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ABSTRACT 

Agent-based simulation provides a methodology to inves-
tigate complex systems behavior, such as supply chains, 
while incorporating many empirical elements relative to 
both systems structure and agent behavior. While there is 
a significant amount of simulation and analytical research 
investigating the impact of information sharing in supply 
chains, few studies have used empirical demand for the 
model.  This research utilizes empirical distributions in 
order to determine the demand process faced by distribu-
tion centers in a distribution network.  Therefore, the dis-
tribution centers face independent and heterogeneous de-
mand that is not normal, and exhibits a much larger 
coefficient of variation than is generally utilized in similar 
research. With so much complexity and variability, con-
trasting different inter-organizational information sharing 
configurations provides an ideal setting for utilizing 
common random numbers for variance reduction.  Com-
parisons made using this methodology show clear differ-
ences between the different information sharing schemes.  

1 INTRODUCTION

There is already a considerable amount of research that 
explores the impact of shared information in supply chain 
settings (see Huang 2003). This setting is unique because 
of the variability and distribution of the empirically-
informed demand data, the variability of the transporta-
tion lead-times, and their incorporation into an agent-
based representation of the network.  While the findings 
are not dissimilar to those of other related research, they 
extend the applicability to a more realistic, empirically-
motivated setting.  Using empirical distributions for de-
mand has received very little attention as demand proc-
esses are generally assumed to be either Poisson or nor-
mal, generally with a very small coefficient of variation.  
The empirical data exhibited demand distributions that 
were neither normal nor Poisson, and had relatively large 
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coefficients of variation: ranging from .42 to 3.4 and with 
a mean of just over one for all the demands that were ex-
amined.  With this high level of demand variability, and 
with variable transportation lead-times and production ca-
pacities, it seemed an ideal setting for utilizing common 
random numbers for variance reduction.  This is the only 
study of this type, of which the author is aware, that util-
izes common random numbers for variance reduction. 

1.1 Inter-organizational Information Sharing 

There is a wealth of available research on the effects of 
information sharing in supply network contexts.  Many 
researchers examine the effect of passing point of sale 
(POS) demand data upstream (see Lee et al. 1997, Chen et 
al. 2000, Croson and Donohue 2003, Li 2003, Steckel et 
al. 2004) to mitigate the bullwhip effect.  Others have also 
found that information sharing provides significant bene-
fits to suppliers (see Bourland et al. 1996, Gavirneni et al. 
1999, and Cachon and Fisher 2000). Haung et al. (2003) 
provide a detailed literature review of inter-organizational 
information sharing.  This research extends that previous 
analytical and simulation research by exploring the ques-
tions of information sharing in contexts where it has not 
been examined.  Specifically where there is considerably 
more variability, as indicative of the empirical data. 

1.2 Conceptualizing Supply Networks as a  Complex 
System 

It is a natural step to identify supply chains as complex 
adaptive systems.  Choi et al. (2001) argue aptly that sup-
ply chain networks should be recognized as complex 
adaptive systems.  One of their key points is that in a 
complex adaptive system, organization often emerges 
rather than being prescribed.  Thus, organizations can 
only manage supply chains directly to a certain extent, as 
some of the organization is likely to emerge over time.  
They further outline complex adaptive systems in a simi-
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lar fashion to Anderson (1999), and provide a detailed 
mapping of each element of their description of complex 
adaptive systems to a supply network.  But this conceptu-
alization also recognizes that the complex relationships 
and interactions between organizations cannot always be 
abstracted away with impunity.  Thus the behavior of one 
organization can have significant impact on both their 
immediate trading partners as well as organizations that 
are only peripherally related to organization taking action. 

1.3 Agent-based Simulation Models of  Complex 
Supply Networks 

Agent-based simulation modeling of supply networks has 
received increasing attention over the last decade (see Lin 
1996, Swaminathan et al. 1998,  Tan 1999, Chang and 
Harrington 2000, Chatfield 2001, Chatfield et al. 2004, 
Pathak 2005, and Sawaya 2006).  Zeggelink et al. (1996) 
observe that object oriented programming methods pro-
vide a natural way of modeling agents, their schemata, 
and their interconnections. One of the major benefits of 
this modeling methodology is the ability to model things 
from the ground up, without abstracting away much of the 
real systems complexity and interactions (see Anderson 
1999). 

1.4 Empirical Distribution Network Setting 

A portion of the data for this study came from that used in 
Dong et al. (2005), the remainder was collected independ-
ently.  An electronics component distributor provided the 
point of sale data for many of their products in many of 
the warehouses which they supply.  As part of the data, 20 
products at 5 different distribution centers (DCs) were 
analyzed from one organization.  Input analysis was con-
ducted for each of the approximately 90 demands since 
not every product was carried at every DC.  This structure 
of 5 distribution centers was then implemented in the 
model with the empirical demands as well as the empiri-
cal average lead-times.   Additional POS demand data 
from other sources and industries was also considered as 
well.

