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ABSTRACT 

We describe a metaheuristic algorithm for simulation opti-
mization. Traditionally, discrete event simulation optimiza-
tion is carried out by multiple simulation runs executed 
sequentially. At the end of each simulation run, the run is 
evaluated (using model output – black box approach) by an 
objective function. If we carry out simulation runs simulta-
neously, then we can evaluate (using model internal data – 
white box approach) different simulation runs during their 
execution before the end is reached. Thus, we can elimi-
nate the inferior runs early and allow only the most promis-
ing runs to continue to the end. We explore this parallel 
competition of simulation models on a single processor 
computer. Applications of the algorithm to traveling sales-
man and job shop scheduling  problems are presented. In 
conclusion, our results suggest that the algorithm is a suit-
able approach for solving some combinatorial problems, 
and it represents a promising “nonsequential” avenue for 
simulation optimization. 

1 INTRODUCTION

Traditionally, simulation optimization is carried out by 
multiple simulation runs executed sequentially. We intro-
duce a different paradigm for simulation optimization – 
multiple simulation runs executed simultaneously. We fo-
cus on deterministic discrete event simulation running on a 
single processor computer. 

Currently, the most attractive simulation optimization 
methods are metaheuristics, such as Tabu Search or evolu-
tionary algorithms. For recent review of literature on simu-
lation optimization, see Fu, Glover, and April (2005). 

“The metaheuristic approach to simulation optimiza-
tion is based on viewing the simulation model as a black 
box function evaluator,” writes April et al. (2003). In this 
approach, (1) a set of values of input parameters is chosen; 
(2) the model is run from the simulation time t0 to tend; (3) 
response (that is, performance or results) of the run is 
evaluated by an objective function; (4) based on responses 
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from the runs, a new set of values of input parameters is 
chosen for the next run; return to (2).  This looping goes 
on until some stopping criterion is met. Hence, during such 
a simulation optimization, a sequence of simulation runs is 
carried out, and the simulation model is treated as a black 
box -- no knowledge of the workings of the model is re-
quired.  

We explore a different approach to simulation optimi-
zation. In this approach, the model is treated as a white box 
-- the knowledge of the internals of the model is paramount 
-- in contrast to the black box approach. Ideas leading to 
our approach are discussed in Section 2. In the approach, 
models run concurrently while traversing a decision tree 
(described in Section 3). Their “local” simulation time is 
synchronized by a single “global” calendar of events (Sec-
tion 3.2). When a model encounters a tree node with k
branches, the model spawns k new models (detailed in Sec-
tion 3.2). Each child model traverses a different branch, 
and the parent model ends running.  

As simulation time advances, more and more models 
are generated, and as a result, the model population ex-
pands. To limit the expansion, the mediocre models are 
weeded out from the population (in pruning events), and 
only the best performing models are allowed to continue 
traversing the tree and breeding offsprings (see Section 
3.3). After the population size drops (caused by a pruning 
event), the population grows again until the next pruning 
event or the end of their simulation runs. The evolution of 
the population, the way models pass through the tree, we 
call a sweep (Section 3.4). The sweep algorithm as an evo-
lutionary algorithm, and front-end and back-end savings of 
computational resources are discussed in Section 3.4. 

The application of the sweep algorithm to (1) the trav-
eling salesman problem is given in Section 3, (2) the job 
shop scheduling problem with the minimum makespan 
objective function is described in Section 4.1, and finally, 
(3) the job shop scheduling problem with due dates is pre-
sented in Section 4.2. To deal with due dates, backward 
simulation (Section 4.2.1) and a pruning rule (Section 4.2.2) 
are applied. 
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New (unpublished) development of the sweep algo-
rithm is reported in Section 5. New pruning rules and a 
pruning function for solving job shop scheduling with due 
dates are introduced in Section 5.1 followed by results of 
solving standard benchmark examples for job shop sched-
uling (Section 5.2). Finally, we discuss future improvement 
in the sweep algorithm (Section 5.3). Multiple and pyra-
mid-building sweeps are proposed in Section 5.3.1 and 
Section 5.3.2, respectively. In Section 5.3.3, parallelization 
of the sweep algorithm is sketched for use in parallel or 
distributed computing. 

