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ABSTRACT 

This research intends to augment the validity of simulation 
models in the most economic way using the DDDAS (Dy-
namic Data Driven Application Systems) paradigm. Im-
plementation of DDDAS requires automated switching of 
model fidelity and incorporating selective, dynamic data 
into the executing simulation model. Comprehensive sys-
tem architecture and methodologies are proposed, where 
the components include 1) RT (Real Time) DDDAS simu-
lation, 2) grid computing modules, 3) Web Service com-
munication server, 4) database, 5) various sensors, and 6) 
real system. Four algorithms are developed to facilitate in-
tegration of the various components in the DDDAS sys-
tem. They are 1) data filtering algorithm using control 
charts, 2) preliminary fidelity selection algorithm using 
Bayesian belief network, 3) fidelity assignment algorithm 
using integer programming and 4) simulation model re-
construction algorithm using multiple linear regression. A 
prototype DDDAS simulation was successfully imple-
mented for preventive maintenance scheduling in a semi-
conductor supply chain. The initial results look quite prom-
ising. 

1 INTRODUCTION 

 In today’s global markets, supply chain systems are 
both large scale and dynamic in nature (Fox, Barbuceanu, 
and Teigen 2000). In these large scale, dynamic supply 
chains, data overload across partners is a common problem 
owing to the various factors affecting system performance 
and lack of understanding of the relationship between 
them. Discrete event simulation has become one of the 
most used analysis tools for large scale systems as it can 
take randomness into account and address very detailed 
models. Given the enormous amount of data that exist in 
today’s supply chains, data needs to be used and updated 
wisely in the model (simulation model in this research) in 
1911-4244-1306-0/07/$25.00 ©2007 IEEE
order to prevent unnecessary usage of computing re-
sources, which are severely constrained across the supply 
chain. This concern can be resolved by implementing mul-
tiple models, having different fidelities for different eche-
lons of the supply chain, or even for different areas within 
same echelon of the supply chain. However, use of differ-
ent models for different applications prove to be both cum-
bersome and infeasible from the viewpoint of enterprise as 
well as supply chain integration. There is considerable on-
going research regarding integration of supply chain mod-
els. One example is a conceptual framework proposed by 
Jain (2006). Another issue is within each of those multiple 
models, it is not completely practical to change the current 
fidelity level once it is set. Hence, when there is a need for 
detailed information (e.g. in case of an emergency), the 
level of fidelity cannot be increased. In the same way, 
when there is no need for in depth data regarding the sup-
ply chain the fidelity level  cannot be decreased to save 
from computational resource consumption. Adaptive simu-
lations, on the other hand, are able to represent the actual 
process of real supply chain system in the most accurate 
manner while enabling 1) efficient usage of computational 
resource 2) access to all of the necessary data regarding the 
supply chain and 3) superior enterprise integration in terms 
of communication and information synchronization. 
 Several researchers have investigated the impact of 
simulation modeling fidelity on performance of supply 
chain systems. Venkateswaran and Son (2004) investigated 
the effect of modeling fidelity on the analysis of supply 
chain dynamics. It was found that the approximations used 
in modeling, such as delays and capacity, have more im-
pact on the outcome of supply chain analysis than end cus-
tomer demand. Similarly, Towill (1991) concluded that the 
most effective strategy that can be applied to the simula-
tion models is improving the flow of new information at all 
levels throughout the chain. 
 Prior research conducted in this field served as a moti-
vation for this research in this paper. To solve the above 
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elucidated problems, this paper employs a novel methodol-
ogy, DDDAS to enable integration of real time dynamic 
single simulation model through facility and within multi-
ple distributed multi-fidelity simulations through supply 
chain as  a whole. In this research, we implemented multi 
fidelity simulation by changing the number of data and da-
ta acquisition frequency. Also we developed a web service 
to communicate between each echelon of supply chain and 
DDDAS simulation.  