2 EMPIRICAL DEMAND PROCESS IN THE 
DISTRIBUTION NETWORK 

2.1 Empirical Demand Input Analysis 

Regarding input analysis, Vincent (1998) notes a para-
doxical position regarding the accuracy and the represen-
tativeness of real data.  Although the collection of empiri-
cal data is the best argument for specifying and evaluating 
a specific model; it should not be paramount to the model 
1948
and research question.  That is, there should be inherent 
mistrust of models that are over-reliant on a particular 
“clean” data sample.  The goal is robust strategies for 
modeling.  His idea is part of the motivation in the use of 
empirical data to begin with.  Most other models rely on 
normalized data with relatively small coefficients of 
variation.  By using empirical data, this research relaxes 
the assumptions made in previous work regarding the 
shape and variance of the demand distributions.  
 Input analysis of these empirical demand streams us-
ing the ARENA input analyzer led to some interesting ob-
servations.  First, none of the data was significantly fit to 
a normal distribution.  Second, about one in five could be 
significantly fit to any distribution at all.  But most fit best 
to beta distributions (lowest MSE) whether they were sig-
nificant or not.  Third, they all exhibited relatively high 
variance.  The smallest coefficient of variation in any of 
the demand strings was 0.42 and the highest was 3.33, 
with a mean of 1.30 and a median of 1.13.  Typical de-
mand coefficient of variations ranges in previous research 
of this type range only as high as 0.4 for a high level of 
variance, largely due the lack of empirical motivation for 
most demand and use of normally distributed demand. 
Thus, the variation in demand observed here were signifi-
cantly higher that those typically assumed.  One product 
was chosen for extended analysis where there was de-
mand at all five locations and the following summary sta-
tistics in Table 1 below.  It should also be noted that there 
was no seasonality detected in any of the demand proc-
esses.

Table 1: Summary Data for Empirical Demand 
 DC1 DC2 DC3 DC4 DC5
Daily Average  
Demand 5.61 32.17 6.96 12.27 10.68
Daily Standard  
Deviation 7.24 32.26 9.00 11.36 16.50
Coefficient of Varia-
tion of  Demand 1.29 1.00 1.29 0.93 1.54
Best Distributional 
Fit (MSE) Beta Exponential Beta Beta Beta
Significant Fit? Yes No Yes No No 

2.2 Demand Data Generation for Simulation 

Additional data were generated for conducting simula-
tions of length, since some demand streams consisted of 
only one years data. From the best fit distribution for each 
distribution centers’ demand an additional 30,000 data 
points were generated using the ARENA input analyzer 
for each DC and then the data was split into 10 sets of 
3,000.  This resulted in a set of demand suitable for 10 
replications of 3000 days length for each of the DCs for a 
total of 100 demand sets.  Then an additional set of 10 
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replications of 3000 days was produced for each DC from 
a normal distribution with the low coefficients of varia-
tion for the sets with homogeneous and heterogeneous 
demand across the distribution centers.  And the last set 
had empirically based distribution shapes, but which had 
reduced coefficients of variation and were shifted such 
that the means were the same as the empirically based set.  
These demand sets were used to explore the effect of the 
distributional shape on the network. In this model there is 
no negative demand, so in any distribution where the 
value was negative it is truncated to zero.  This also helps 
establish that the observed results are not merely an arti-
fact of the distributional shape of the empirical data. 