In conclusion, the results from the experimental 
evaluation are positive and suggest that the sweep (branch-
and-prune) algorithm (1) can be used for solving some 
combinatorial problems, (2) still has plenty of room for 
improvement, and (3) appears to be a promising alternative 
to the traditional simulation optimization. 

2 DEVELOPMENT HISTORY 

In the 1980s, we used Simula for simulation modeling 
(Mejtsky 1983) in our research in Prague, Czech Republic. 
Simula is a simulation language and has been highly influ-
ential in modern programming methodology. We were in-
trigued by language concept: nesting quasi-parallel systems 
and passing control among them. Our research led to the 
development of graphical representation of the concept 
(later called Mejtsky’s diagrams) as described in (Mejtsky 
and Kindler 1980, Mejtsky and Kindler 1981). The graphi-
cal representation contributes to better understanding and 
faster utilizing the concepts, models, and theories. For ex-
ample, see Kindler (1995). We realized that we have a 
conceptually powerful tool, Simula, which enables simul-
taneous simulation. However, how should we utilize it for 
optimization? 

In 1984, we started experimenting with running simu-
lation models simultaneously. This research was performed 
at the Imperial College of Science and Technology in Lon-
don, England. For testing, we selected the traveling sales-
man problem (TSP) as the simplest problem to model.  

It can be formulated in terms of graph theory as: given 
a complete weighted graph (where the vertices would rep-
resent the cities, the edges would represent the roads and 
the weights would be the cost or distance of that road), find 
a Hamiltonian cycle having the least weight.  

Imagine a traveling salesman who has to visit each of 
a given set of cities by car. What is the shortest route that 
will enable him to do so and return home, thus minimizing 
his total driving? 

For launching models with a different set of input pa-
rameters, we picked branching approach because it had 
been useful to us in solving another optimization problem: 
chess problem (Mejtsky 1982). 

The basic idea of branching is to conceptualize an op-
timization problem as a decision tree. Each decision choice 
18
point -- a node -- corresponds to a partial solution -- a 
value of an input parameter. From each node, several new 
branches emanate, one for each possible decision choice. 
This branching process continues until leaf nodes, which 
cannot branch any further, are reached. These leaf nodes 
are solutions to the optimization problem (values of all 
input parameters are known). The starting node is called 
the root node, ancestor of all other nodes. A node is a par-
ent of another node, child, when it is one step higher in the 
hierarchy and closer to the root node. Each decision choice 
point is represented in a simulation model by a decision 
choice event (DCE). 

3 DESCRIPTION OF ALGORITHM FOR 
SOLVING TSP 

Now, we have almost all parts to assemble the algorithm 
for solving TSP. The algorithm can be described by initial, 
branching, and pruning phases. 

3.1 Initial Phase 

The simulation clock is initialized to zero, t0, and a single 
model, the root model, starts running. Events of the root 
model are executed in order controlled by the event calen-
dar. The simulation clock advances from one event to the 
next event, if any, until the first DCE is reached. This first 
DCE encounter ends the initial phase. 

3.2 Branching Phase 

All decision choice events, DCEs, are processed in this 
phase. Processing DCE means that a model with k decision 
choices will branch and create k new models, children. 
Each child will be a copy of the parent model. This means 
that each child will inherit from the parent its current state, 
its history (that is, the path through the decision tree, trav-
ersing from the root node to the current node), and its fu-
ture (that is, planned events in the event calendar). Addi-
tionally, each offspring will select a different option from 
the k decision options. After the parent model has finished 
its last task -- giving birth to its k offsprings -- and is no 
longer needed for the optimization, the parent model dies 
(like all pacific salmon die after spawning). This concludes 
processing DCE. 

