very practical, as NNs 
can be encapsulated in a software agent that can communi-
cate with the enterprise resource planning (ERP) records 
and business intelligence findings to perform automatic de-
tection of unexpected variations of the SC at an early stage. 
 NN pattern recognition analysis is conducted using 
different settings of the input vector in order to map them 
to the future behavior modes. The input vector (I) is a 
composite vector used by the BMM to predict the behavior 
mode of the target variables in the state vector. The com-
position of the input vector is formed by the decision vec-
tor (d), the current state vector (s), and the trend vector 
(w). The decision vector (d) is the one that contains the in-
dependent variables of the model. The current state vector 
is the state vector but containing the current values for the 
state variables. The trend vector contains the values of the 
state variables from the last two periods. The number of 
periods selected for trends is not a minor issue because it 
influences the quality of the prediction. 
 Before training the NN for the BMM, the behavior 
modes of the state variables have to be observed and classi-
fied. The classification scheme is made on graphs with par-
ticular shapes of each simulation scenario over a future ho-
rizon in months for each state variable. Fuzzy ART NNs 
are used to discover similarities in the “graphs”, organizing 
clusters of similar graphs and devising a category scheme 
based on their shapes and amplitudes. Once the categories 
for all state variables are obtained and validated, verbalized 
descriptions of each category are provided.  
 The supervised backpropagation (Werbos 1994) ap-
proach is used for the training of the NN, using different 
data sets for validation, testing and training. Several epochs 
are run for each training set in order to obtain the minimum 
training error for the different NN architectures and learn-
ing algorithms. The architecture with the minimum valida-
tion error is used for the testing purpose and the testing er-
ror is calculated (Morgan and Bourlard 1989). To search 
for a suitable learning algorithm, several algorithms such 
as those involving gradient descent optimization, regulari-
zation parameters, Bayesian, Levenberg-Marquardt (using 
second order derivatives), and conjugate gradient-based 
schemes may be necessary to compare (Hagan et al. 1995). 
 To implement this methodology in actual operational 
conditions, a database that continuously stores the behavior 
patterns occurring in the SC will be needed. A computer 
system utilizing this methodology (and integrated with the 
ERP system) should be able to detect any changes and pro-
vide predictions such that corrective actions or needed de-
cisions could be made to adjust the behavior. The optimi-
197
zation method is then used to eliminate the undesired 
behaviors. 

2.3 The Optimization Module 

This module uses optimization techniques based on GAs to 
find the best setting of decision variables to keep the sup-
ply chain stable over time. Because the stability of the state 
variables considered in the SD model of the SC is an opti-
mization problem that requires a continuous search space 
then a real-coded genetic algorithm (RCGA) is used. The 
basic structure and genetic operators of this algorithm have 
been adopted from the algorithm developed by Deb (2001). 

The algorithm considers the optimization of one state 
variable (which is called variable of interest) and consists 
in three main steps: (1) selecting the state variable of inter-
est and the decision variables to be optimized, (2) initializ-
ing the population, and (3) fitness evaluation and new 
population creation. Step (3) is iteratively performed on 
each generation of the population until a number of genera-
tions are performed. After all the specified number of runs 
(one run includes several generations) of the algorithm are 
performed, the individual having the best fitness among all 
the runs is designed as the solution to the problem. 

The variable of interest is selected from the state vari-
ables that will show oscillations according to the predic-
tions of the BMM. The criterion used to minimize these 
oscillations is to minimize the area under the curve of the 
state variable of interest. The optimization problem should 
include initially all decision variables of the model. How-
ever, if the user can get some insights about specific deci-
sion variables that are responsible for the fluctuations of 
the state variable of interest (for example using sensitivity 
analysis) then the optimization problem will focus on find-
ing the values of these decision variables that would lessen 
the oscillations of the supply chain.  

