
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

ASSESSING TRAM SCHEDULES USING A LIBRARY OF SIMULATION COMPONENTS

Elisangela Mieko Kanacilo
Alexander Verbraeck

Systems Engineering Group
Faculty of Technology, Policy and Management

Delft University of Technology
Jaffalaan, 5, 2628BX, Delft, THE NETHERLANDS
ABSTRACT

Assessing tram schedules is important to assure an efficient
use of infrastructure and for the provision of a good quality
service. Most existing infrastructure modeling tools provide
support to assess an individual aspect of rail systems in
isolation, and do not provide enough flexibility to assess
many aspects that influence system performance at once.
We propose a library of simulation components that enable
rail designers to assess different system configurations. In
this paper we show how we implemented some basic safety
measures used in rail systems such as: reaction to control
objects (e.g. traffic lights), priority rules, and block safety
systems.

1 INTRODUCTION

A Tram System, also referred as Streetcar or Trolley
System (Edwards 1992, Vuchic 2004) is a type of rail
system driving on tracks in streets, sharing space with cars,
buses and pedestrians.

As tram systems represent public services, the level
of service is an important requirement. When planning
services for transit systems in general, planners should look
for strategies that will provide cost effective operation and
adequate services for the public (Harris and Godward 1992,
Sussman 2000, Vuchic 2004, Edwards 1992).

The task of creating schedules is of huge importance
as this defines how good the system fulfill the passenger
demand, with a certain minimum frequency of service. A
good level of service means that transport service is reliable,
easily accessible in time and space and provides a safe, fast
and comfortable ride at a reasonable price (Wiransinghe
2003).

Several commercial simulation tools are available to
support the assessment of tram schedules. The disadvantages
of these tools are that they assess schedules in isolation and
do not consider or do not provide enough flexibility to assess
18781-4244-1306-0/07/$25.00 ©2007 IEEE
other aspects at the same time. For example, it might be
that the strategies used to improve timetables and the ones
used to decrease delay propagation will not produce a good
system performance, when these measures are combined in
the same scenario.

As advocated by Ceder (2003), different aspects of the
rail system should be analyzed at the same time, to exploit
the system’s capability to the greatest extent and maxi-
mize the system’s productivity and efficiency. Therefore,
we propose a library of simulation components to enable
schedule makers in assessing timetables at different system
configurations before commissioning them.

In this paper, we give a detailed explanation of how
we modeled some basic rules used in rail systems, such
as vehicle reaction to control objects, e.g. traffic lights,
priority measures and block system as a safety mechanism.
Section 2 covers the challenges in creating tram schedules
for which the designers have to take several aspects into
account. In section 3, we show the Java-based library
of rail-specific simulation components, based on the DSOL
simulation environment (Jacobs, Lang, and Verbraeck 2002,
Lang, Jacobs, and Verbraeck 2003, Jacobs 2005) that was
created to research tram schedules in relation to control
systems. Section 4 illustrates the use of the library for a
concrete case study that was carried out for a tram company,
followed by an evaluation and conclusions in section 5.

2 CHALLENGES IN CREATING TRAM
SCHEDULES

Scheduling is one major concerns of transit management
(Black 1995). It directly affects operating costs and sched-
ules can vary widely in their efficiency. Schedule of rail
lines must satisfy two requirements (Vuchic 2004):

• it must provide adequate transporting capacity for
the passenger volume (number of transit units)

• it must offer a certain minimum frequency of service

Kanacilo and Verbraeck
In addition, when creating schedules, planners aim at a
good system performance. There are many factors affecting
the system performance of rail systems, such as travel time,
average speed, punctuality, regularity of vehicles and others
(Edwards 1992, Black 1995).

Operation strategies, such as setting speed limits and pri-
ority rules, also influence the performance and they should
be combined and assessed together with scheduling de-
cisions. Assessing these strategies in combination with
schedule allows for a better exploration of alternatives for
a good service planning according to the system capacity.