Many researchers from diverse domains have spent 
considerable effort in a collaborative work environment in 
order to successfully propose and develop the above dis-
cussed DDDAS simulation for supply chain systems. An-
jos et al. (2007) has successfully revealed the optimized 
preventive maintenance scheduling in a single facility with 
the incorporation of DDDAS architecture. This research 
extends the work by Anjos et al. (2007) in the sense that 
we aim to optimize preventive maintenance scheduling in 
the whole supply chain within a distributed simulation en-
vironment (see Section 3.1 for details). To the best of our 
knowledge, our research is the first effort to 1) construct a 
formal comprehensive infrastructure for DDDAS in supply 
chain systems, 2) handle the dynamicity issue of the sys-
tem by selectively incorporating up-to-date information in-
to the distributed simulation, 3) introduce adaptive multi-
fidelity simulations which are capable of adjusting the fi-
delity level according to the altering conditions of supply 
chain in the most economic way. Moreover, this study 
makes use of simulations for making instantaneous deci-
sions in addition to the analysis purposes. The broad gamut 
of contributions of this work is demonstrated through the 
implementation of DDDAS for optimization of preventive 
maintenance (PM) scheduling within a semiconductor sup-
ply chain. The proposed DDDAS methodologies are exten-
sible not only to other areas of the supply chain system but 
also to a multitude of domains where there is a need to 
handle a large volume of highly dynamic data. 
 The rest of the paper is organized keeping in mind 
readability and easy understanding of the various method-
ologies proposed as a part of DDDAS. Section 2 describes 
the prototype supply chain under consideration in this pa-
per to help understand and implement the methods pro-
posed in Sections 3 and 4 which describe the detailed sys-
tem architecture along with all the techniques and methods 
proposed to implement the DDDAS. Section 5 describes 
the experiments and results that prove the usefulness of our 
methods. Finally, Section 6 concludes the paper by provid-
ing a summary of the contributions made through this pa-
per. 

2 CONSIDERED SEMICONDUCTOR 
MANUFACTURING SUPPLY CHAIN 

Supply chain systems are defined as a collection of busi-
ness units that interact with one another to transform the 
raw materials into finished goods and distribute the fin-
191
data into the simulation to manage and optimize available 
resources through automatic fidelity switching within a 
ished goods to the customers (Ganeshan and Harrison 
1995; Venkateswaran and Son 2004). Supply chain sys-
tems can be of two types: 1) collaborative or 2) competi-
tive. Collaborative supply chain systems are usually com-
prised of echelons which belong to the same company, and 
a lot of information is shared among the echelons. On the 
other hand, the competitive supply chain systems are com-
posed of echelons which in general belong to different 
companies. In collaborative supply chain systems simula-
tion, as the level of the fidelity increases, the sensor data 
accessed from the other echelons of the supply chain in-
creases as well without any limitation on access to data 
(Figures 1a and 1b) whereas in the competitive one, access 
to the required sensor data is restricted by the regulations 
of the other competitors (Figure 2). Another significant dif-
ference is, in collaborative supply chain systems the com-
putational resources from the partners are pooled and then 
by help of grid computing distributed among the elements 
as needed, where as in the competitive supply chain com-
putational resource is being shared only within particular 
parties. Hence, in terms of managing the computational re-
sources, a single resource manager is adequate for all of 
the partners of the collaborative supply chain while distinct 
resource managers are needed for each group of parties 
that share the resources in the competitive supply chain 
systems. 
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Figure 1a: Collaborative supply chain system 1 (Common 
resource pool) 
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Figure 1b: Collaborative supply chain system 2 (Common 
resource pool) 
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Figure 2: Competitive supply chain system (Multiple re-
source pools) 