The next step in the algorithm is to randomly create an 
initial population. The population contains several indi-
viduals or solutions (population size). Each individual is a 
set of values, one value for each of the decision variables, 
where each value is generated between the lower and upper 
bounds of these variables. The fitness of an individual is 
nothing but the absolute value of the area under the curve 
of the state variable of interest generated by simulating the 
supply chain model with the values of the variables corre-
sponding to that individual.  

A new population of individuals is created by applying 
three genetic operators: (i) selection (ii) crossover, and (iii) 
mutation. The genetic operators are applied to the indi-
viduals in the population chosen with a probability based 
on their fitness. 

The main objective of the selection operator is to make 
duplicates of good solutions and eliminate bad solutions in 
a population, while keeping the population size constant. 
The proposed algorithm uses Stochastic Remainder Rou-
0
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lette-Wheel (SRRW) selection operator to create a new 
population. The implementation of this selection operator 
can be thought of as a roulette-wheel mechanism, where 
the wheel is divided into N (population size) divisions, 
where the size of each is marked in proportion to the inte-
ger part of the expected number of copies of each solution. 
This expected number is calculated by multiplying the 
probability of selecting a solution and the population size. 
Thereafter, the wheel is spun N times, each time choosing 
the solution indicated by the pointer of the roulette-wheel. 
The process is repeated until the desired number of indi-
viduals is obtained (called mating pool). 

A crossover operator called Simulated Binary Cross-
over (SBX) is applied next to the solutions of the mating 
pool in order to create new individuals by combining ge-
netic material randomly selected from two parents. The 
procedure computes the offspring Xi

 (1, t+1) and Xi
 (2, t+1)

from parent solutions Xi
 (1, t) and Xi

 (2, t) using a spread fac-
tor ( i) defined as the ratio of the absolute difference in 
offspring values to that of the parents:  

i =   t)(1,
i

  t)(2,
i

1)  t(1,
i

1)  t(2,
i

XX

XX

Firstly, a random number ui  [0, 1) is chosen. Secondly, 
from a specified probability distribution function, the ordi-
nate qi is found so that the area under the probability curve 
from 0 to qi is equal to the chosen random number ui. The 
probability distribution used to create the offspring is as 
follows: 

 P ( i) = 0.5( + 1)( i) ,  if   i  1, 
           = 0.5( + 1)(1 / i

+2), otherwise;  

where  is a non-negative real number. A large value of 
gives a higher probability for creating ‘near parents’ solu-
tions and a small value of  allows distant solutions to be 
selected as offspring. After equating the area under the 
above probability curve to ui, the value of qi is given as 
follows: 

q i = (2ui)1/( +1),  if ui  0.5, 
       = [2(1 – ui)] -1/( +1), otherwise.   

Thereafter, offspring are computed using the following 
equations proposed by Deb (2001): 

Xi
 (1, t+1) = 0.5 {(1 + q i) Xi

 (1, t) + (1 – q i) Xi
 (2, t)},

Xi
 (2, t+1) = 0.5 {(1 – q i) Xi

 (1, t) + (1 + q i) Xi
 (2, t)}.

The need for mutation is to keep diversity in the popu-
lation. After applying selection and crossover, polynomial 
mutation operator is used in order to induce some diversity 
in the population. A mutated solution Yi

(1, t+1) using poly-
nomial mutation is obtained as follows:  

Yi
(1, t+1) =   Xi

 (1, t+1) + {Xi
 (U) – Xi

 (L)} i ; 
where i is calculated from the polynomial probability dis-
tribution P( ) = 0.5 ( +1) (1 –| |)  in the following way: 

i = (2 ri) 1/( +1) – 1, if ri < 0.5, 
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    = 1 – [2(1 – ri)] 1/( +1), if ri  0.5;  
where ri  [0, 1) is a random number, Xi

 (U) and Xi
 (L) are 

the upper and lower bounds of solution Xi.
 After every single run of the RCGA algorithm, the in-
dividual that is identified to be having the best fitness 
(among all the generations in this run) is designated as the 
result of the algorithm for that run. After all the specified 
number of runs of the algorithm are performed, the indi-
vidual having the best fitness among all the runs is desig-
nated as final result of the algorithm, which represents a 
solution to the problem. 