As an example, in TSP with n cities, the root model 
starts running at time t0. In the root model, the salesman is 
in his hometown and has to choose from a list of (n – 1) 
unvisited cities which one he should visit first. On the de-
cision tree, this first decision choice point corresponds to 
the root node with (n – 1) branches. The first decision 
choice point is represented in the root model by the first 
decision choice event, DCE. Therefore, during the process-
ing of this first DCE, (n – 1) new models originate from 
the root model. Each  new model contains one salesman 
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traveling from his hometown to a different destination city. 
After giving birth to its (n – 1) offsprings, the root model 
dies. Note that, before the first DCE, there was only one 
model running: the root model. However, after the first 
DCE, there are (n – 1) models running concurrently. Con-
sequently, a life of the root model, as measured by the 
simulation time, was rather short, was it not? 

When a new model is born, it starts running independ-
ently and in parallel with all other models. The model exe-
cutes its events, if any, until DCE is reached. During exe-
cution of the decision choice event, a set of new models is 
born and starts running; however, the parent model stops 
running. As a result, a model runs only from the time it is 
created in a decision choice event until it executes the next 
decision choice event.  

In TSP, when a new model with one salesman is cre-
ated, the salesman travels from the current city to a desti-
nation city, selected from the model's current list of unvis-
ited cities. The list is inherited from its parent. Upon arrival 
at the destination city, the salesman has to decide which 
city from the updated list of remaining k unvisited cities he 
should visit next. This decision choice point with k options 
leads to executing DCE. 

Only one “global” event calendar is shared by all 
models which ensures synchronization of the simulation 
time in each model.  

Branching models mirrors the decision tree of an op-
timization problem. Decision choice points, nodes in the 
decision tree, correspond to DCEs, nodes in the DCE tree. 
A model runs only for a short period of simulation time 
just to traverse an edge between two adjacent DCE nodes. 
As simulation time advances, more and more models run in 
parallel; hence, a need for pruning models arises. However, 
which model should we exterminate? 

3.3 Pruning Phase 

If an optimization problem has a small solution space, then 
we can use a complete enumeration to find the optimal 
solution. This would allow all models to run and branch 
with no pruning until the models end their runs. If it is not 
practical to use the complete enumeration (for example, in 
TSP with n cities, we have n! solutions), then we resort to 
searching only a subset of the solution space and discard-
ing the rest of solutions. During a simulation run, when the 
simulation time t < tend, a model represents only a partial 
solution (not all values of the input parameters are known). 
The solution is obtained only at the end of the run, tend.

In our algorithm, we terminate models during their 
runs when the models represent only partial solutions. In 
fact,  we are confronted by another optimization problem: 
a “partial solution” optimization problem. Furthermore, for 
terminating models, we cannot use the objective function 
of the problem we are solving. In TSP, when the simula-
tion time t < tend, we cannot use the shortest route objective 
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function for pruning because all salesmen, so far, have 
traveled the same distance. So, how do we find which 
model to terminate? 

That is why we need to look inside the models for help. 
(Where else can we look?) Therefore, the knowledge of the 
internals of the model is paramount – the white box ap-
proach. We need to construct a function, based on model 
data, which will wipe out “bad” models, and in doing so, it 
should remain “friendly” to the objective function. Such a 
“friendly” function should help the objective function to 
find the optimal solution and not to hinder it. In weeding 
out subpar models, a success of such a function (and so a 
success of the whole algorithm) is based on the assumption 
that the optimal solution also has the optimal or near-
optimal partial solutions. If we can compose such a func-
tion, then we will have found the key part of our algorithm. 