 
 The applicability of DDDAS to a supply chain  is 
demonstrated in this study via collaborative Semiconductor 
Supply Chain systems. However, it should be noted that 
the DDDAS methodologies such as techniques and algo-
rithms developed here are applicable to any component or 
echelon of a supply chain (collaborative or competitive). 
The semiconductor manufacturing supply chain considered 
in this work begins at a wafer fabrication unit (fab.), where 
the raw silicon wafers are formed. The wafers are then sent 
to the semiconductor die fabs consisting of five major ar-
eas to develop multiple layers of circuits on the silicon wa-
fer (diffusion, photo, etch, metals, probe). The silicon wa-
191
fers with the circuits are cut into individual chips called 
dies. The dies are transferred to an assembly and packaging 
fab to package into Integrated Circuits.   
 PM schedules establish specific time frames for ma-
chine repairs in order to avoid unscheduled breakdowns. 
Unscheduled breakdowns (caused by machine failure) cost 
significantly more than scheduled machine down. An ef-
fective PM schedule can therefore greatly reduce opera-
tional costs of a facility. This way, PM is scheduled with 
the objective of minimizing maintenance and associated 
costs for all equipment over time. This interdependence be-
tween maintenance and costs leads to complex interactions 
between the other components in the supply chain and the 
machine states. 
 To demonstrate the proposed DDDAS system, the 
DDDAS based preventive maintenance scheme is built for 
each partner in the supply chain, where each partner is 
composed of 3 groups of machines and each machine util-
izes 15 sensors of various types. Current PM schedules are 
built from the historical data and followed over prescribed 
periods of time (generally weeks). However in the dynami-
cally changing manufacturing environment, static PM 
schedule derived from the historical data is not efficient 
and flexible. Thus, a dynamic generation of an optimized 
PM schedule that uses the most current data in real time is 
necessary.  This would go a long way in contributing to 
better utilization of facility machinery and better fulfill-
ment of customer orders with acceptable lead times.
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Figure 3: Proposed DDDAS system architecture in semiconductor manufacturing supply chain 
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3  PROPOSED DDDAS SYSTEM 
ARCHITECTURE AND ALGORITHMS 

3.1 Proposed System Architecture 

The proposed architecture of the DDDAS system for sup-
ply chain systems is shown in Figure 3. It consists of real 
(physical) systems, Real Time DDDAS simulations (RT 
DDDAS), a grid computing, communication servers (Web 
service), and databases.  
 Sensor data from each machine of the real system are 
sent to RT DDDAS simulation via the communication 
server. Table 1 depicts the various sensor data which are 
believed to affect the quality of wafer (e.g., high tempera-
tures can cause the over-baking of the die on a wafer), and 
thus relevant for maintenance scheduling. The algorithms 
in the RT DDDAS simulations then use these sensor data 
in combination with database information to generate the 
updated PM schedules. These updates are sent via the 
communication server back to both the real systems (for 
the implementation through automated control) and data-
bases. This process is an ongoing, continuous loop while 
the simulation is running.  
 

Table 1: Considered sensor data (maintenance focus) 
Sensors from 

machine
Sensors from 
environment

Production schedule from archived data

temperature temperature type of process
pressure sound type of material
vibration air quality operator skill level

status humidity past/present/future product flow volumes
sound time since last maintenance

 
 The communication server in Figure 3 has been devel-
oped using web services technology (state-of-the-art dis-
tributed computing technology) which overcomes barriers 
of standard communication via the usage of W3C 
(http://www.w3c.org) standard protocols (e.g., 
XML, WSDL, and SOAP) and facilitates message passing 
between disparate and geographically distant components. 
The grid computing technology is also employed to man-
age the distributed computational resources (e.g. evaluation 
of the computational availability), where WSRF.net toolkit 
(following the Open Source Groupware Architecture stan-
dards) is used as a backbone grid computing architecture. 
The individual resource pools are managed by a resource 
management web service that acts as a proxy, single point 
resource manager. All simulations that are in need of com-
putational resources use the resource management web 
service for querying their availability and consuming them. 
The whole collaborative supply chain environment consid-
ered in this work shares a single grid computing infrastruc-
ture, while a competitive supply chain environment might 
have a single or  multiple distinct infrastructures per fabri-
cation group depending on the willingness of the competi-
1918
tors to share their resources for potential, mutual perform-
ance improvement.  

3.2 Enabling Algorithms in RT DDDAS Simulation 

The goal of the DDDAS simulation is to achieve the effec-
tive synchronization of time and information between the 
simulation and real-system. This synchronization will then 
let the simulation run with the most up-to-date data (see 
Figure 4). In this study, in order to enable an effective time 
synchronization, DDDAS simulations are implemented via 
real-time simulations. A considerable amount of computa-
tional resource is consumed by simulation due to its execu-
tion as well as sensor data update to reach such an accu-
rately synchronized system. Therefore, DDDAS 
simulations should dynamically adjust their levels of fidel-
ity to assure information synchronization within a pre-
determined time interval (see δt in Figure 4) to save from 
computing resources without missing any significant mea-
surement. It is noted that a level of fidelity affects both the 
simulation model execution time as well as the time taken 
to collect required sensory updates. At the beginning of 
each interval (δt), new measurements are requested for the 
machines, and updated data are to be obtained within δt.  

