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ABSTRACT 

In this paper, we compare two scheduling procedures de-
signed to minimize setup costs for a make-to-order elec-
tronics manufacturing. While setup costs are important,  
quick response is highly valued by the manufacturer’s 
customers and customer service is negatively impacted 
when jobs spend too much time in the system. To address 
this issue, we simulate the factory running with the 
schedules produced by these two procedures and compare 
the output based on the age of jobs remaining unproc-
essed at the end of one production shift. The simulation 
results show that the scheduling procedure that results in 
the lowest setup cost does not necessarily yield the best 
job age distribution. 

1 INTRODUCTION

We consider a problem described by Loveland et al. 
(2007) and Monkman et al. (2007) in which a make-to-
order electronics manufacturer needed to improve its pro-
duction scheduling system in one of its factories. The 
problem was addressed by developing some scheduling 
procedures designed to minimize set-up costs. While 
these procedures improved set-up costs, there was some 
concern regarding their impact on the age of jobs in proc-
ess. With a make-to-order business model, quick response 
is highly valued by the manufacturer’s customers and cus-
tomer service is negatively impacted when jobs spend too 
much time in the system.  

In this paper, we compare two scheduling procedures 
developed to address the manufacturer’s problem of set-
up cost minimization. We simulate the factory for one 
production period (shift) using the schedules generated by 
each of the two procedures and compare the output based 
on the distribution of the age of jobs remaining in the 
process at the end of the shift. 

The remainder of the paper is organized as follows. 
Section 2 provides the problem description. The schedul-
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ing procedures are described in Section 3. The experimen-
tal design for the comparison of the two procedures is 
given in Section 4. Section 5 contains a description of the 
simulation model. The results from the simulation are 
provided in Section 6. Conclusions are provided in Sec-
tion 7.  

2 PROBLEM DESCRIPTION 

This section and the next contain a brief description of the 
problem and the scheduling procedures. Loveland et al. 
(2007) and Monkman et al. (2007) provide more details. 

This manufacturer’s factory must balance between 
being highly flexible and responsive to changing, custom-
ized demand while maintaining a high rate of production 
and quick order turn-around. To achieve these goals, the 
factory was designed according to the lean manufacturing 
and just-in-time philosophies. Within tight space con-
straints, the factory must be able to manufacture a con-
tinually increasing variety of customized products. 

The factory produces a wide variety of products that 
are grouped into product families to aid in the production 
planning process. A product family is defined by the 
chassis type (i.e., case) required by a product. Hence, the 
terms “chassis” and “product family” will be used inter-
changeably. Each chassis has a variety of components that 
can be assembled with it. We will refer to a product fam-
ily’s chassis and set of components collectively as the 
product family’s parts. Each family uses some compo-
nents that are not used by any other family and some 
components that are used by various other families. Simi-
larly, some components are used by only one family and 
others, by several families.  
 The factory has multiple identical production lines 
located in parallel. Figure 1 depicts a rough schematic of 
one of these production lines. As shown, each production 
line has spaces designed to hold pallets of chassis and 
spaces designed to hold boxes of components. Each pro-
duction line can hold L ( 1) different types of chassis 



Heath and Morrice 
(one type of chassis per pallet) and C ( 1) different types 
of components (one type of component per box). Each 
chassis space on a line is called a lane and each compo-
nent space is referred to as a bin. When the line is run-
ning, a worker selects one chassis from the L lanes for the 
next product to be built and sends the chassis to the work-
ers down the line. The workers down the line select the 
correct components for that customer order from the bins 
and add them to the chassis. The production computer 
system keeps track of which chassis types are in which 
lanes and which components are in which bins, and sig-
nals the workers to select the correct chassis and compo-
nents for each custom order. Therefore, each production 
line can produce any customized product from any subset 
of L families, in any sequence, without requiring any 
changes to the types of chassis that are in the lanes.  