3 SIMULATION MODEL CONSTRUCTION, 
VERIFICATION AND VALIDATION 

3.1 Model Construction, Verification and Validation 
via Extreme Programming 

In order to develop a model with high face validity at the 
early stages of model development, this research draws 
extensively on the existing theory and models of supply 
chains and networks.  In addition, actual system observa-
tion is possible, in a limited sense, through the extensive 
literature and case studies that examine this type of be-
havior.  Additionally, interviews provide “experts” to help 
the model maintain face validity.  Ongoing discussions 
(inquiries) with academic researchers and business practi-
tioners maintain this grounding.  Further all of the princi-
ples suggested by Law and Kelton (2000) for developing 
a model with high face validity were employed in the 
construction and verification of this model.  The model 
was constructed and run in the Eclipse programming envi-
ronment (http://www.eclipse.org/ ).   It was coded with 
the JAVA (http://java.sun.com/ ) programming language.  
To aid in the model verification process many of the ele-
ments of “extreme programming” (see 
http://www.extremeprogramming.org and 
http://www.xprogramming.com   ) were used.  These have 
been developed by computer programmers in order to 
write code quickly, correctly, and they utilize best pro-
gramming practice.  They aid in ensuring that the code is 
written correctly and performs correctly and involved 
programming in modules and performing constant tests 
and checks to make sure that everything performs prop-
erly.
 Agents were generically programmed as organiza-
tions which can purchase, sell, and manufacture objects.  
The make decisions relative to purchasing, production, 
and inventory levels based on information available to 
them.  These generic agents can then be specialized to 
function as suppliers, manufacturers, distribution centers 
or customers.  Multiple layers of organizations and any 
1949
set of network relationships can be established given the 
fully configurable nature of the coding.  Ordering, stock-
ing, and production decisions may be individually speci-
fied for each agent.  In addition, transportation times, and 
information sharing between organizations can also be in-
dividually specified for each trading relationship within 
the supply network.  The network structure used in this 
research consisted of five distribution centers, with unique 
transportation times, based on empirical data as seen be-
low in Figure 1. 

Supplier

Manufacturer

DC5DC4DC3DC1 DC2

C1 C2 C3 C4 C5

Lead-times

8 Days 14 Days 12 Days 13 Days 16 Days

8 Days

Figure 1: Supply Network Configuration 

3.2 Turing Test for Validation of  Simulation Output 

Additional empirical opportunities for validation were 
possible due to the cooperation of a system “expert” and 
primary decision maker, as well as in the availability of 
real data relative to both system inputs and a limited set of 
output for one of the distribution networks.  By collecting 
actual data on the network structure, decision rules, and 
performance data; the model can be validated via the sec-
ond and third methods suggested by Naylor and Finger 
(1967), namely testing the assumptions of the model em-
pirically, and determining how representative the simula-
tion output data are of the actual system data.  These are 
both discussed in greater detail in Law and Kelton (2000). 
  The additional data available provided the opportu-
nity for a, so called, Turing test (see Schruben 1980 and 
Turing 1950), which further established the validity of the 
model. Michael Ness, Manager and Owner of Ness Elec-
tronics, in Saint Paul Minnesota provides detailed infor-
mation about the operations of three separate distribution 
centers and well as empirical data of actual orders, sales 
and inventory levels.  This data was used to construct 
agents similar to the actual distribution centers.  The ac-
tual demand data was then used as an input and the result-
ing patterns of inventory levels for each distribution cen-



Sawaya 
ter was then graphically compared to the actual inventory 
patterns by Michael Ness.  Who confirmed that the mod-
eled agents where behaving in a similar fashion to the ac-
tual organizations.  By applying this procedure and the 
principles of extreme programming, validation is 
achieved to an extent that is not common in this type of 
research.  It also provides an example of validation in an 
agent-based simulation setting of a supply network.  Thus 
the model is credible for use in exploring research ques-
tions that have been laid out relative to information shar-
ing, and their impact on performance of the system in a 
setting that is informed by extensive empirical data. 

4 UTILIZING COMMON RANDOM NUMBERS 
METHOD OF VARIANCE REDUCTION TO 
COMPARE DIFFERENT INFORMATION 
SHARING CONFIGURATIONS  

The use of common random numbers (CRN) is an impor-
tant variance reduction technique (Law and Kelton 2000) 
specifically for simulation experiments where alternate 
system configurations are considered (Goldsman and Nel-
son 1998).  See Law and Kelton (2000) for a detailed 
mathematical explanation of CRN. The method of CRN 
essentially means putting exactly the same inputs into dif-
ferent model system configurations.  Therefore, if the 
stream of random numbers has peculiarities, then both of 
the configurations must deal with the same elements of 
randomness.  This is analogous to blocking on the random 
behavior of the input in a designed experiment.  In this 
case we are blocking for the randomness in the random 
numbers and in a complex systems setting if a small de-
viation has a large impact, both models will see it at the 
same time. Therefore great care and effort must be taken 
when using CRN for all of the random model inputs such 
that they are properly synchronized. Thus, every single 
combination of demand strings, whether empirical, em-
pirically-based generated strings, or purely fabricated are 
stored and tracked so that they can be run through every 
model.  The result is a large number of demand string 
files that must be generated, tracked and reused.  Like-
wise, when the capacity is variable, the variation is 
blocked using CRN. 