 

 
 

Figure 4: RT DDDAS simulation and real system 
 

 In this work, the four algorithms developed and em-
bedded into the simulation to enable the DDDAS capabil-
ity are represented in Figure 5 and discussed in the next 
sections. 

3.2.1 Measurement Data Filtering (Algorithm 1) 
using Control Charts 

Each time a new measurement is taken, this algorithm is 
executed to filter the sensor data. Its two major functions 
are to filter out noisy measurements and to identify ma-
chine malfunctions by means of X-bar and moving range 
control charts. The algorithm establishes control limits by 
constantly calculating a moving average of the recent data 
points, and is able to adapt to changing machine conditions 
(see Figure 6).  

 

Real System 

 RT DDDAS 
Simulation

Data update request 

Updated data 
Updated data 

tδ tδ

Data update request 



Koyuncu, Lee, Sarfare, Vasudevan, and Son 
 

 

 

Database

Sensory 
data

Predetermined 
fidelity level Assigned fidelity Level (δt)

Data filtering 
algorithm

Algorithm 1

Data filtering 
algorithm

Algorithm 1

Fidelity selection 
algorithm

Algorithm 2

Fidelity selection 
algorithm

Algorithm 2

Algorithm 4

Algorithm 3

Fidelity assigning       
algorithm

Algorithm 3

Fidelity assigning       
algorithm

Real System
Machine 2Machine 1 Machine 3 Machine n.  .  .

Information 
request

Maintenance Scheduling 
algorithm

PM Scheduling (Task generation)

Filtered data

Available computational resource

DDDAS

Assigned fidelity Level (δt)

Data flow

Control flow

Legend
Data flow

Control flow

Legend

 
 

Figure 5: Overview of algorithms enabling DDDAS simulation capability 
 

 

 
 

Figure 6: Algorithm 1 – moving average 
 
 Algorithm 1 sends an alarm message if a string of out-
of-range values is received. Thus, Algorithm 1 is able to 
alert the machine operator of changes in machine condi-
tions that could necessitate a machine shutdown, avoiding 
potential machine or product damages. However, the con-
trol limits used to assess incoming data are not calculated 
until at least one hundred data points are received, so a 
short training period is required to establish proper control 
limits. Up until that time, only basic checks against out-of-
range values are performed on the input data. Algorithm 1 
is called with a timestamp and data point, and returns a 
single filtered data value. It also stores past data points in 
the database, which is constantly updated at the rate of 
which new measurements are taken. This algorithm is writ-
ten in C++ and plugged into the Arena model (simulation 
software used in this work) via Visual Basic Application 
(VBA). 
1919
3.2.2 Simulation Model Fidelity Selection 
(Algorithm 2) using Bayesian Belief Network 

Algorithm 2 is designed to select the proper fidelity level 
of each machine in the simulation through the Bayesian 
Belief Network (BBN). The BBN is a virtuous technique to 
embody the parameters interactions via a directed acyclic 
graph. The nodes represent variables and the arcs represent 
statistical dependence relations of conditional probability 
distributions for these variables given the values of their 
parents based on the Bayes’ theorem. The BBN provides 
valuable analysis, even when some data are uncertain, in 
which possible parental causes for an observed event can 
still be traced. For these reasons, the BBN is employed for 
fidelity selection. Algorithm 2 takes the filtered data as in-
put from Algorithm 1 and outputs a matrix which captures 
the proper fidelity level for each machine. Considering a 
specific machine, if the measurement of a parameter goes 
beyond the threshold values, Algorithm 2 determines the 
most likely interactions which might have caused this re-
sult and accordingly selects the parameters needed to be 
measured in more detail.  
 If, for instance, the measurement of a temperature 
(Temp1) goes beyond the threshold value (assuming the 
current fidelity is the lowest), Algorithm 2 will infer, based 
on historical data (captured in BBN) which were the causes 
of such high values (Vib2, Temp2, Pres2) and determine a 
proper fidelity level involving a new set of data to be 
monitored (see Figure 7 and Table 2). 
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Figure 7: BBN for simulation fidelity selection 
 

