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ABSTRACT

In a supply chain, there are wide variety of problems, such
as transportation scheduling problems and warehouse loca-
tion problems. These problems are independently defined
as optimization problems, and algorithms have been pro-
posed for each problem. It is difficult, however, to design
an algorithm for optimizing a supply chain simultaneously
because the problem is much more complex than the individ-
ual problems. We present a simulation-based optimization
algorithm that optimizes a supply chain, exploiting both
simulation and optimization techniques. This system lever-
ages two existing algorithms, and will optimize a supply
chain by executing simulations while changing the bound-
ary conditions between the two algorithms. Experimental
results show that a better solution to a supply chain can
be found through a series of optimization simulations. A
logistics consultant was satisfied with the solution. This
system will be used in actual logistics consulting services.

1 INTRODUCTION

In a supply chain, there are wide variety of problems, such as
transportation scheduling problems and warehouse location
problems. These problems are independently defined as
optimization problems, and algorithms have been proposed
for each problem. For example, one problem that decides on
the warehouse locations that minimize the transportation cost
and the fixed cost of the warehouses is called the warehouse
location problem (WLP) or facility location problem, and
has been studied for many years (Beasley 1993, Hidaka
and Okano 2003, Shmoys, Tardos, and Aardal 1997). A
problem that makes a multi-modal transportation schedule is
called the modal-shift transportation problem (MSTP), and
a steepest descent algorithm has been proposed (Amano,
Yoshizumi, and Okano 2003).

On the other hand, since it is becoming easier to access
a wide variety of data due to the spread of IT infrastruc-
tures such as supply chain management systems, a basis
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for wide range optimizations is becoming a real possibility.
For example, combining the WLP and the MSTP men-
tioned above, their coverage becomes a supply chain of
a distribution network that includes the decisions for the
number of warehouses and their locations, transportation
schedules from the factories to the warehouses, and the
transportation costs between the warehouses and the stores
(see Figure 1). In this case, however, both problems are
closely interdependent, since the warehouse locations of the
WLP’s output are also a part of the input for the MSTP.
In general, we cannot always get a feasible solution by
applying two algorithms independently and combining the
two solutions. Even if we can get feasible solutions, we
have no guarantee on the quality of those solutions. In
addition, when handling an actual distribution network, we
should consider the inventory cost and the ordering interval
in addition to the transportation cost and the fixed cost for
the warehouses. As shown above, the problem for a supply
chain is much more complex than the individual problems.
It is also much more difficult to design an algorithm to
simultaneously optimize all parts of a supply chain. In
actual logistic consultations, consultants manually calculate
the logistics costs based on their intuition and experience.

WLP

MSTP

Plants
Warehouses

Stores

Hub centers

Hub centers

Figure 1: The distribution network and coverages of each
problem.
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We present a simulation-based optimization algorithm
that exploits simulation and optimization techniques, which
can optimize the supply chain of a distribution network.
This system leverages two existing algorithms, and executes
a series of optimization simulations while changing the
boundary conditions, or warehouse locations, that connect
the two algorithms. This algorithm gradually optimizes a
supply chain through a series of simulations.

A prototype system that we developed will be used for
logistics consultation services. Some logistics costs, which
consultants manually calculated based on their intuition and
experiences, can be computed automatically by this system.
As a result, we believe that the productivity of consultants
can be greatly improved.

2 MODELING SUPPLY CHAIN

We consider the distribution network as an example of a sup-
ply chain. We suppose that the distribution network covers
the following: goods produced in factories are transported
to warehouses by a multi-modal transportation system, are
stocked in the warehouses for the stores, and are finally
transported to the stores.

Since the number of warehouses and their locations have
large impacts on the logistic costs in a supply chain, affecting
the transportation cost and the fixed cost of warehouses, it
is very important from a strategic viewpoint to decide on
appropriate number and locations. The problem of deciding
on warehouse locations that minimize the transportation cost
and the fixed cost for the warehouses is called the warehouse
location problem (WLP) or facility location problem, and
has been studied for many years (Beasley 1993, Hidaka and
Okano 2003, Shmoys, Tardos, and Aardal 1997). In the
WLP, however, the ordering interval from the factories to
the warehouses and the inventory cost are not considered.
Therefore this is not an adequate model for a practical
supply chain.