We call the friendly function -- the pruning function
(PF) -- and use PF only in a pruning event when the num-
ber of models reaches the maximum allowed level of mod-
els (CEILING) at simulation time tP. Each pruning phase is 
represented by one pruning event. The pruning function 
reduces the number of models from CEILING to a pruning 
level (FLOOR), where FLOOR < CEILING; therefore, the 
pruning function represents a “global” pruning over the 
whole model population in contrast to a “local” pruning 
(pruning rule) on an individual model level as discussed in 
Section 4.2.2. 

Setting levels of the two algorithm's parameters, 
CEILING and FLOOR, has a direct impact on the compu-
tational speed and the quality of results. The lower the 
CEILING is set, the more this algorithm behaves like the 
greedy algorithm, thus becoming stuck in a local extreme. 
The higher the CEILING is set, the more the local extreme 
neighborhoods can be searched, but the sweep runs longer. 
The same conclusion applies to FLOOR. During a sweep, 
the levels CEILING and FLOOR can be constant (the sim-
plest approach we used often) or can vary (as we occasion-
ally used it in solving benchmark examples in Section 5.2). 

3.4 Discussion of Algorithm 

From the simulation time t0, when the root model starts 
running, the number of models running concurrently grows 
(branching phase) until the first pruning event is triggered 
at the CEILING level. During execution of a pruning event 
(pruning phase), the population size drops to FLOOR. 
From this level on, the number of models grows again 
(branching phase) until the next pruning event is triggered, 
and so on. Thus, the number of models oscillates as models 
traverse the DCE tree (sweep).

Other approaches to simultaneous simulation optimi-
zation use time dilation (Schruben 1997) or recursive simu-
lation (Gilmer and Sullivan 2000). 

A graphical example of a sweep with 3 pruning events 
at times tP1, tP2, and tP3 is depicted in Figure 1 where the 
37



Mejtsky
population size (bold line) oscillates between the  CEIL-
ING (sweep width) and FLOOR limits.  

Figure 1: Oscillating population size (the number of mod-
els, n) during a sweep (from the simulation time t0 to tend).

There are similarities with a classical tree search algo-
rithm -- Beam search. Both tree searches use a pruning 
function to limit tree search to a search width containing  
the most promising nodes. 

At the beginning of a sweep, diversification is  
strongest and intensification is zero. However, as the 
sweep progresses, intensification gradually gains intensity 
at the expense of diversification. Near the end of the sweep, 
intensification is strongest and diversification is zero. 

One could describe the sweep algorithm (tree search) 
in terms of biological evolution (Darwin's Tree of Life) as 
an evolutionary algorithm. All models running in parallel 
would play the role of individuals in a population, and the 
fitness function (our pruning function) would determine 
the environment within which the population live. The 
pruning function acts like a global war for a limited re-
source – space. As the population grows, a point (CEIL-
ING) is reached where no more space is available for all 
and a violent competition event (pruning event) is triggered. 
Evolution of the population  (sweep) takes place by a re-
peated application of reproduction, natural selection, and 
survival of the fittest operators. Reproduction (spawning 
models) introduces new variation into the population. 
Natural selection preferentially selects the fittest individu-
als by applying the fitness function. The fittest individuals 
evolved with more adaptable traits; consequently, they 
survive and reproduce. Some traits are inherited (in TSP: a 
sequence of visited cities), and some traits are new (in TSP: 
the next visited city).  

Traits are known as genes (input parameters of a prob-
lem). A solution to a problem is represented as a set of 
values of input parameters. These parameters are joined 
together to form a string of values (chromosome). Each 
individual is represented by a particular chromosome. In a 

time

n

t0

FLOOR

tP2 tP3 tendtP1

CEILING
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partial solution, the individual is represented by a partial 
chromosome (in TSP: a sequence of visited cities). 

Notice how the genetic algorithm artificially modifies 
the genetic material, DNA, in individuals to breed a new 
population, a more desirable breed. In contrast to the con-
trolled breeding (genetic engineering) of the genetic algo-
rithm, the sweep algorithm allows every individual natural, 
unrestricted breeding. 