Table 2: Hierarchical structure for the conditional prob-
abilities of “sound” 

 
 
In this implementation for PM, data for Fidelity Level 

1, is collected from 6 sensors namely, Temp1, Vib1, Pres1, 
Snd1, Humd1, AirQual1. Each sensor data can be in either 
one of the two states – normal or abnormal. If data shows 
that the value of the sensor parameter is beyond the thresh-
old value, the state of the sensor data is classified as ab-
normal. Once the state of any sensor changes, the probabil-
ity of the abnormal state of a parent node will be changed 
by Bayes’ theorem. If any of the sensors has a probability 
greater than 0.4 (abnormal), then the node is decided to be 
critical and hence needs more detailed observation. If said 
sensor is not included in the current fidelity level, then the 
fidelity level is increased. For instance, the probability that 
Pres2 data is abnormal when the sensor data Temp1, Vib1, 
Pres1, Snd1 are normal is 0.01, i.e., P(Pres2=Abnormal | 
Vib1 = Normal, Temp1 = Normal, Pres1 = Normal, Snd1 = 
Normal) = 0.01. However, if Pres1 is also abnormal, then 
the probability increases to 0.20, i.e., P(Pres2=Abnormal | 
Vib1 = Normal, Temp1 = Normal, Pres1 = Abnormal, 
Snd1 = Normal) = 0.20. Furthermore, if Snd1 is abnormal 
as well, then this probability increases to 0.78, i.e., 
P(Pres2=Abnormal | Vib1 = Normal, Temp1 = Normal, 
Pres1 = Abnormal, Snd1 = Abnormal) = 0.78. Conse-
19
quently, the fidelity level for this machine is changed to 
Fidelity Level 2 since the probability is greater than 0.4 
(see Table 2). Such a BBN and rule based system can be 
developed for any application by modifying the variables 
and parameters considered appropriately.  

3.2.3 Simulation Model Fidelity Assignment 
(Algorithm 3) using Integer Programming 

Algorithm 3 is designed to opt for the available fidelity 
level of each machine by taking the computational resource 
constraint into account. This algorithm obtains a matrix 
which encapsulates the proper (desirable) fidelity level of 
each machine from Algorithm 2 as well as the available 
computational resource capacity from Grid Computing as 
inputs and returns a new matrix which captures the as-
signed fidelity level for each machine as an output. This 
algorithm is based on the well-known Knapsack problem. 
Equation (1) represents the formulation of the problem. 

 
min  ( )

 s.t.  

i i i
i S

i
i S

C R RA

RA TR
∈

∈

−

≤

∑

∑
                       (1)      

       
 In this equation, S is the set of machines that require 
resource, Ci is the penalty cost if the resource requirement 
for machine i is not met, TR are the available resources, Ri 
is the resource requirement for machine i and RAi (the de-
cision variable) is the resource assigned to machine i. The 
problem minimizes the penalty cost resulting from not ful-
filling the computational resource needs of each machine. 
Here, we are unable to increase the computational resource 
on hand. Therefore, to minimize the total cost we first as-
sign the resources to the machines of those having greater 
penalty costs. To solve this problem, a widely known heu-
ristic method for the knapsack problem, namely, the greedy 
algorithm (Martello and Toth, 1990) is used because it is 
more efficient in terms of execution time. 

3.2.4 Dynamic Simulation Model Reconstruction 
(Algorithm 4) using Multiple Linear 
Regression 

This algorithm is used to produce the optimal overall PM 
interval and, when combined with the known length of 
time since the last servicing, provides recommendations on 
when the next maintenance operation should take place.  
The DDDAS simulation uses a formula to calculate the PM 
interval from a linear combination of the sensor inputs with 
variable weights assigned to each inputs. The formula is 
given in Equation (2), where Yi is the optimal PM interval 
for period i, Xij is the sensor j measurement for mainte-
nance period i, and Wj is the weight assigned to sensor j 
measurement. 
                    