Several tools to for rail-based infrastructure modeling
have been described in literature. RailSys is a supporting
tool to create timetables for rail networks where a block
safety mechanism is in use. Rudolph and Demitz (2003)
and Demitz, Hübschen, and Albrecht (2004) describe the
application of RailSys to a rail network and how it can
improve the timetable of a system. Kraft (1982) proposed
a model to analyze the effects of unexpected delays in
the scheduling for the purpose of analyzing jam capacity.
Higgings, Ferreira, and Kozan (1995) analyze the risks of
delay for each train and for the schedule as a whole, by
giving weigh to delays. SIMONE is a Dutch simulation
package used to assess timetables of large scale rail networks.
In Middelkoop and Bouwman (2000) and Middelkoop and
Bouwman (2001) the authors apply SIMONE to evaluate
and compare many traffic scenarios in The Netherlands.
SIMON (Wahlborg 1996, Bergmark 1996) is a Swedish
software package used to simulate the whole train network,
and UX-SIMU (Kaas 2000) is used in Denmark to simulate
rail systems traffic.

Although existing tools are very useful to test one aspect
of the control design in isolation, like for example timetable
assessment, delay propagation, or traffic analysis, they do
not provide support for, or it becomes hard to analyze all
these aspects at the same time in the model. For example,
it might be that the combination of control strategies used
to improve timetables and the ones used to decrease delay
propagation, will not produce a good system performance,
when they are combined in the same scenario.

As advocated by Ceder (2003), different aspects of the
rail system should be analyzed at the same time, to exploit
the systems capability to the greatest extent and maximize
the systems productivity and efficiency.

In the next section, we present a library of simulation
components that we propose to support the assessment of
tram schedules and other operational strategies in a joint
model.

3 LIBRARY OF SIMULATION COMPONENTS

We propose a library of simulation components organized
in a service oriented way (Papazoglou 2003). In Kanacilo
and Verbraeck (2006), we explained how we structured the
1879
library in service oriented architecture. Simulation compo-
nents have been developed in Java and they are clustered
by the type of services they offer. See Figure 1.

The left side of the figure contains the components
for input processing. These are components to check and
validate input data, with the XML input file parser from
which the whole model will be created as the most important
component. In the middle the components to create the
simulation model are present. These are separated into
layers:

• Physical Layer creates the physical objects, like
for example traffic light and sensors.

• Control Layer creates the logic behind each phys-
ical objects, for example control part of the traffic
light, which in fact defines the different types of
traffic light (different logic control).

• Statistics Layer creates graphs and other objects
to support the calculation of statistics during the
simulation run.

On the right side we have the components to support
output analysis, like the animation of object interaction
and visualization of statistics. For more details about the
architecture, see Kanacilo and Verbraeck (2006).

There are some objects in rail systems that are better
represented by the DESS formalism (continuous), such as
vehicles, while others objects are better represented by
DEVS (discrete) formalism, such as sensors and traffic
lights. Therefore, to model the interaction among these
objects, we use the DEVSDESS formalism which is able
to support both DEVS and DESS behavior. More about
modeling formalisms can be found in Zeigler, Praehofer,
and Kim (2000).

The communication between objects is done through
the publish/subscribe mechanism, which is an asynchronous
type of communication. The strength of asynchronous com-
munication is that the sender does not block while waiting
for an answer of the receiver. Instead, the communication
is implemented in such a way that the sender can handle
a callback that comes in later. For modeling transporta-
tion systems and safety systems this is important, because
trams continue to drive, for instance, when an answer for
a request does not come back immediately. We used the
publish/subscribe mechanism to model the basic safety mea-
sures of rail systems. The safety measures described here
are: reacting to control objects, modeling of priority rules,
and the block system, which will all be explained in the
following subsections.

Kanacilo and Verbraeck
Service Oriented Architecture for Rail Infrastructures

Input

Physical Layer

Output

Control Layer

Statistics

X
M

L
 In

pu
t P

ar
se

r

C
on

fig
ur

at
io

n
S

ch
ed

ul
in

g

Track

Vehicle

Sensor

TrafficLight

SpeedSign

Station

TrafficLightControl StationControl

VirtualSensorDriver

Graph DataCollector

A
ni

m
at

io
n

S
ta

tis
tic

s
V

is
ua

liz
at

io
n

an
d

A
na

ly
si

s

Input Processing Simulation Model Output Processing

Database

Figure 1: Service oriented architecture.
3.1 Reacting to Control Objects

Control objects refer to any object in the system that will
result in changes to the vehicle speed, such as traffic lights,
speed signs or other vehicles on the same track.