3 CASE STUDY 

A model of the SC of an actual electronics manufacturing 
company (LSMC) is used to demonstrate the use of the 
proposed analysis methodology (Lertpattarapong 2002). 
The LSMC name is used to respect confidentiality. LSMC 
products are technological gadgets and personal computer 
(PC) complementary products. As a market leader, LSMC 
supplies its products to Original Equipment Manufacturers 
(OEMs) like Dell, Gateway, and Hewlett-Packard. LSMC 
was facing a problem of persistent oscillations in its fin-
ished goods inventory and desired capacity. Even though 
LSMC has maintained its market share, it experienced in-
creasing competitive pressures and demand fluctuations, 
which have impacted its SC performance. 
 Since 1998, led by Dell, many OEMs have changed 
their strategies by aggressively eliminating slack in their 
inventories through a Build-To-Order (BTO) and Just-In-
Time (JIT).  Further, because of fast dynamic changes in 
the PC market, the short lifecycle of PCs and other com-
plementary products has also amplified coordination prob-
lems, which in turn have often caused excess inventory and 
sometimes difficulties to keep up with demand. Moreover, 
the competition has forced the company to introduce more 
product varieties at lower prices into the market to protect 
its existing and potential market share. Production capacity 
is another factor that adds to supply chain complexity be-
cause its long delays, huge investments, and new products 
with more complex manufacturing processes than previous 
generations. In addition, these complementary PC products 
are at the upstream of the supply chain for PCs and their 
resulting fluctuations are higher. 
 In the following lines we present the analysis con-
ducted for the LSMC supply chain using the proposed 
methodology to detect and mitigate oscillations due to an 
unexpected change in demand. For additional information 
on this case study, the reader is referred to Lertpattarapong 
(2002). 

3.1 SD Model of the LSMC Supply Chain 

During the study of LSMC supply chain, several partici-
pants (at different levels of the managerial hierarchy) from 
1
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various departments (e.g. information technology, strategic 
planning, supply chain, manufacturing) were interviewed. 
In addition, available historical data was analyzed in order 
to identify the relevant parameters and variables of the 
company’s supply chain operations.  

From the list of variables and the interviews with the 
participants, the causal loop diagram that explains the dy-
namic behaviors of LSMC supply chain was developed. 
After that, the causal loop was converted into stock and 
flow diagrams, like the one shown in Fig. 2, and the mathe-
matical formulations were defined. The complete model 
has more than 91 equations, including differential and aux-
iliary equations, and it is comprised of three connected 
stock and flow submodels: (1) the production model, (2) 
the market share and shipment model, and (3) the demand 
forecast and capacity model. The validation of the model to 
represent the operations and polices of LSMC was done by 
197
verifying the historical and projected behavior (reference 
modes) of variables that the team of managers, engineers 
and planners considered important (Lertpattarapong 2002). 
3.2 The Behavior Monitor Module 

3.2.1 Category Classification and NN Training 

NN pattern recognition analysis was conducted on the 
SD simulation results. To generate the required data the 
three components of the input vector were defined, i.e., the 
decision vector, the state vector and the trend vector. The 
decision vector d contains seventeen parameters; the state 
vector s has seven variables, and the trend vector w, four-
teen variables. The complete definition of the vectors is 
shown next. 
Finished Goods
Inventory

Sales to Channel

Inventory
Coverage

Time to Adjust Finished
Goods Inventory

Finished Goods
Inventory Adjustment

Desired Net
Assembly Completion

Backlog Switch

Expected
Channel Demand
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Channel Orders
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Shipment Rate

Minimum Order
Processing Time

Order Fulfillment
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Fulfillment

Desired Finished
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<Backlog
Adjustment>
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Backlog>

Shipment Ratio

<Net Assembly
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Figure 2: Stock and flow diagram of the Finished Goods Inventory sub-model 
2
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 The behaviors of each state variable were simulated 
during the future 24 months, observed and classified in 
categories. Five sets each with 800 different scenarios 
were generated from the simulations. The number of 800 
different combinations was provided by following an es-
timate of the prediction risk as provided by Akaike’s final 
prediction error (Akaike 1970). 