At the same time, the transportation from the factories
to the warehouses is done by multi-modal carriers, such
as trucks, trains, and ships, possibly via hub centers where
goods are transshipped between carriers. Such a transporta-
tion problem, where the operating time windows are not
assumed, is called the less-than-truckload (LTL) problem
or the transportation network design problem, and has of-
ten been studied (Crainic and Roy 1992, Katayama and
Yurimoto 2002, Powell and Sheffi 1989). As for modeling
a practical supply chain, it is more desirable to consider
the operating time windows. We have proposed the MSTP
(Amano, Yoshizumi, and Okano 2003), which is an exten-
sion of LTL, that can deal with operation time windows.

In this paper, we model a supply chain as a combination
of the multi-modal transportation system of the MSTP and
deciding warehouse locations of the WLP, which is shown in
Figure 1. In following subsections, we will review previous
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work on the WLP and the MSTP, and then we will introduce
our supply chain model.

2.1 Previous Works

2.1.1 The Warehouse Location Problem

The (uncapacitated) WLP is a problem to minimize the sum
of the transportation cost and the fixed cost of warehouses.
Let C be the set of stores, W be the set of candidate locations
for warehouses, f j be the fixed cost for opening a warehouse
j ∈W , and ci j be the cost to supply store i from warehouse
j. The WLP is defined as follows:

minx,y WLP(x,y)
= ∑i∈C ∑ j∈W ci jxi j +∑ j∈W f jy j

subject to ∑ j∈W xi j = 1 for each i ∈C
0 ≤ xi j ≤ y j ≤ 1 for each i ∈C, j ∈W
xi j,y j ∈ {0,1} for each i ∈C, j ∈W

where x and y are decision variables. xi j = 1 decides if
store i is supplied from warehouse j. y j = 1 decides if
warehouse j is open. The first term of WLP(x,y) represents
the transportation cost between warehouses and stores and
the second one represents the fixed cost of the warehouses.
The first constraint means that each store must be supplied
by only one warehouse. The second constraint means that
the stores must be supplied by open warehouses. The
last constraint means that the variables are zero-one. For
this problem, Beasley proposed a Lagrangian relaxation
algorithm which can find optimal or near optimal solutions
quickly (Beasley 1993).

2.1.2 The Modal-Shift Transportation Problem

In the MSTP, we are given a transportation network consist-
ing of nodes as points representing plants, warehouses, and
hub centers, arcs as legs with which carriers are associated,
and delivery orders between points. The problem is to find
the optimal schedule of carriers for each leg and the opti-
mal routing of delivery orders between points so that the
total carrier cost is minimized and the tardiness of delivery
orders is also minimized. The name “modal shift” comes
from the fact that the problem can model a multi-modal
transportation including trucks, trains, ships, etc., in which
carriers may be associated with operating time windows or
schedules.

The following notations are used:

• the set of points: N,
• the set of delivery orders: D.
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Each delivery order i ∈ D has the following properties:

• the set of candidate routes: Ci = {Ri1, . . . ,Ri|Ci|},
• the set of legs along each route: Rik =

{aik1, . . . ,aik|Rik|}, 1 ≤ k ≤ |Ci|,
• the penalty cost when an order cannot be deliv-

ered: pi,
• the due date: di,
• the earliest starting time, and
• the weight.

Each carrier j ∈ Va defined for leg a ∈ N ×N has the
following properties:

• the travel time: t ja,
• the transportation cost: c ja,
• the earliest starting time,
• the latest starting time, and
• the capacity.

The decision variables in the MSTP are the following:

• The choice of a candidate route for delivery or-
der i: λi,

• The departure time of the carrier j defined for
leg a: τ ja,

• The binary variable for delivery order i to be carried
by carrier j for leg a: κi ja.

Using the above notations, the MSTP is defined as in
Figure 2.