Figure 1:  Layout of a single production line with L chas-
sis lanes, and C component bins 

A setup must take place when a line needs to produce 
products from a family whose chassis type is not in any of 
the lanes on the line. The setup entails removing the pallet 
for one chassis type from a lane and placing the pallet of 
the chassis type required for the next order in that lane. 
Components must also be changed as well. Those that are 
not needed for the other chassis types remaining in the 
other lanes, or for the new chassis type being placed in a 
lane, must be removed from the bins. Then, the compo-
nents that are required for the new chassis type that are 
not already on the line must be placed in the bins. And, 
finally, the production computer must be updated with the 
new information on which parts are in which spaces. 

The costs for this type of setup are sequence-
dependent, but what is not immediately apparent is that 
these costs depend on the current subset of L families on 
the line and the new subset of L families on the line after 
the setup. Here, the total number of parts that will need to 
be changed during a setup equals the number of parts cur-
rently on the line that will no longer be needed by the new 
subset of L families plus the number of parts that are not 
currently on the line that will be needed by the new subset 
of L families. We use the number of parts that need to be 
changed during a setup as the setup cost. 
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3 SCHEDULING PROCEDURES 

The two scheduling procedures are heuristics that take a 
“divide and conquer” approach to what would otherwise 
be an intractable problem. In the spirit of Pinto and 
Grossmann (1998), we developed procedures that address 
each of the three major scheduling steps separately: assign 
tasks to equipment, sequence the tasks, and schedule the 
exact time that each task will occur within the sequence. 
In our problem, the “tasks” are product families and the 
“equipment” is the production lines. The timing of a task 
is actually the time that the parts for a given product fam-
ily are placed on the assigned production line. 

Both procedures use the same mixed integer pro-
gramming model for the assignment step. A solution to 
this model assigns demand and components for all prod-
uct families to lines, ensures that enough demand is as-
signed to every line in order to keep it fully utilized, 
minimizes the number of setups, and minimizes the 
maximum number of components on any line. Two addi-
tional constraints are included in this assignment model 
for managerial purposes because together they allow for 
some shifting of demand across lines without requiring a 
different chassis-line assignment. These constraints en-
sure that each production line has chassis with very high 
demands (high runners) assigned to it, and every high 
runner is assigned to more than one line. One further con-
straint limits the number of families assigned to a single 
line to a maximum established by the company.  

The line assignment problem was programmed into 
GAMS and solved by calling Cplex 9.0.  Practical prob-
lems are quite large and difficult to solve to optimality 
within a time limit that management finds acceptable. 
Therefore, the computations were halted when the opti-
mality gap reached 0.5% which was achieved within 3 
minutes for all cases considered. See Monkman et al. 
(2007) for model formulation and solution details. 

The two procedures differ significantly in the next 
two steps. The first procedure, referred to as Procedure 1, 
relies on the simplifying assumption that set-up costs are 
sequence independent. While this assumption is violated 
in practice, it is an assumption the manufacturer is willing 
to make in order to have a procedure that can produce ap-
proximate solutions quickly. In contrast, Procedure 2 ac-
commodates sequence dependent set-up costs. Conse-
quently, steps 2 and 3 of Procedure 2 are more 
sophisticated and accurate but harder to solve.  

For Procedure 1, the sequencing step reduces to an-
other assignment problem in which product families are 
assigned to lanes on a line and then sequenced in each 
lane using a simple heuristic. The heuristic tries to: 

1. balance demand across lanes, 
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2. ensure that a chassis is assigned to a particular 
lane and put first in the sequence if it is left on 
that lane at the end of the previous shift, 

3. assign each chassis to exactly one lane, 
4. make sure each lane has at least one chassis, and 
5. sequence the remaining families in each lane 

based on the level of demand, from highest de-
mand chassis to lowest demand chassis. 