The 800 graphs of each state variable, obtained from 
the first set of simulation scenarios, were exposed to the 
Fuzzy ART NNs. The first Fuzzy ART NN was used for 
the Historical Demand, which was able to develop nine 
stable and different categories of behavior. A second 
Fuzzy ART NN was used for the Available Capacity, 
generating eleven stable and different categories. Simi-
larly, four categories for the Desired Capacity, eight cate-
gories for the Pre-assembly Inventory, nine categories for 
the Assembly Inventory, six categories for the Finished 
Goods Inventory, and six categories for the Channel Or-
der Backlog were generated. 

The second set of 800 samples was used to validate 
the different categories of each state variable. The valida-
tion of the categories using this data set was 100% cor-
rect.

The last three sets of 800 samples each were used for 
training, validation, and testing. The backpropagation NN 
was trained using different architectures and learning al-
gorithms (as the ones mentioned in the methodology). 
The Levenberg-Marquardt algorithm, which provided the 
most reliable and fast training option, was used to select 
the best architecture. Different architectures from 2 to 40 
hidden neurons were evaluated. The architecture with five 
hidden neurons showed the minimum validation error and 
was selected for further analysis. This architecture was 
1973
then tested using the testing data set and the final testing 
error was considerable smaller. 

3.2.2 Undesired Behavior Detection 

For the purpose of illustration, a particular scenario with 
specific settings was used. With these settings, while the 
system was in equilibrium with no oscillations, the Chan-
nel Demand experienced a sudden increase of 10% of its 
value at the six month. The resulting behavior of the dif-
ferent inventories was oscillatory, as shown in Figure 3 
for the Finished Goods Inventory. The effect of the dis-
turbances starts at the eighth month, i.e. two months after 
the 10% increase. 

2 M

1.65 M

1.3 M

950,000

600,000
0 4 8 12 16 20 24 28 32 36

Time (Month)

Figure 3: Finished Goods Inventory oscillations 

NNs were applied at the seventh month, setting the 
current state vector and the trend vector for t=7. These 
NNs were able to predict that the behavior of the Finished 
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Goods Inventory would be of the “oscillatory with unde-
sired amplitudes” category. 

3.3 The Optimization Module 

Before running the optimization algorithm, some impor-
tant observations about the dynamic behavior of the 
LSMC supply chain were found through simulations. One 
of the observations is that varying time to adjust invento-
ries has impacts on the oscillatory behavior of the product 
inventories. Another important observation is that the 
fluctuation in the Finished Goods Inventory (FGI) oscil-
lates and the amplitude is large compared to demand and 
capacity (Lertpattarapong 2002). This fact is utilized to 
select the state variable FGI as the variable of interest.  
 Moreover, the following five decision variables that 
are independent and are in control of LSMC were chosen 
for the purpose of minimizing the oscillations in FGI: Pre-
assembly Adjustment Time (PAT), Time to Adjust As-
sembly Inventory (TAAI), Time to Adjust Finished 
Goods Inventory (TAFGI), Manufacturing Cycle Time 
(MCTime) and Minimum Order Processing Time (MOP-
Time). The graph of FGI for the original LSMC model 
looks as is shown in Figure 4. The oscillations in the 
curve can be seen very clearly. 

Figure 4: Finished Goods Inventory of LSMC Supply 
Chain 

 The criterion used to minimize these oscillations in 
FGI is to minimize the area under this curve. An imagi-
nary axis (shown as a discontinuous line in Figure 4) is 
drawn at the initial condition and the absolute value of the 
area under the curve about this imaginary axis is mini-
mized. When the area under the curve is zero, the curve is 
just a straight line meaning that FGI remains constant and 
stable over time. The RCGA takes as input the lower and 
upper bounds of the five variables mentioned above, and 
attempts to find the values (for these five variables) that 
would give rise to a FGI curve with the minimum area 
possible. 
19
3.4 Results and Analysis of the LSMC Model 