The objective function to be minimized is the sum of
the cost for the required carriers and the penalty for delivery
orders that violate the due date. Let ci ja be the apportioned
cost of c ja to delivery order i and pia be the apportioned
penalty of delivery order i to leg a. The objective function
of the MSTP can be rewritten as:

∑i∈D minλi

(
∑a=aiλil

,1≤l≤|Riλi
|∑ j∈Va(ci ja + pia)κi ja

)
,

which can be minimized by finding the lowest cost route
for each order if ci ja and pia are assumed to be fixed. The
difficulty, however, is that ci ja and pia are functions of
λ . We have proposed in (Amano, Yoshizumi, and Okano
2003) an algorithm based on a steepest descent method and
a greedy heuristic, in which ci ja and pia are calculated in the
previous run of the greedy heuristic. The steepest descent
method determines a routing for each delivery order, and
the greedy heuristic assigns the delivery orders to carriers
and determines their departure times. For more details,
the readers are referred to (Amano, Yoshizumi, and Okano
2003).
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2.2 A Supply Chain Model

In this paper, we model a supply chain model as the combi-
nation of the MSTP and the WLP, and call it the warehouse
location and transportation problem (WLTP). Since the
WLTP can handle the inventory cost and the ordering inter-
val in addition to the other costs handled by the WLP and
the MSTP, it is more suitable model for a practical supply
chain.

In the WLTP, we are given a set of plants, a set of
candidate locations of warehouses, a set of stores with which
demand is associated, a transportation network, and carriers
between the plants and warehouse candidates. The demand
of a store is defined as an average quantity of goods that
need to be supplied from a nearby warehouse. The problem
is to choose warehouse locations where goods should be
stocked for the stores, taking into account the following
objectives:

• The transportation cost from warehouses to stores,
• The fixed cost of the warehouses,
• The inventory cost at the warehouses,
• The transportation cost from the plants to the ware-

houses.

Note that the standard WLPs only consider the first two
objectives, whereas in the actual logistics in the manufac-
turing or distribution industries, which the WLTP is based
on, the last two objectives are also important.

The transportation cost from warehouse j to store i is
defined as ci j, which is the same as in WLP(x,y). The fixed
cost of warehouse j is also defined as f j. The inventory
cost is assumed to be proportional to the amount of goods
stocked at the warehouses. The inventory at a warehouse
depends on the total demand of the stores that are supplied
from the warehouse and also on the replenishment cycle,
or equivalently, the ordering interval denoted by t. When
the ordering interval t is three days, for example, delivery
orders from plants to warehouses amounting to the demand
for three days are generated every three days. This means
that goods are transported to the warehouses every three
days, and the inventory level at each warehouse forms a
triangular-shaped curve with a period of three days. Let µ

be the demand per day and I be the ordering interval, so
the average inventory per day is Iµ/2 (see Figure 3). Both
demand and inventory are treated as weights. In the WLTP,
the inventory cost (per day) is calculated as bIµ/2, where
the coefficient b is a unit inventory cost per weight.

Each store i ∈C is associated with a plant (supplier)
si ∈ N and the demand per day µi. Stores are assumed
to be supplied from the nearest warehouses that are open
and to which goods are supplied from si. This means that
a warehouse may need to be supplied with goods from
multiple plants. This is the same transportation problem as
6
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minλ ,τ,κ MST P(λ ,τ,κ) = ∑a∈N×N ∑ j∈Va c jaz ja +∑i∈D pi · tardiness(i)
subject to λi ∈ {1,2, . . . , |Ci|} for each i ∈ D, [candidate]

κi ja ∈ {0,1} for each i ∈ D, j ∈Va for each leg a, [zero-one]
∑ j∈Va κi ja = 1 for each i ∈ D, j ∈Va, a ∈ Riλi , [non-divisible]
z ja =

{
1 if ∑i∈D κi ja > 0, 0 otherwise

}
, [carrier usage]

z ja and κi ja are feasible with respect to the time windows and the load capacity
of carriers j for leg a.
tardiness(i) is defined as max j∈Va{0,κi ja(τ ja + t ja)−di}.

Figure 2: The formulation of MSTP.
Figure 3: An inventory curve at a warehouse.

discussed in the MSTP. As we will see in Section 3.1, the
MSTP can be extended to handle the inventory cost for use
in the WLTP.