To make sure the vehicle will stop in time for these
objects, a minimum speed-dependent braking distance is
calculated for each vehicle type. This calculation is done
just once at the beginning of the simulation and stored in a
vector for efficiency purposes. The actual braking distance
is calculated by interpolating the braking distance between
the two nearest speeds. This is done per vehicle type as it
takes into account the acceleration/deceleration rate of the
vehicle, which is dependent on the vehicle characteristics
such as the vehicle weight.

During the simulation, the vehicle is always ”looking
for” control objects within a certain distance d ahead, where
d= 1.5 x braking distance meters to assure a safe ride, and
to accommodate for reaction time of the simulated driver of
the vehicle. This does not mean the vehicle will start to brake
immediately after a control object is detected, for example
in case this control object is a red traffic light, but it is just to
make the vehicle “aware” of the obstacle. The vehicle will
only start braking, when the distance between the vehicle
and the control object is equal to the braking distance

This awareness is implemented using a publish-
subscribe mechanism (see Kanacilo and Verbraeck 2006).
1880
When the traffic light is detected by the vehicle, the vehicle
subscribes itself to the Change State event of the traffic
light. This means that if the state is changed, regardless
what the new state is (green, red or yellow), the vehicle
(and all other objects subscribed to this Change State event)
will be notified. According to what the new state is, the
vehicle will take appropriate action. This reaction could be
accelerate or keep constant speed if the state is green, or
start braking if the state is changed to red. See Figure 2.

After the vehicle has passed the traffic light location,
the vehicle removes itself from the Change State event list,
as the state of this traffic light is not relevant anymore to
the behavior of the vehicle.

3.2 Modeling Priority Rules

As explained in Vuchic (2004), priority measures for rail
systems can be of three types: passive, active and signal
preemption. These vary accordingly to the time the traffic
light will change to or remain in green phase favoring traffic
of the tram line for which the priority is required. In this
section, we explain how the signal preemption has been
modeled in the library.

Signal preemption gives absolute priority to a certain
traffic direction. It means that every time the vehicle coming
from the priority direction approaches the traffic light, it

Kanacilo and Verbraeck
Tram T1

TL1-Change_State List: empty

Traffic Light TL1

visibleSensor

Tram T1

TL1-Change_State List:Tram T1

Traffic Light TL1

visibleSensor

(a) simulation at time T0

(b) simulation at time T1

Figure 2: Publish-subscribe mechanism.

will trigger the green phase to start. For safety reasons, the
green phase only starts when the way is clear.

Consider the situation of Figure 3. Four directions are
possible in this crossing as shown in the figure. Three
absolute traffic lights guard this crossing. Absolute traffic
lights remain in the red state by default, and every time a
vehicle approaches, it triggers a sensor that requests access
to the crossing. Only when the access is granted by the
control system, the traffic light turns to green. As all three
traffic lights are of the absolute type, requests are processed
on a first come, first served basis, if no priority is defined
for certain tram lines. To implement the priority, requests
are stored in a map. If priority is defined, the request map
is sorted based on the priority set for the vehicle line. When
more than one request is done before access is given (green
light), multiple entries will reside in the map, and the tram
with the highest priority will be granted access first. We
define an absolute block as a length of track guarded by an
absolute traffic light.

To model this crossing, four objects were used: three
absolute blocks which control the accessibility to the area
guarded by each absolute traffic light, and one so-called
switch block to control the crossing, which is based on
the occupancy of all three absolute blocks. The switch
block object is the central object in charge of processing
the requests, determining which traffic light will change to
green phase, and when it will change. The vehicle sends a
request to access the crossing to the absolute block it wants
to enter. The controller for the absolute block delegates
the request to the switch block, passing a pointer to the
absolute block that sent the request. When the controller
18
A

B

C

Directions

A to C =

A to B =

C to A =

B to A =

Figure 3: Priority at intersection.

of the switch block grants access to a vehicle, it sends the
approval by allowing the absolute block to change the phase
of its respective traffic light. As the vehicle is subscribed to
the state change of that traffic light, it can start to accelerate
again (or to continue driving if it did not decelerate yet) and
enter the crossing in a safe way. As long as the vehicle does
not receive an answer, it will decelerate as soon as it hits its
braking distance to stop just in time for the absolute traffic
light. In this way, a safe system can be created where
vehicles only trigger sensors and drivers of the vehicles
look at the traffic lights, and there is no direct object-object
interaction between vehicles and control systems or traffic
lights, just like in reality.