20
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 As Figure 8 shows, Algorithm 4 accepts three inputs: 
1) the time since the last machine maintenance, 2) the 
mean values for each sensor parameter during that period, 
and 3) feedback estimates by the maintenance team of the 
optimal preventive maintenance period. The algorithm uses 
multiple linear regressions to fit the formula to the given 
data set, and returns the weights of the terms in the PM in-
terval formula that provide the best fit. Initially, the for-
mula uses weights derived as best estimates from historical 
data. As the simulation evolves, more data measurements 
and PM feedback is used to produce a formula that pro-
vides predictions of the best possible PM interval for the 
current maintenance period. Using multiple linear regres-
sions, the weights in the desired formula can be estimated 
by solving the equation W= (XTX)-1 (XTY), where X is a ma-
trix of the sensor measurements, Y is the optimal interval 
estimates, and W is the vector of formula weights. Once 
these weights are known, they can be used along with cur-
rent sensor measurement data to predict the optimal PM 
interval for the current period. The predictions using this 
method of estimation are completely reliant on the accu-
racy of the feedback estimates from the maintenance per-
sonnel, and an assumption is those estimates have a zero 
mean difference from the true values. 

4 DDDAS SIMULATION IMPLEMENTATION 

In this work, we employed Arena 10.0 to build a distrib-
uted simulation consisting of three RT DDDAS simula-
tions. Each of the RT DDDAS was used to control the pre-
ventive maintenance scheduling in an echelon of the 
supply chain system. Although the RT DDDAS simulation 
can directly work on data from a real supply chain, for 
demonstration purposes each of the echelons (the real sys-
 

19
tem) was simulated instead of these real systems. The 
communication server which was built using web services, 
was used to enable communication across this distributed 
system. The real systems of each of the simulations ex-
change messages with the order quantity data and expected 
lead times. This data is then transmitted to the RT DDDAS 
simulations. The order quantity is used to create entities in 
the create block of successive simulations to mimic prod-
uct flow in the supply chain system.  
 The RT DDDAS simulation is split into two distinct 
sub-models. The algorithms sub model (ASM) and the 
process sub model (PSM). The ASM is a loop that reads in 
data from the real system based on an update time deter-
mined by the fidelity of each component of the real system. 
This is a looped sub model with a timing entity (agent) to 
execute each algorithm and a delay block having a delay 
time of δt as specified by the preceding algorithms. Once 
δt has elapsed, the agent repeats its operation with different 
parameters. The interaction between the real system and  
RT DDDAS is modeled in this ASM.   
 The output from the ASM (fidelity of each compo-
nent) is used by the PSM to route entities into the correct 
fidelity level. The PSM is essentially composed of Process 
blocks, VBA blocks and a Decide block. The decide block 
is used to switch between the available fidelities. Within 
the PSM’s process blocks we employ a formula to calcu-
late the delay of a particular process based on sensor in-
puts. This is essential in order for the PSM to mimic the 
cycle times in the real system and in turn for the RT 
DDDAS simulation to synchronize with the real system. 
  The algorithms in the ASM loop are executed in se-
quence: Algorithm 1 populates the sensor machine-id ar-
ray, which is used by Algorithm 2 & 3 which in turn popu-
lates the fidelity machine-id array and also δt machine-id 
array. Algorithm 4 then uses these arrays to update the 
preventive maintenance schedule (in the generic case this 
will be any suitable parameter of choice). Algorithm 4 also 
 

    
        

Figure 8: Details of algorithm 4 (dynamic simulation model construction algorithm for real-time scheduling) 

Multiple Linear 
Regressions 
Function  

Mean values for each sensor j pa-
rameter during that period (Xi-1,j) 

Best fitted 
weights for 
PM interval 
formula (Wj) 

PM Interval 
Formula 

Sensor data (Xi·)

From the variables above, the problem expressed in matrix form as Y = W*X
Solving for the vector of weights yields   W= (XTX)-1*XTY  

Y1=W1*X11+W2*X12+W3*X13 
Y2=W1*X21+W2*X22+W3*X23  ... 
Y3=W1*X31+W2*X32+W3*X33  … .