The WLTP is defined as:

minx,y,λ ,τ,κ,t WLT P(x,y,λ ,τ,κ, t)
= WLP(x,y)+MST Px,y(λ ,τ,κ, t)

subject to
The constraints of the WLP are observed

for the warehouses and stores,
The constraints of the MSTP are observed

for the transportation between the plants
and warehouses,

The inventories at the warehouses are
feasible with respect to the demands of
the stores,

where λ ,τ,κ , and t, for each value of x and y, are solutions
of MST Px,y(λ ,τ,κ, t), which is an extension of the MSTP in
which the optimal ordering interval t is determined taking
into account the tradeoff between the transportation cost
and the inventory cost. The details of MST Px,y(λ ,τ,κ, t)
will be described in the next section. Note that the input
data of the MSTP depends on the solution of the WLP.
For example, the set of points in the MSTP should be the
warehouses that are selected for use in the WLP in addition
to the plants and hub centers. The MSTP, therefore, needs
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x and y as input data that are decision variables of the
WLP. This form of a mathematical program–consisting of
two levels of problems such as WLP and MST P–is called
a bilevel program (Vicente and Calamai 1994).

Since the WLP cannot optimize λ ,τ,κ , and t, and
MST Px,y needs to input the solution of WLP, x and y, an
optimal solution cannot be obtained by solving WLP and
MST P one after another even if each solver can find optimal
solutions. Therefore, in the next section, we will transform
the WLP to incorporate the output of the MSTP, and propose
a simulation-based optimization algorithm.

3 A SIMULATION-BASED ALGORITHM

We propose a simulation-based optimization algorithm for
the WLTP, which leverages two existing algorithms, and
executes a series of optimization simulations while changing
the boundary conditions, or warehouse locations, that con-
nect the two algorithms. This algorithm gradually optimizes
a supply chain through a series of simulations.

First, we introduce a new decision variable for the
ordering interval to extend the MSTP. The extended MSTP
can handle the inventory cost as well as the ordering interval.
Then we show the WLTP can be transformed to the form of
the WLP by approximating the MSTP. This means that an
algorithm for the WLP can solve the approximated WLTP
where the MSTP is approximated.

3.1 Extending MSTP

We extend the MSTP to handle the inventory cost and the
ordering interval. The role of the extended MSTP is to create
a transportation schedule from the plants to the warehouses
and provide some parameters for the reformulated WLTP,
which is described in Section 3.2. We use the following
notations:

• the set of plants, warehouses opened by the refor-
mulated WLTP, and hub centers: N,

• the set of demand: D,
7
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where D is a set of feasible triplets of plant p, warehouse j,
and a set of stores S, Each demand i ∈ D has the following
properties:

• the set of candidate routes: Ci = {Ri1, . . . ,Ri|Ci|},
• the set of legs along each route k: Rik =

{aik1, . . . ,aik|Rik|}, 1 ≤ k ≤ |Ci|,
• the penalty cost for tardiness: pi,
• the inventory cost per weight: bi,
• the set of delivery orders: Di

o = {oi1,oi2, . . . ,oi|Di
o|},

where Di
o is generated depending on the solution of the

reformulated WLTP, x and y, and the tentative value t for
the ordering interval. For the pair of plant p and warehouse j
that corresponds to demand i, let µp j denote the total demand
of the corresponding stores. The µp j × t delivery orders of
weight 1 are generated every t days within a scheduling
horizon of H days. This means that |Di

o| = µp jH. Each
delivery order l ∈ Di

o is also associated with:

• the due date of the delivery order oil : dil ,
• the release date: ril = 1+ t ×b l−1

H c,

where t is the tentative value of the ordering interval I. Each
carrier j ∈Va defined for leg a ∈ N ×N has the following
properties:

• the travel time: t ja,
• the transportation cost: c ja,
• the earliest starting time,
• the latest starting time, and
• the capacity.

Using the above notations, we define the extended MSTP
of the WLTP as in Figure 4.