3.3 Block System

The block system concept is a safety mechanism commonly
used in rail systems. When this mechanism is in use, (part
of) the infrastructure is divided into blocks. At the beginning
of each block, there is a traffic light controlling the access
to the block. Therefore, a block consists of the distance
between two successive signals, which will be called traffic
lights in this paper. The block length is not fixed and
it varies among rail companies. For a tram system, for
instance, blocks have a much shorter length than for a high-
speed rail system, due to the shorter vehicles, lower weight,
and shorter braking distance.

The safety policy determines how many vehicles are
allowed to be present in the block at the same time. The
number depends on the length of the vehicle and on the
length of the block, but normally it is set at one vehicle
at a time. For high-speed train safety systems, the policy
is often that the maximum speed in a predecessor block
for an occupied block is set to half-speed, which is often
indicated by a yellow signal. For tram systems, with much
lower speeds, and shorter braking distances, the policy can
even be set to allow two vehicles in one block at a time,
to avoid congestion. The second vehicle to enter the block
is then also warned by a yellow signal.
81

Kanacilo and Verbraeck
When assuming that just one vehicle is allowed per
time in a block, the block control system works as follows:

• when the vehicle enters a block, the traffic light
turns to red, to indicate to the following vehicle
to wait and keep the safety distance.

• when the vehicle leaves the first block, the traffic
light of the first predecessor block turns to yellow.
Yellow allows a vehicle to enter into the block, but
with a slower speed, as there is another vehicle in
the next block.

• when the vehicle enters in the third block, the
traffic light of the second predecessor block turns
to green, if there is no vehicle in it.

Figure 4 illustrates the block system. This safety mech-
anism was modeled by creating a Java class Block having
as its main attributes: traffic light, red sensor and a pointer
to the predecessorBlock. When the red sensor of a block
is triggered (i) it changes the state of its traffic light to red,
(ii) it changes the state of the traffic light of its predecessor
block to yellow, (iii) it changes the state of the traffic light
of the predecessor of its predecessor block to green, if the
current state is yellow. This is shown in the situation I of
Figure 4. If the state of the traffic light of the second prede-
cessor block is not yellow, it can only be red, meaning that
there is a vehicle in the first predecessor block, as shown
in situation II of Figure 4.

Tram

redyellowgreen

Tram

redgreen

Tram

red

green

green

(a) situation I

(b) situation II

Figure 4: Block system.

In this way of modeling, a block changes the state of
its own traffic light and of its neighbors when necessary.
An important prerequisite is that predecessor and successor
blocks must be set when instantiating or loading the model.

4 CASE STUDY

4.1 Case Description

In the city of The Hague in The Netherlands, a light rail
viaduct in the Beatrixlaan is an important part of the Randstad
Rail project, which consist of offering transport services
188
using light rail vehicles between The Hague and Zoetermeer.
Because of this initiative, the tram operator HTM is currently
extending its rail infrastructure and consequently, the control
system needs to be (re)designed.

The Beatrix Project focuses on a specific part of this
infrastructure extension and it consists of studying a crossing
of tracks that will be formed with the building of the new
part of the infrastructure, which looks very much like the
situation of Figure 3. The complexity is that tram stops
(stations and platforms) are present that will influence the
effectiveness of control measures (see Figure 5). The light
rail vehicles travel between the south and the west, and share
the tracks with the traditional trams that use the east-west
tracks.

With the addition of tracks and light rail vehicles,
control strategies for the surrounding area need to be re-
designed as the traffic will be influenced by the new tram
lines. These new tram lines will be operated by light rail
vehicles and, compared to traditional trams they differ in
length, width, acceleration and deceleration. Adjustments
to the tram timetables, different speed limits, location of
traffic lights and other alternatives of strategies need to be
assessed. Infrastructure capacity will also vary according
to the applied control strategies. For example, if speed
limits are set to different values, the average of travel time
will vary and consequently the throughput of vehicles will
vary as well. Therefore, a careful analysis is necessary to
decide which strategies will provide a satisfactory system
performance.

Beatrixlaan

Ternoot Station

Blocks

Central
Station

Crossing Block

Station with capacity
of two vehicles

Figure 5: Beatrixlaan crossing.