Feedback estimates of the optimal PM 
period from maintenance personnel (Yi-1)  

Algorithm #4

Time since last machine maintenance 

 …

OUTPUT

Yi= Σ(Wj) + Σ(Wj*Xij) 
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requests the data from the real system’s data sources for 
the next loop of the ASM. Once the new data is received, 
the loop is re-executed after a δt time period.  
 In this implementation, we use a minimum of 6 sen-
sors in the lowest fidelity and 15 sensors in the highest fi-
delity for each machine (e.g. temperature, pressure, air 
humidity). Fidelity affects both number of data acquired 
and the frequency of data collection. In this model, highest 
fidelity level requires collecting 15 data in every 10 sec-
onds. In the real system, sensitive data from the sensors 
would affect processing times. This is modeled in the RT 
DDDAS simulation using a formula to calculate processing 
times (in real time). The number of sensory data also af-
fects the ASM as it influences the number of data to proc-
ess and the linear regression equation employed in Algo-
rithm 4. CR are allocated to collect sensory data from each 
machine based on the number of requests made by RT 
DDDAS simulation.  Each of the sensory data collected, 
CR used and MTBF calculated are reported through a 
monitoring tool shown in Figure 9. 

 

 
 
Figure 9:  An instance of the results of the algorithms in 
Arena model 

5 EXPERIMENT AND RESULTS 

The supply chain under consideration is modeled and 
simulated in two ways – 1) the conventional maintenance 
schedules (static) and 2) RT DDDAS maintenance sched-
ules. A comparison of production lead times between the 
two systems is then developed. Because the RT DDDAS 
indicates the necessity of machine maintenance only when 
the sensors shows so, the PM schedule gets closer to a 
maximum machine utilization. This way, unexpected ma-
chine breakdowns, unnecessary maintenance, and down-
time for problem identification are all avoided. Thus, the 
production lead time is minimized. Figure 10 shows the 
dynamic fidelity change of RT DDDAS simulation of wa-
fer fab during its execution. The graph shown in Figure 11 
depicts the CR usage of wafer fab in RT DDDAS simula-
19
tion. Since we represent the collaborative supply chain sys-
tem,  each Fab is competing for CR coming from a single 
resource pool shared by all echelons. Note in the same fig-
ure that, the fidelities assigned are in direct variation with 
the computing resource availability in the system.  
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Figure 10: Dynamic change of fidelity level on each ma-
chine of wafer fab 
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 Figure 11: Dynamic change of computing resources and 
its usage in wafer fab 

 
 Table 3 depicts comparison of performance of the PM 
schedule generated by the RT DDDAS against that of the 
conventional PM schedule (static) and a system not involv-
ing any PM. Results show that the maintenance schedule 
generated by RT DDDAS allows a 11% reduction in prod-
uct lead times compared to conventional scheduling and an 
18% reduction compared to a system with no PM. Lead 
times are measured as the difference between the time that 
final products are shipped to the next station (customer) 
from the assembly and packaging fab (echelon 3) and the 
time production gets started in the wafer manufacturing fab 
(echelon 1). This reduction in lead time translates to gigan-
tic monetary savings. The improvement achieved by 
DDDAS is attributed to the increased utilization achieved 
through better PM scheduling. 
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Table 3: Production lead time reduction via DDDAS sys-
tem in prototype model 

 
 

6 DISCUSSION AND CONCLUSION 

In this paper, the DDDAS methodology was applied to mi-
nimize lead times in a supply chain system by optimizing 
the PM schedules of individual echelons. The processes in 
a 3 echelon collaborative, semiconductor supply chain sys-
tem was considered to demonstrate the proposed DDDAS 
system. Results relating to the automatic fidelity switching 
in each echelon and optimized resource allocations were 
observed and graphed. A lead time reduction of around 
11% was achieved using the PM schedule generated by 
DDDAS. While we focused on the PM for a collaborative 
supply chain, the generality (and necessary modifications) 
of the proposed DDDAS system for the competitive supply 
chain has been discussed as well. Our ongoing research fo-
cuses on extending the proposed DDDAS system to vari-
ous phases of supply chains such as production scheduling 
and transportation management.  
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