4.1 Benefits of Common Random Numbers in This 
Study 

Testing the efficacy of using CRN can be done via a sim-
ple test for two sets of data simulated using  CRN (Law & 
Kelton 2000).  Let S1

2(n) and S2
2(n) be the sample vari-

ance of the X1j’s and the X2j’s respectively where X1j is 
the parameter output for replication j from system 1 and 
X2j is the parameter output for replication j from system 1. 
Simply by defining Zj = X1j – X2j; since the runs were 
1950
made with common random numbers SZ
2(n) is an unbi-

ased estimator of the variance of Zj.  Regardless of 
whether CRN are used or not S1

2(n) is an unbiased esti-
mator of the Var(X1j) and S2

2(n) is an unbiased estimator 
for the Var(X2j), so S1

2(n) + S2
2(n) is an unbiased estima-

tor of the variance of Zj.  Thus, if the CRN method is 
working we would expect that SZ

2(n) < S1
2(n) + S2

2(n), 
and the difference estimates how much the use of CRN is 
reducing the variance of Zj.  There are a few examples of 
the use of common random numbers backfiring.  There-
fore the previous test is performed on the per unit cost 
output for some of the simulation runs.  In no case was 
the induced correlation estimated to be  negative, and it  
appears to have a increasing effect as the randomness in 
the models increased.  For instance, the variance reduc-
tion seemed to be much greater in the case of variable ca-
pacity.  In many cases the variance reduction appears to 
cut the variance in half or reduce it even further which in-
dicates that this was an appropriate variance reduction 
technique to employ as can be seen in Tables 2 and 3 be-
low. 

Table 2: Sample Variances for Different Information 
Sharing Configurations with Constant Capacity 

  S1
2(n) S2

2(n)
S1

2(n) + 
S2

2(n)   SZ
2(n)

DC1 0.0528 0.0236 0.07634 > 0.03325 
DC2 0.0776 0.0416 0.11922 > 0.01959 
DC3 0.0168 0.0119 0.0287 > 0.0121 
DC4 0.0281 0.012 0.04014 > 0.00864 
DC5 0.0353 0.0152 0.05048 > 0.00685 
MFG 2E-05 3E-05 4.4E-05 > 2.5E-05 

Table 3: Sample Variances for Different Information 
Sharing Configurations with Variable Capacity 

  S1
2(n) S2

2(n)
S1

2(n) + 
S2

2(n)   SZ
2(n)

DC1 0.1357 0.1538 0.2895 > 0.00389 
DC2 0.3128 0.2419 0.55468 > 0.01171 
DC3 0.2038 0.0561 0.25994 > 0.02732 
DC4 0.2232 0.1128 0.33597 > 0.04514 
DC5 0.2306 0.1616 0.39222 > 0.00809 
MFG 0.0084 0.0057 0.01406 > 2.3E-05 

 Tables 2 and 3 each show the sample variance for 10 
replications.  The first configuration is with no informa-
tion being shared beyond orders placed from the DCs to 
the manufacturer.  This is a typical configuration of ‘no‘ 
information sharing.  The second information sharing 
configuration passes daily point-of-sale data from each of 
the 5 DCs to the manufacturer.  As increasing variability 
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is induced in the system, the benefits of the common ran-
dom numbers increases as greater covariance is induced 
between the simulations of different system configura-
tions.  In addition to the sharing of point-of-sale informa-
tion upstream from the distribution center to the manufac-
turer, ultimately other configurations can be examined 
including the sharing of lead-time estimates downstream 
from the manufacturer to the distribution centers. 

5. CONCLUSION AND DISCUSSION 

 The results comparing the different information shar-
ing configurations are generally significant.  The sharing 
of point-of-sale information is beneficial to the manufac-
turer and the distribution network system as a whole.  
Further, the individual distribution centers are generally 
no worse off for the sharing of their point-of-sale infor-
mation with the manufacturer.  Many similar studies find 
a decreasing significance for sharing demand information 
up the supply chain as the variance of the demand in-
creases.  In this experimental setting there are much larger 
demand variances than those used in other similar studies.  
In addition the use of random lead-times ensures that this 
model has greater variability than other models of this 
type.  Nonetheless, here the findings indicate extremely 
significant benefits to the sharing of this type of informa-
tion; in both practical significance as well as in statistical 
significance.  If other similar studies used this methodol-
ogy it is likely that they would have found much more 
significant results; particularly considering that they are 
generally using constant lead-times and much lower coef-
ficients of variation in their demands.  One might further 
speculate that a reason it is not done is the effort involved 
in keeping track of so many different demand strings.  
Additionally the induced covariance can complicate sta-
tistical analysis.  But the benefits of the variance reduc-
tion and the ability to examine complex systems, such as 
supply networks, make the effort well worth it.  The in-
creasing use of CRN in agent-based models will undoubt-
edly aid in study of all types of complex systems. 
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