 For the third step in Procedure 1, each lane’s avail-
able production time for the production period is allotted 
to each chassis type in proportion to its expected percent-
age of the total demand assigned to that lane. This allot-
ment determines the setup times within each lane. Then, if 
any of the lane setup times overlap the lane setup times 
are shifted slightly so that no more than one family is be-
ing changed at a time.  The heuristic also takes into ac-
count planned downtimes due to breaks or scheduled 
maintenance by decreasing each lane’s available produc-
tion time accordingly. 
 Procedure 2 does not rely on the assumption that 
setup costs are sequence independent. With traditional se-
quence-dependant setup costs, the sequencing problem 
can usually be modeled as a traveling salesman problem 
(TSP) where each task is represented by a node in the 
graph, and each arc between two nodes represents the 
setup cost when switching from one task to the other task. 
To obtain a solution where all tasks are completed, each 
node must be visited. Since our setup costs depend on the 
subsets of L families on the line before and after the setup, 
we needed to create a graph for our problem where each 
node represents a possible subset of L families, with the 
arcs representing the setups costs of changing between 
these subsets. With this formulation, it is no longer neces-
sary to visit every node, but rather to make sure enough 
nodes are included in the solution so that each family will 
be on the line for a sufficient amount of time during the 
shift. With this formulation, the sequencing step in Proce-
dure 2 can be formulated as a traveling salesman subtour 
problem (TSSP) which is sometimes referred to as a trav-
eling salesman subset-tour problem (Mittenthal and Noon, 
1992).  Since the TSSP is an NP-hard problem (it is a 
special case of a TSP), it is difficult to solve practical 
problems to optimality. A greedy randomized adaptive 
search procedure (GRASP) (Feo and Bard, 1989) is de-
veloped and applied to quickly find a good, but not neces-
sarily optimal, solution to this sequencing TSSP.  

The third step in Procedure 2 attempts to allot each 
lane’s available production time to each chassis type in 
proportion to its expected percentage of the total demand 
assigned to that lane. However, this is more complicated 
than in Procedure 1 because families are sequenced on 
each line in subsets in step 2 of Procedure 2. Conse-
quently, the allotment of time to families is adjusted by 
changing when each node (each subset of families) is 
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scheduled to be on the line, with a setup duration between 
each node’s end time and the next node’s start time. An 
integer programming model was formulated for this prob-
lem, programmed into GAMS, and solved to optimality 
using Cplex 9.0.  

4 COMPARISON  EXPERIMENTAL DESIGN  

While Procedure 2 is harder to solve than Procedure 1, it 
does yield significantly better solutions in terms of setup 
costs.  Monkman et al. (2007) report improvements of 
roughly 18%, on average, and 49% in the best case. 

The purpose of this study is to compare these two 
procedures on another dimension: age of jobs remaining 
in the system after running one production shift using the 
schedules generated by the procedures. The comparison is 
done using simulation. 

One might be tempted to conclude that Procedure 2 
will outperform Procedure 1 on this second dimension as 
well since the former is more efficient at setups. But this 
is not so clear because the two objectives are quite differ-
ent and not necessarily complimentary. Additionally, the 
third step of Procedure 2 is less flexible than Procedure 
1’s third step because in Procedure 2, time on the produc-
tion line is allotted by subsets of families rather than by 
individual family. This means that the decision to allot 
more or less time to one family on a line is restricted not 
only by the production needs of the other families in the 
same lane (as in Procedure 1) but also by the needs of the 
other families in the node, and, as a consequence, all the 
other families on the same production line. It seems plau-
sible that this loss in flexibility might increase the time 
jobs spend in the system. 

 The data used for the simulation model were gath-
ered from the manufacturer’s factory over a two week 
time period. Each day is subdivided into production shifts 
and each shift is broken down into production run time 
periods. These data contained detailed job information for 
each production run including the family type, the order 
date for each job, and the date that each job becomes 
available for factory processing. Note that the order date 
and the factory processing dates can differ if a job gets 
delayed in order processing. Delays can occur due to 
many factors such as credit checks, parts shortages, and 
unexpectedly high demand. From these data, we were 
able to estimate probability distributions for the age and 
number of jobs arriving to the factory for each family in 
each production period using Palisade Decision Tool’s 
BestFit, Version 4.5 (www.palisade.com). Distributions 
for the number and age of jobs in the system at the begin-
ning of the simulation (backlog) were estimated from the 
data collected and from expert opinion.  

In order to control for variation and isolate the impact 
of the different scheduling approaches on the age of jobs 
in the system, we used common random numbers. To help 
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synchronize the random number streams across the differ-
ent simulations, we used separate random number streams 
for each probability distribution in the simulation model 
(Law and Kelton, 2000, page 588). 

The comparison experiment is run in the following 
manner: 

1. The simulation model randomly generates an ini-
tial number of jobs for each family (backlog) and 
the age of each job in backlog. 