4.2 Performance Indicators

In order to assess how the differences in timetables in-
fluence the system performance, we selected a number of
performance indicators as a basis for the analysis. For all
the experiments described later in this paper, the following
performance indicators were used:

Travel Time: This is the total time a vehicle takes
to drive through the system. Travel time is from the time
the vehicle enters in the system until the time it leaves the
system. If it is necessary that the vehicle waits until tracks
are cleared to enter in the system (for safety reasons), this
2

Kanacilo and Verbraeck
Table 1: Generation for the expected scenario.
Vehicle line Directions Frequency

Line 7 Central Station - Ternoot 8 vehicles per hour (every 7.5 minutes)
Line 2 Central Station - Ternoot 12 vehicles per hour (every 5 minutes)
Line 7 Ternoot - Central Station 8 vehicles per hour (every 7.5 minutes)
Line 2 Ternoot - Central Station 12 vehicles per hour (every 5 minutes)

Line 3 (RR) Central Station - Beatrixlaan 12 vehicles per hour (every 5 minutes)
Line 6 (RR) Central Station - Beatrixlaan 12 vehicles per hour (every 5 minutes)
Line 3 (RR) BeatrixLaan - Central Station 12 vehicles per hour (every 5 minutes)
Line 6 (RR) BeatrixLaan - Central Station 12 vehicles per hour (every 5 minutes)

Total 88 vehicles per hour - No priority
waiting time is not counted. Travel time is measured per
line per direction.

Traveltime = EntryTime−DeletionTime (1)

where EntryTime = time the vehicle enters in the system,
and DeletionTime = time the vehicle is deleted from the
system.

Speed Average: it is the speed average each vehicle
drove through the system. It is calculated per line and per
direction. It is calculated using the following formula:

Speedaverage = DistanceTraveled/TravelTime (2)

where DistanceTraveled = distance traveled by the vehicle
from the entry point until the deletion point, and TravelTime
= see formula (1).

Queue Time: This is the time a vehicle waits to enter
in the system until tracks are cleared. It is measured using
the following formula:

Queuetime = EntryTime−GenerationTime (3)

where EntryTime = time the vehicle enters in the system,
GenerationTime = time the vehicle is created.

All the performance indicators in use in this project
are measured per line per direction. Specific measurement
objects have been created in the statistics layer of the library
in Figure 1 to allow the measurement of these performance
indicators.

4.3 Experiments

As we are analyzing a non-existing system, there are no
real data to compare the results. For this reason, we set two
scenarios that will serve as a reference for data analysis.
We used one scenario where only light rail vehicles are
generated and one where only traditional trams are driving
through the system. In both scenarios, vehicles are generated
periodically, but at very long time intervals. This is an ideal
scenario, as apart from the dwell time at stations, no other
1883
factor will delay the trip. These scenarios provide the data
of an ideal situation and the other scenarios will be analyzed
making a comparison of how much they deviate from the
ideal case. For simplification, we refer to light rail vehicles
as RR vehicle, which means Randstad Rail. Many different
experiments have been carried out. In this paper, we will
show two scenarios with the expected number of vehicles
only.

The scenario consists of running the system with the
expected number of vehicles in the system. This means
88 vehicles in total, among Randstad Rail vehicles and
traditional trams. The number of vehicles generated per
directions is (names refer to the locations mentioned in
Figure 5):

• Central Station - Ternoot: 20 vehicles per hour
• Ternoot - Central Station: 20 vehicles per hour
• Central Station - BeatrixLaan: 24 vehicles per hour
• BeatrixLaan - Central Station: 24 vehicles per hour

Table 1 shows the number of vehicles that is generated
per line. In this scenario, no lines have priority in accessing
the crossing. The access is given according to the order of
request.

We carried out experiments without priority for any type
of vehicle or line, and experiments where the RR vehicles
for lines 3 and 6 have priority in accessing the crossing.

4.4 Analysis of Results

In this section, we present the results gathered from the
scenarios defined earlier. The results from the first two
reference experiments with only RR vehicles and only trams
have been described in Tables 2 and 3.