Note that the set of delivery orders for demand i ∈ D,
Di

o, is changed depending on the value of t. In addition
to the objective function of the MSTP described in Section
2.1.2, the inventory cost at the warehouses is added in the
formulation shown in Figure 4. Since it is the sum of
the inventory cost for all of the demand, we can apportion
this cost to the route cost, and the objective function can
be defined as sum of the route costs. Let via denote the
apportioned cost of the inventory cost to leg a of delivery
order i. The objective function can be rewritten as follows:

∑
i∈D

min
λi

 ∑
a=aiλil

,1≤l≤|Riλi
|
∑
j∈Va

(ci ja + pia + via)κi ja

 .

When the ordering interval, t, is given, the objective function
becomes the same form as that in the original MSTP. There-
fore, we can use the algorithm from (Amano, Yoshizumi,
and Okano 2003), which is based on a steepest descent
method and greedy heuristics. Usually, the unit of the or-
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dering interval is a day, and its range is from 1 day to 7 days.
Therefore, we can obtain solutions of the MST Px,y(λ ,τ,κ, t)
by simulating all of the ordering intervals.

3.2 Reformulating WLTP

Once all of the decision variables of the extended MSTP are
determined, we can calculate the transportation and penalty
costs, and can apportion those costs to each warehouse.
For each warehouse, the sum of the transportation and
penalty costs per weight can be calculated. Let Tj,x,y be the
transportation and penalty costs per weight for warehouse j
with given x and y. We regard the objective function value
of the extended MSTP as the sum of the transportation and
the penalty costs of all of the warehouses as follows:

min
λ ,τ,κ,t

MST Px,y(λ ,τ,κ, t)

= ∑
j∈W

Tj,x,y ∑
i∈C

xi jµi + ∑
j∈W

b jt
2 ∑

i∈C
xi jµi.

Suppose that we can approximately regard Tj,x,y as a constant
value, Tj, independent of x and y. This means Tj ≈ Tj,x,y.
Let I be the optimal value of t. Suppose also that Tj and
I can be regarded as constant values around the optimal
solutions of the extended MSTP. When x,y,T , and I are
given, the objective function of the extended MSTP can be
rewritten as a linear function of xi j as follows:

MST Px,y(λ ,τ,κ, t)

≈ ∑
j∈W

Tj ∑
i∈C

xi jµi + ∑
j∈W

b jI
2 ∑

i∈C
xi jµi

= MST PT,I(x,y).

Using the above approximation, the WLTP can be trans-
formed as follows:

WLT P(x,y,λ ,τ,κ, t)
= WLP(x,y)+MST Px,y(λ ,τ,κ, t)

≈WLP(x,y)+MST PT,I(x,y)

= WLP(x,y)+ ∑
j∈W

Tj ∑
i∈C

xi jµi

+ ∑
j∈W

b jI
2 ∑

i∈C
xi jµi

= ∑
i∈C

∑
j∈W

(ci j +Tjµi +
b jI
2

µi)xi j + ∑
j∈W

f jy j

= ∑
i∈C

∑
j∈W

c′i jxi j + ∑
j∈W

f jy j,

= WLPT,I(x,y),
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minλ ,τ,κ,t MST Px,y(λ ,τ,κ, t) = ∑a∈N×N ∑ j∈Va c jaz ja +∑i∈D T bi
tµi
2 +∑i∈D ∑l∈Di

o
pi · tardiness(i, l)

subject to λi ∈ {1,2, . . . , |Ci|} for each i ∈ D [candidate]
κl ja ∈ {0,1} for each l ∈ Di

o, j ∈Va for each leg a and i ∈ D, [zero-one]
z ja =

{
1 if ∑i∈D κl ja > 0, 0 otherwise

}
, [carrier usage]

z ja and κl ja are feasible with respect to the time windows and the load capacity of carriers
j for leg a.
tardiness(i, l) is defined as max j∈Va{0,κl ja(τ ja +t ja)−di}, and x and y represent configuration
of warehouse locations which determine N and D for this problem.

Figure 4: The formulation of the extended MSTP.
where ci j +Tjµi +
b jI
2 µi is replaced by c′i j.