2. The generated backlog plus the expected number 
of jobs for each family over a production shift is 
input into the scheduling heuristics to produce 
the schedules. 

3. Each schedule is read back into a separate run of 
the simulation and one production shift of the 
factory is simulated. 

4. The job age results for the jobs in backlog at the 
end of the shift for each scheduling procedure’s 
simulation run are dumped to a data file for 
analysis in Excel. 

5. Steps 3 through 4 are replicated, with only newly 
arriving demand changing between replications, 
to get statistics for the job age distributions for 
the schedule produced by each scheduling pro-
cedure.

6. The job age distribution statistics are compared 
to determine if one procedure is performing sig-
nificantly better than the other. 

7. Steps 1 through 6 are replicated to get statistics 
for multiple schedules. 

5 SIMULATION MODEL DESCRIPTION 

The simulation model was developed in Rockwell Auto-
mation’s Arena simulation software 
(www.arenasimulation.com/default.asp). It has four main 
sections: creation of backlogged and newly arriving jobs 
(Figure 2); the production line (Figure 3); family change-
overs on production lines (Figure 4); and output (not 
shown).

The logic for creating backlogged and newly arriving 
jobs in Figure 2 for product family M is representative of 
the logic used for all families. Backlogged jobs are cre-
ated at the beginning of the simulation to represent jobs 
that have been held over from previous production shifts. 
All other jobs are created during the simulation runs. This 
simulates new customer order information arriving to the 
factory over the course of the production shift. Both back-
logged and newly arriving jobs are assigned attributes in-
cluding family name and a priority based on age (oldest 
gets the highest priority so it can be processed first when 
its family is on the line). 

The scheduling procedures generate schedules that 
specify the percentage of jobs from a family that are as-
signed to each production line. Based on constraints set 
195
by the management, each family can be assigned to either 
one line or two lines. Figure 2 depicts a family that has 
been assigned to two lines. Hence, when jobs reach the 
“Decide” module, the assigned percentage are routed to 
one line and the rest are routed to the other. Jobs for fami-
lies that are only assigned to one line get routed directly 
to their assigned line without a decide module. 

to Family M Jobs
Assign Atributes True

False

M lines
Decide between family

A
Family M Route

B
Family M Route

Backlog Jobs
to Family M

Assign Attributes

Jobs
Create Family M

Backlog
Create Family M

0      

     0

0      

0      

Figure 2: Example of Arena logic for creating backlogged 
and newly arriving jobs 

line 1?
Is family currently on True

False

L1Production
Route to

Route to L1Hold

Line 1 Station

Production
Line 1

Station
L1Production

from Line 1
completed jobs

Dispose of

1
to come on line
Hold for Family

L1Hold Station

0      

     0

     0
0      

Figure 3: Example of Arena logic for production lines 

Figure 3 contains the logic for one of the production 
lines (i.e. Line 1). All other production lines have the 
same logic. When a job arrives at the production line it is 
queued up for production if its product family is currently 
scheduled on one of the lanes on the line. Otherwise, the 
6
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job is routed to a holding queue where it is held until the 
family gets scheduled on the line. Once in production, an 
job undergoes a production time delay after which it is 
disposed. Due to the fact that the production is high vol-
ume and fairly repetitive, a constant production delay is 
used. 

Figure 4 contains the logic for product family 
changeovers on a line. The logic is shown for Production 
Line 1 but again the logic is the same for other lines. The 
family changeover logic is arguably the most complex in 
this simulation model. 

The create node initiates a cycle in which information 
for the next changeover is read in from a file produced by 
the scheduling procedure. After the simulation clock ad-
vances to the next changeover time, one family is re-
moved from the line and another family is added. The re-
moval entails determining the lane in which the family is 
currently scheduled and removing it from this lane. Then 
the production line queue is searched for any jobs corre-
sponding to this family. When a job for this family is 
found in the production line queue the job is removed and 
routed to that line’s holding queue and the search is re-
peated until no more jobs from that family are in the pro-
duction line queue.   