Table 2: Averages for RR vehicles only.
Line Travel Time Speed Queue Time
Line 3 157.532 s 8.031 m/s 0.000 s
CS-Beatrix 9.85 s 0.46 m/s 0.00 s
Line 3 160.903 s 7.801 m/s 0.000 s
Beatrix-CS 8.25 s 0.395 m/s 0.00 s

Kanacilo and Verbraeck
Table 3: Averages for tram vehicles only.
Line Travel Time Speed Queue Time
Line 2 164.753 s 6.328 m/s 0.000 s
CS-Ternoot 8.727 s 0.536 m/s 0.000 s
Line 2 128.163 s 8.076 m/s 0.000 s
Ternoot-CS 12.156 s 0.4133 m/s 0.000 s

Comparing to ideal situation, the scenario with ex-
pected capacity and no priorities from which the results are
displayed in Table 4 shows an increase in the average of
travel time for the direction Ternoot-CS. This is explained
by two factors: increase in the number of vehicles driving
through the system makes the crossing to be busy with more
frequency plus the fact that vehicles driving in this direction
only request access to the crossing after they have left Ter-
noot station, which is at a short distance from the absolute
traffic light guarding the crossing. Therefore, the request is
made very late and when the crossing is occupied, vehicles
have to wait for a longer time until tracks are cleared.

In addition, some vehicles of line 7 driving in the
direction Ternoot-CS present an increase on the queue time.
This is caused because vehicles have to wait longer to have
access to the crossing and because vehicles keep a safety
distance from each other. Therefore, new vehicles cannot
enter in the system until tracks are cleared.

Although this scenario shows a small decrease on the
performance, this delay can be avoided by adjusting timeta-
bles. The animation indicates that vehicles of all directions
are generated at time intervals that make them arrive almost
at the same time at the crossing while there are intervals
without any vehicle in the system. Changing the timetables
in order to make vehicles arrive at the crossing at different
times can solve this conflict and can reduce the delay.

When comparing the results of the prioritized experi-
ment in Table 5 to the experiment without priority in Table 4,
it seems that giving priority to RR vehicles do not influence
the system performance. This is expected, as the delay
encountered in the non-prioritized experiment is caused by
lines 2 and 7, which are operated by traditional trams. This
result was not expected by the experts from HTM, who
thought that priorities would make quite some difference.

4.5 Case Study Conclusions

In this case study we used a rail simulation architecture to
support the measurement of a rail infrastructure capacity.
Experiments showed that the current infrastructure can sup-
port 88 vehicles per hour distributed among 4 lines driving
in both directions. The scenario discussed in this paper
describes the system configuration that presented a good
performance taking into account the performance indicators
discussed earlier. Although results show that the infrastruc-
ture supports 88 vehicles per hour, adjustments to timetables
18
Table 4: Averages for realistic scenario, no priority.
Line Travel Time Speed Queue Time
Line 2 136.063 s 7.607 m/s 0.000 s
CS-Ternoot 9.311 s 0.503 m/s 0.000 s
Line 7 151.472 s 6.954 m/s 0.000 s
CS-Ternoot 24.320 s 1.096 m/s 0.000 s
Line 2 136.063 s 7.607 m/s 0.000 s
Ternoot-CS 9.311 s 0.5032 m/s 0.000 s
Line 7 151.472 s 6.954 m/s 2.898 s
Ternoot-CS 9.311 s 0.441 m/s 0.000 s
Line 3 157.880 s 8.010 m/s 0.000 s
CS-Beatrix 9.006 s 0.441 m/s 0.000 s
Line 6 156.040 s 8.097 m/s 0.000 s
CS-Beatrix 7.018s 0.341 m/s 0.000 s
Line 3 163.480 s 7.674 m/s 0.000 s
Beatrix-CS 8.148 s 0.375 m/s 0.000 s
Line 6 167.032 s 7.499 m/s 0.000 s
Beatrix-CS 11.818s 0.238 m/s 0.000 s

are necessary. Based on statistical data and on the animation
of the scenario (see Figure 6 for an example of the user
output during the run), one could notice an overlapping on
the timetables. At certain time intervals, vehicles coming
from all directions have to compete to get access to the
crossing as they reach the area almost at the same time,
while there are time intervals where no vehicles are driving
in the system. Distributing the vehicles departures better, the
system performance can be improved by reducing the delay
caused by the waiting time until the crossing is cleared.

Contrary to the expectations of the tram operator, giving
priority to RR vehicles to the crossing does not increase the
throughput of this type of vehicles as the average of travel
time remains almost the same. Instead, it delays the traffic
of traditional trams operating in other lines (lines 2 and 7).
The implementation of other types of priorities could have
a bigger impact on the traffic in the studied area, like for
example, give priority to all vehicle lines departing from
Central Station, but further tests need to be done in order to
assess the impact of this strategy on the system operation.