This means that we can transform the WLTP to the
form of the WLP by adding the inventory cost at warehouse
and the transportation cost between plants and warehouses
to the transportation cost between the warehouses and the
stores. If we can obtain reasonable values of T and I, we
can solve the WLTP using an algorithm for the WLP.

3.3 A Simulation-based Algorithm for the WLTP

We propose a simulation-based optimization algorithm for
the WLTP, which improves the accuracy of the parameters
of T and I through a series of simulations, using both the
extended MSTP and the reformulated WLTP.

The algorithm is described in Figure 5, and Figure 6
shows its algorithmic framework. In Step 1, parameters,
T and I, are initialized to 0 and 1 respectively. In Step 2,
the reformulated WLTP is solved using an algorithm for
the WLP. In Step 3, the extended MSTP is solved using an
algorithm for the MSTP with x and y obtained in Step 2. In
Step 4, the objective function value of WLTP is calculated
using the solutions obtained in Steps 2 and 3. The terminal
condition in Step 5 is arbitrary. For example, we can use a
maximum number of iterations or some metric for checking
convergence. If the terminal condition is not satisfied, we
update the parameters, T and I, and then go back to Step
2. The method to update T and I is discussed in the next
section.

3.4 Updating Parameters

The computation of T requires special care because, in the
minimization of MST P in Step 3, only those Tj whose y j
were set to 1 in Step 2 are considered. The set of j whose yi
equals 1 is different from iteration to iteration, and Tj may
differ greatly with different y. Therefore, it is important to
obtain values of T that can be used for any configuration
of y, not only for the specific configuration of y.

When MST PT,I(x,y) is less than or equal to
MST Px,y(λ ,τ,κ, t), WLPT,I is also less than or equal to
WLT P and WLPT,I gives a lower bound of WLT P. A lower
19
1. Initialize T, I.
2. x,y = argminx,y WLPT,I(x,y).
3. λ ,τ,κ, t = argminλ ,τ,κ,t MST Px,y(λ ,τ,κ, t).
4. Calculate WLT P(x,y,λ ,τ,κ, t).
5. If the terminal condition is not met,

update T and I based on the result
from Steps 2 and 3, and go to Step 2.

6. Output the best solution found.

Figure 5: Proposed algorithm for WLTP.

Figure 6: The algorithm framework.

bound is an important index when evaluating the quality
of solutions. It is desirable to use T and I that satisfy
MST PT,I(x,y)≤ MST Px,y(λ ,τ,κ, t). We call this inequality
the lower bound inequality.

Since MST PT,I(x,y) is a monotonic increasing function
with respect to both T and I, the initial values of T and
I should be 0 and 1, respectively, which are the minimum
values of each parameter. Those values should be updated to
give a tighter lower bound as the search proceeds. However,
it is difficult to satisfy this lower bound inequality for an
arbitrary search space. Therefore, it is desirable for the
updating method to satisfy the lower bound inequality as
much as possible.

Let T τ
j be Tj at the τ-th iteration of the WLTP algorithm.

Our updating method is T τ
j = αT τ

j +(1−α)T τ−1
j , where α

is the update ratio (whose range is 0 < α ≤ 1). This updating
method considers the value in the previous iterations to some
29
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Figure 7: Costs with several ordering intervals.

degree. The aim of this method is to prevent the value of
Tj from being changed too greatly and to keep satisfying
the lower bound inequality. When α = 1, Tj is completely
replaced by the newly calculated value. When α is close
to 0, Tj is updated smoothly and it is possible for the lower
bound inequality to continue to be satisfied. The ordering
interval, I, can be updated by the same algorithm.

4 EXPERIMENTS AND A PROTOTYPE SYSTEM

The instance data for these experiments was generated for
an imaginary manufacturing company that has stores all
over Japan. This imaginary company has two factories,
one in Tokyo and one in Osaka, 40 candidate locations for
warehouses, and 500 stores. This company wants to reduce
the total logistics cost by closing and merging some of the
warehouses.

We adopted the Lagrangian relaxation algorithm by
Beasley for the WLP (Beasley 1993), and the steepest
descent method for the MSTP (Amano, Yoshizumi, and
Okano 2003). The terminal condition is that the solution
of the WLTP converges or the number of iterations reaches
100.