After a delay for setup time, the product family being 
added is assigned to the empty lane. Then the holding 
queue is searched for any jobs in this family. When a job 
for this family is found in the holding queue the job is re-
moved and routed to that line’s production queue and the 
search is repeated until no more jobs from that family are 
in that line’s holding queue. This completes the scheduled 
1957
changeover and the cycle repeats, returning to read in the 
next changeover information.   

The last part of the model (not shown) is invoked at 
the end of the simulation of one production shift. It 
searches through all the production line and holding  
queues and dumps the family type and age for each job 
remaining in the system to a data file.  The data file is im-
ported into Excel for the analysis contained in the next 
section. 

6 SIMULATION EXPERIMENT 

The experimental steps described at the end of Section 4 
are used to generate data for comparison. Table 1 contains 
statistics on the age of the jobs remaining at the end of the 
simulated production shift for fifteen replications using 
the same set of initial conditions (same backlog and same 
schedule). Newly arriving demand is randomly generated 
for each replication. On each replication, both procedures 
face exactly the same newly arriving demand because 
common random number streams are used. Therefore, the 
replicates are paired and the difference between age of 
jobs distribution statistics (Procedure 1 -  Procedure 2) 
form the basis of the analysis. In its second column, Table 
1 contains the differences for the mean, standard devia-
tion, skewness, count, and several percentiles averaged 
over the fifteen replications. The third column in Table 1 
provides results from a hypothesis test with null hypothe-
sis that the average difference is zero and alternative hy-
pothesis that the average difference is less than zero. 
Changes
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Figure 4: Example of Arena logic for product family changeovers on a line 
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 On average, job ages are significantly higher for Pro-
cedure 2. Comparison of the percentiles of the job age 
distributions helps explain why this is so and reveals im-
portant information about the performance of the two pro-
cedures. Up to the 80th percentile the two distributions 
have very similar percentile values. At the 90th percentile 
and above, the percentiles for Procedure 2 significantly 
larger than for Procedure 1. In other words, the upper tail 
of the job age distribution tends to be longer for Proce-
dure 2 which explains why the mean of its distribution is 
higher. These results indicate that most jobs (80+ %) have 
comparable ages under both procedures but the oldest 
jobs are significantly older for Procedure 2. In other 
words, certain old jobs that are processed using Procedure 
1’s schedule during the single production shift do not get 
processed under Procedure 2’s schedule. Additionally, 
based on the count statistic, Procedure 2 leaves signifi-
cantly more jobs in the system at the end of the shift on 
average. 

Table 1: Average Differences Between Age of Jobs Dis-
tribution Statistics for the Scheduling Procedures (Proce-
dure 1 – Procedure 2) Over 15 Replications of a Single 
Schedule 

Statistic

Average Differ-
ence (Procedure 
1 – Procedure 2)  

Hypothesis Test 
(Lower Tail 

Test)
Mean -105.86 Reject at 1% 
Std. Dev. -1063.09 Reject at 1% 
Skewness -8.03 Not significant 
Median 0.58 Not significant 
Count -219.80 Reject at 1% 
1st Quartile -1.55 Reject at 5% 
3rd Quartile 14.66 Not significant 
1.00% 0.00 Not significant 
2.50% -0.05 Not significant 
5.00% 0.06 Not significant 
10.00% -1.46 Reject at 5% 
20.00% -0.28 Not significant 
80.00% 13.57 Not significant 
90.00% -12.27 Reject at 1% 
95.00% -288.57 Reject at 1% 
97.50% -1187.67 Reject at 1% 
99.00% -2440.73 Reject at 1% 

In order to check these results further, the experiment 
just described was repeated for two more sets of initial 
conditions (i.e., two more schedules and sets of back-
logged jobs). Table 2 provides the combined results that 
are based on fifteen replications for each of three different 
schedules (45 replications total).  While the same patterns 
hold, the results provide even stronger evidence that Pro-
19
cedure 2 is not clearing older jobs out as well as Proce-
dure 1. 

The results in Tables 1 and 2 are probably best ex-
plained by the fact that step 3 in Procedure 2 is less flexi-
ble than the corresponding step in Procedure 1 (see the 
discussion in Section 4). However, while Procedure 2 has 
worse performance on age of jobs, it has significantly bet-
ter performance on setup costs are measured by the num-
ber of part swaps required in the given schedule. Table 3 
illustrates that for the three schedules considered, Proce-
dure 2 yields roughly a 40 percent improvement over Pro-
cedure 1. 