The genetic algorithm for LSMC model was run at the 
eighth month using the settings mentioned below: 

1. Number of Generations = 20 
2. Population Size = 30 
3. Probability of Crossover = 0.7 
4. Probability of Mutation = 0.15 
5. Lower and Upper Limits for MCTime = (1, 3) 
6. Lower and Upper Limits for MOPTime = (0.1, 1) 
7. Lower and Upper Limits for TAAI = (0.1, 8) 
8. Lower and Upper Limits for PAT = (0.5, 10) 
9. Lower and Upper Limits for TAFGI = (0.5, 10) 
10. Number of Runs = 10 
11. Selection Strategy = SRRW selection 
12. Crossover Strategy = Simulated Binary Crossover 
13. Exponent ( ) for Crossover (  = 2 is used) 
14. Exponent ( ) for Mutation (  = 20 is used) 
15. Random seed = 0.123 

Table 1 shows the values of the five decision vari-
ables obtained from the RCGA by using the above set-
tings in comparison with the original values of these vari-
ables.

Table 1: Comparison of new variable values with the  
original values 

New Values 
from GAs 

Original  
Values from 

LSMC Model 
Manufacturing  
Cycle Time 

1.163297 
months 2 months 

Minimum Order 
Processing Time 

0.227299 
months 0.25 months 

Time to Adjust  
Assembly Inventory 3.240612 weeks 0.5 weeks 

Pre Assembly  
Adjustment Time 2.266047 weeks 2 weeks 

Time to Adjust  
Finished Goods  
Inventory 

2.672158 weeks 2 weeks 

The FGI curve obtained after simulating the LSMC 
model with these new decision variable values is shown 
in Figure 5. The new curve obtained using the proposed 
algorithm is relatively better than the original one in terms 
of the oscillations occurring in the Finished Goods Inven-
tory. Hence, the proposed methodology, though in its pre-
liminary stage, is quite capable of minimizing the oscilla-
tions in the Finished Goods Inventory.  
74
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Figure 5: Finished Goods Inventory curve with reduced 
oscillations 

From the comparison of the values (Table 1), it is 
evident that LSMC has to reduce the Manufacturing Cy-
cle time and Minimum Order Processing time and needs 
more time to adjust inventories (TAAI, PAT and TAFGI) 
in order to be able to have fewer oscillations in the Fin-
ished Goods Inventory. 

4 CONCLUSIONS AND FUTURE WORK 

This paper proposed a methodology to detect changes in 
the SC environment and eliminate possible oscillatory be-
haviors. Our approach utilizes the modeling flexibilities 
of system dynamics to model complex systems, the pat-
tern recognition capabilities of neural networks to detect 
structural changes in a dynamic environment, and the po-
tential of genetic algorithms to scan complex and non-
linear search spaces in order to minimize the oscillatory 
behavior of the supply chain. 

This methodology can contribute to assist in imple-
menting Six-Sigma programs, improve forecasts, and 
other management initiatives as well. Most important, it 
will allow the analysis of planning strategies to design 
stable supply chains that can effectively cope with signifi-
cant changes and disturbances, with the corresponding 
cost savings to the companies. 

Currently, the proposed methodology takes into con-
sideration only the objective of minimizing the oscilla-
tions of one state variable. For future work, we suggest 
extending the analysis to cover more than one variable of 
interest and applying stability conditions simultaneously 
to these variables when optimizing the control parameters 
of the supply chain.  

Because the ability of the searching algorithm to 
avoid premature convergence in a local optimum is criti-
cal for the optimization problem, we will be experiment-
ing with other type of algorithms, such as Particle Swarm 
Optimization (Kennedy and Eberhart 1975) or hybrid al-
gorithms that combine the ideas of GA and Particle 
Swarm Optimization models (Engelbrecht 2005). Finally, 
1975
it is also required the development of a computerized 
framework that integrates the modules described in this 
paper in order to perform an automatic model analysis. 
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