First, to assess the functionality of the extended MSTP,
we open all of the warehouses and simulate inventory,
transportation, and total costs with several ordering intervals.
In Figure 7, the horizontal axis represents the ordering
interval, and the vertical axis represents the cost. From
Figure 7, we can see that the inventory cost increases as
the ordering interval becomes longer. This is because the
average inventory increases in proportion to the ordering
interval. In contrast, the transportation cost decreases as
the ordering interval becomes longer. When the ordering
interval is long, the delivery order quantity becomes large
and goods tend to be aggregated to full truckloads, which
lowers the transportation cost. From the results of this
experiment, we can see that there is a tradeoff between the
inventory cost and the transportation cost.
19
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Figures 8 and 9 show the results of the WLTP algorithm
with α value of 0.1 and 1.0, respectively. The pseudo-lower
bound represents the value of WLPT,I (Step 2 in Figure 5).
Since T and I may be greater than the actual values, this
pseudo-lower bound is not the true lower bound. Therefore,
the pseudo-lower bound may be greater than the upper bound.

In both cases of α = 0.1 and 1.0, the initial solutions
are the same and the value was 97,326. The configuration
of warehouse locations obtained in the initial solution is
identical to that of the WLP(x,y) without considering the
transportation cost between plants and warehouses. For
α = 1.0, the initial solution was the best solution. On the
other hand, for α = 0.1, the best solution was 94,811, which
is 2.6% smaller than the initial solution. These experimental
results show that a better solution can be found by updating
the parameters smoothly through a series of optimization
simulations.

We developed a prototype system using this simulation-
based optimization algorithm. Figure 10 shows a screenshots
of our system. A logistics consultant was satisfied with these
optimization results and this prototype system. This system
will be used for logistics consultation services.
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Figure 10: Screenshots of a prototype system.

5 CONCLUSION

We proposed a simulation-based optimization algorithm,
which can optimize the supply chain of a distribution net-
work. This algorithm leverages two existing algorithms,
and executes a series of optimization simulations while
changing the boundary conditions, or warehouse locations,
that connect the two algorithms. This algorithm gradually
optimizes a supply chain through a series of simulations.

Through an empirical study, we showed that there is a
tradeoff between the transportation cost and the inventory
cost. By adjusting the ordering interval appropriately, the
total cost can be reduced. The experimental results showed
that present solution converged to a near optimal solution
compared with the pseudo-lower bound, and a better solution
can be found by updating the parameters smoothly through
a series of optimization simulations.

A simulation-based optimization system that we devel-
oped will be used for logistics consultation services. Some
logistics costs, which consultants manually calculated based
on their intuition and experiences, can be computed auto-
matically by this system. As a result, we expect that the
productivity of consultants can be greatly improved.

There are several remaining problems, such as im-
provement of the updating algorithm and development of
a method to obtain appropriate values of α . However, the
framework that unifies the two existing algorithms has the
potential to solve large optimization problem more easily.
It becomes possible to optimize a wider range of supply
chains as IT infrastructures such as SCM are adopted more
widely.

REFERENCES

Amano, M., T. Yoshizumi, and H. Okano. 2003. The modal-
shift transportation planning problem and its fast steep-
est descent algorithm. In Winter Simulation Conference,
1720–1728.
193
Beasley, J. E. 1993. Lagrangean heuristics for location prob-
lems. European Journal of Operational Research (65):
383–399.

Crainic, T. G., and J. Roy. 1992. Design of regular in-
tercity driver routes for the ltl motor carrier industry.
Transportation Science (26): 280–295.

Hidaka, K., and H. Okano. 2003. An approximation algo-
rithm for a large-scale facility location problem. Algo-
rithmica 35:216–224.

Katayama, N., and S. Yurimoto. 2002. The load planning
problem for less-than-truckload motor carriers and a so-
lution approach. In Proceedings of the 7th International
Symposium on Logistics, 567–572.

Powell, W. B., and Y. Sheffi. 1989. Design and implementa-
tion of an interactive optimization system for network
design in the motor carrier industry. Operations Re-
seach (37): 12–29.
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