Table 2: Average Differences Between Age of Jobs Dis-
tribution Statistics for the Scheduling Procedures (Proce-
dure 1 – Procedure 2) Over 3 Schedules of 15 Replica-
tions Each 

Statistic

Average Differ-
ence (Procedure 
1 – Procedure 2)  

Hypothesis Test 
(Lower Tail 

Test)
Mean -54.04 Reject at 1% 
Std. Dev. -578.67 Reject at 1% 
Skewness -5.41 Not significant 
Median -2.36 Reject at 5% 
Count -277.11 Reject at 1% 
1st Quartile 0.90 Not significant 
3rd Quartile -7.07 Reject at 5% 
1.00% 0.01 Not significant 
2.50% 0.09 Not significant 
5.00% 0.68 Not significant 
10.00% 1.28 Not significant 
20.00% 1.35 Not significant 
80.00% -16.64 Reject at 1% 
90.00% -38.72 Reject at 1% 
95.00% -125.03 Reject at 1% 
97.50% -424.93 Reject at 1% 
99.00% -967.24 Reject at 1% 

Table 3: Best Solution Setup Costs for the Scheduling 
Procedures on the Three Schedules Considered 

Schedule Procedure 1 
Setup Costs 

Procedure 2 
Setup Costs 

1 652 374 
2 962 560 
3 816 488 

One last statistic of interest is the utilization of the 
production lines under each scheduling procedure. Table 
4 contains the average utilization for each line under each 
procedure over 45 replications (three schedules of fifteen 
replications each). The results are mixed. On average, 
58
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Procedure 1 has higher line utilization on lines 2, 3, and 5 
and Procedure 2 has higher utilization on lines 1 and 6. 
All these results are statistically significant at at least the 
five percent level according to a paired t-test. There is no 
difference in utilization for Line 4 since it is fully utilized 
on both procedures.  
 These utilization results are surprising. Each of the 
scheduling procedures is designed to keep the production 
lines busy 100% of the time. In addition, both of the pro-
cedures assign the same amount of demand to each pro-
duction line. It turns out that the scheduling procedures 
actually allow the possibility of a line receiving less than 
the demand required to keep it 100% utilized if an unex-
pectedly low amount of newly arriving demand actually 
arrives during the shift. Also, even though a line may 
have enough total demand assigned to it, some jobs might 
be sitting in the holding queue while the line idles because 
that family is not scheduled to be on the line. However, in 
practice the factory is able to make final adjustments to 
the schedule before they implement it so they can shift 
some demand from a line with more than enough demand 
to a line that has much less demand to prevent these idling 
issues. Adjusting the scheduling procedures to prevent 
this situation one task in future research. 

Table 4: Average Utilization for Each Line on Each Pro-
cedure over Three Schedules of 15 Replications Each 

Line
Procedure 1 Average 

Utilization  
Procedure 2 Average 

Utilization 
1 0.964 0.966 
2 0.987 0.892 
3 0.978 0.956 
4 1.000 1.000 
5 0.970 0.930 
6 0.976 0.978 

7 CONCLUSION 

In this paper, we have used simulation to compare the 
performance of two scheduling procedures designed to 
minimize setup costs for a make-to-order electronics 
manufacturer. The simulation results indicate that the pro-
cedure which yields the best solution for setup costs does 
not necessarily perform the best with regard to the age of 
jobs remaining in the system after one production shift. 

Future work on this problem includes looking for 
ways to improve Procedure 2’s performance on the age of 
jobs remaining metric. One might approach this by ex-
tending the objective function of the optimization prob-
lem to include a loss function that penalizes the aging of 
jobs. However, since the current model is already quite 
difficult to solve to optimality, this might not be all that 
practical.
1959
In addition, one might simulate more than one pro-
duction shift to understand the how jobs age over multiple 
production shifts. This might be extended further to de-
velop a combined optimization – simulation procedure in 
which backlog at the end of each shift is used to generate 
a new schedule and help control job aging as the simula-
tion progresses.   
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