5 CONCLUSIONS

Simulation showed to be very adequate to test alternatives of
strategies to operate a rail infrastructure. Different system
configurations can be tested and the performance of the
system can be analyzed through animation and through the
statistics gathered during the simulation.

The rail simulation library applied in this project per-
formed well, but improvements can be made. For example,
calculate automatically some performance indicators, such
as average of travel time, instead of only providing data for
later calculation. The addition of other performance indica-
tors to complement the output analysis would be desirable.
84

Kanacilo and Verbraeck
Figure 6: Screen-dump of the library in action for the case study example.
Table 5: Realistic scenario, priority for RR vehicles.

Line Travel Time Speed Queue Time
Line 2 136.078 s 7.612 m/s 0.000 s
CS-Ternoot 10.197 s 0.550 m/s 0.000 s
Line 7 150.492 s 6.999 m/s 0.000 s
CS-Ternoot 23.479 s 1.141 m/s 0.000 s
Line 2 136.078 s 7.612 m/s 0.000 s
Ternoot-CS 10.20 s 0.550 m/s 0.00 s
Line 7 150.492 s 6.999 m/s 2.899s
Ternoot- CS 23.479 s 1.287 m/s 3.202 s
Line 3 158.392 s 7.981 m/s 0.000 s
CS-Beatrix 9.3162 s 0.4536 m/s 0.000 s
Line 6 156.698 s 8.059 m/s 0.000 s
CS-Beatrix 7.723 s 0.377 m/s 0.000 s
Line 3 164.882 s 7.611 m/s 0.000 s
Beatrix-CS 8.330 s 0.372 m/s 0.000 s
Line 6 167.200 s 7.493 m/s 0.000 s
Beatrix-CS 6.141 s 0.259 m/s 0.000 s

ACKNOWLEDGMENTS

We acknowledge the support of the HTM Personenvervoer
NV for this research <www.htm.net>. This research
project has been funded by the BSIK-NGI program <www.
nginfra.nl>.

REFERENCES

Bergmark, R. 1996. Railroad capacity and traffic analysis
using simon. In Computers in Railways V, ed. R. J. H.
18
G. S. J. Allan, C. A. Brebbia and S. Sone, 549–562.
Southampton, United Kingdom: WIT Press.

Black, A. 1995. Urban mass transportation planning. Mc-
Graw-Hill.

Ceder, A. 2003. Advanced modeling for transit opera-
tions and service planning, Chapter Public Transport
Timetabling and Vehicle Scheduling, 31–57. Elsevier
Science.

Demitz, J., C. Hübschen, and C. Albrecht. 2004. Timetable
stability - using simulation to ensure quality in a reg-
ular interval timetable. In Computers in Railways IX,
ed. J. Allan, C. A. Brebbia, R. J. Hill, G. Sciutto,
and S. Sone, 549–562. Southampton, United Kingdom:
WIT Press.

Edwards, J. 1992. Transportation planning handbook. En-
glewood Cliffs: Prentice-Hall.

Harris, N. G., and E. W. Godward. 1992. Planning passenger
railways: A handbook. Transport Publishing Co Ltd.

Higgings, A., L. Ferreira, and E. Kozan. 1995. Modelling
single line train operations. Transportation Research
Record 1484, In Railroad Transportation Research:9–
16. Washington DC.

Jacobs, P. H. M. 2005. The DSOL simulation suite - en-
abling multi-formalism simulation in a distributed con-
text. Ph.D. thesis, Delft University of Technology, Delft,
The Netherlands.

Jacobs, P. H. M., N. A. Lang, and A. Verbraeck. 2002. D-
SOL; a distributed java based discrete event simulation
architecture. In Proceedings of the 2002 Winter Sim-
ulation Conference, ed. E. Ycesan, C.-H. Chen, J. L.
Snowdon, and J. M. Charnes, 793–800. Piscataway,
85

http://www.htm.net
http://www.nginfra.nl
http://www.nginfra.nl

Kanacilo and Verbraeck
New Jersey: Institute of Electrical and Electronics En-
gineers, Inc.

Kaas, A. H. 2000. Punctuality model for railways. In Com-
puters in Railways VII, ed. C. A. B. G. S. J. Allan,
R. J. Hill and S. Sone, 809–816. Southampton, United
Kingdom: Wit Press.

Kanacilo, E. M., and A. Verbraeck. 2006. Simulation ser-
vices to support the control design of rail infrastructures.
In Proceedings of the 2006 Winter Simulation Confer-
ence, ed. L. F. Perrone, F. P. Wieland, J. Liu, B. G.
Lawson, D. M. Nicol, and R. M. Fujimoto, 1372–
1379. Piscataway, New Jersey: Institute of Electrical
and Electronics Engineers, Inc.

Kraft, E. R. 1982. Jam capacity of single track rail lines.
In Transportation Research Forum Proceedings, Vol-
ume 23, 461–471.

Lang, N. A., P. H. M. Jacobs, and A. Verbraeck. 2003.
Distributed open simulation model development with
DSOL services. In Proceedings of the 15th European
Simulation Symposium 2003 - Simulation in Industry,
210–218. Germany: SCS European Publishing House.

Middelkoop, D., and M. Bouwman. 2000. Train network
simulator for support of network wide planning of
infrastructure and timetables. In Computers in Railways
VII, ed. J. Allan, R. J. Hill, C.A.Brebbia, G. Sciutto,
and S. Sone, 267–276. Southhampton, UK: WIT Press.

Middelkoop, D., and M. Bouwman. 2001. Simone: Large
scale train network simulations. In Winter Simulation
Conference, ed. B. Peters and J. Smiths, 1042–1047.
Psicataway, New Jersey, EUA: IEEE Press.

Papazoglou, M. P. 2003. Service oriented computing: con-
cepts, characteristics and directions. In Proceedings of
the 4th IEEE International Conference on Web Infor-
mation Systems, 3–12: IEEE Computer Society.

Rudolph, R., and J. Demitz. 2003. Simulation of large rail-
way networks. In World Congress on Railway Research
2003, 644–652. Edinburgh, United Kingdom.

Sussman, J. 2000. Introduction to transportation systems.
Norwood,MA.: Artec House, Inc.

Vuchic, V. R. 2004. Urban transit: Operations, planning
and economics. John Wiley & Sons, Inc.

Wahlborg, M. 1996. Simulation models: Important aids for
baverkert’s planning process. In Computers in Railways
V, ed. R. J. H. J. Allan, C. A. Brebbia, Volume 1, 175–
181. Southampton, United Kingdom: Wit Press.

Wiransinghe, S. C. 2003. Advanced modeling for transit
operations and service planning, Chapter Initial Plan-
ning for Urban Transit Systems, 1–29. Oxford, UK:
Pergamon.

Zeigler, B. P., H. Praehofer, and T. G. Kim. 2000. Theory of
modeling and simulation. Second Edition ed. Academic
Press.
188
AUTHOR BIOGRAPHIES

ELISANGELA MIEKO KANACILO is a Ph.D. candidate
at the Systems Engineering Group of Delft University of
Technology. Her PhD research is focused on developing
a simulation environment to support the control system
design of rail infrastructures. Her email address is <e.m.
kanacilo@tudelft.nl> and her web page is <www.
tbm.tudelft.nl/webstaf/elisangelak>.

ALEXANDER VERBRAECK is chair of the Systems En-
gineering Group of Delft University of Technology, and a
part-time full professor in supply chain management at the
R.H. Smith School of Business of the University of Mary-
land. He is a specialist in discrete event simulation for
real-time control of complex transportation systems and for
modeling business systems. His current research focus is
on development of generic libraries of object oriented simu-
lation building blocks in C++ and Java. His e-mail address
is <a.verbraeck@tudelft.nl>, and his web page is
<www.tbm.tudelft.nl/webstaf/alexandv>.
6

mailto:e.m.kanacilo@tudelft.nl
mailto:e.m.kanacilo@tudelft.nl
http://www.tbm.tudelft.nl/webstaf/elisangelak
http://www.tbm.tudelft.nl/webstaf/elisangelak
mailto:a.verbraeck@tudelft.nl
http://www.tbm.tudelft.nl/webstaf/alexandv

	INTRODUCTION
	CHALLENGES IN CREATING TRAMSCHEDULES
	LIBRARY OF SIMULATION COMPONENTS
	Reacting to Control Objects
	Modeling Priority Rules
	Block System

	CASE STUDY
	Case Description
	Performance Indicators
	Experiments
	Analysis of Results
	Case Study Conclusions

	CONCLUSIONS