The sweep algorithm exhibits front-end and back-end 
savings of computational resources in contrast to simula-
tion models running from time t0 to tend. In a decision 
choice event, DCE, when k models are born, all k siblings 
have the same front-end part of their simulation runs, from 
t0 to the DCE time. This common front-end part is exe-
cuted only once and not k times when each sibling runs 
from t0 to tend. The front-end savings are a direct result of 
using the decision tree approach in the sweep algorithm. 
Back-end savings are results of eradicating poor quality 
models in pruning events; therefore, the inferior models are 
stopped as early as possible before reaching their tend.

In TSP, how do models differ? At any time during a 
sweep, the models differ by the number of visited cities. So 
we apply maximizing the number of visited cities as the 
pruning function. Minimizing the number of unvisited cities
would do the same.  

In 1984, we tested the algorithm on small size TSP ex-
amples from literature. The results were optimal, and for 
larger size examples, the results were optimal or near-
optimal. We applied the algorithm to the project manage-
ment problem and the resource allocation problem with 
similar results. Then we proceeded to the job shop schedul-
ing problem (JSS). 

4 APPLICATION OF ALGORITHM TO JSS 

We describe JSS by a set of jobs with ordered operations to 
be processed on a set of machines. Each machine can proc-
ess only one operation at a time, and each operation has 
fixed time duration. The objective is to minimize the dura-
tion of the longest job in the schedule (that is,  minimizing 
makespan). 

4.1 JSS with Minimum Makespan 

We need to construct a decision choice event, DCE, and a 
pruning function, PF. Metaheuristics have been used to 
solve JSS. In practice, however, simulation with dispatch-
ing rules (scheduling rules or sequencing rules) have been 
more frequently applied due to their ease of implementa-
tion and their low time costs even though dispatching rules 
are unable to fare better than the local search methods. 

Whenever a machine becomes available, a dispatching 
rule inspects the waiting jobs and selects the next job for 
processing. The selected job starts processing on the ma-
chine without any delay. We substitute the dispatching 
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rules with DCEs. In DCE with k waiting jobs for process-
ing on a machine, k new models (children) are born, and 
the parent model dies. Each child is a copy of the parent: a 
complete job shop with all machines and jobs.  Addition-
ally, each child selects a different job for processing on the 
machine.

Notice that the shorter the makespan, the higher the 
cumulative utilization of the shop (all machines); therefore, 
we elect the pruning function: maximizing cumulative utili-
zation of the shop (PF-U). 

The algorithm was tested on JSS examples from litera-
ture with similar results as testing on TSP examples. The 
sweep algorithm and its application to JSS was presented 
in (Mejtsky 1986a, Mejtsky 1986b). 

4.2 JSS with Due Dates 

4.2.1 Backward Simulation 

In the job shop scheduling with due dates (JSSD), the ob-
jective is to find a schedule meeting due dates. By using 
standard “forward” simulation, it is difficult to find such a 
schedule. We noticed that if we could somehow run simu-
lation “backward”, starting from the due dates, then every 
schedule would meet the due dates. Backward simulation 
would have a clear advantage over forward simulation in 
solving such problems. Our research in using backward 
simulation is summarized in Mejtsky (1985), which is the 
first -- to the best of our knowledge -- documented applica-
tion of backward simulation to JSSD. One important find-
ing is zero-delay dispatching (causing different lengths of 
the “forward” and the “backward” minimum makespans). 

Today, backward simulation, sometimes called re-
verse-time simulation, is quite a common tool in job shop 
scheduling. Backward simulation is essentially the reverse 
of forward simulation. Beginning with the due date of each 
job, simulation works backward to determine start dates 
(order release times). 

4.2.2 Pruning Rule 

The pruning function PF-U is not as effective in finding 
schedules meeting due dates as it is in finding minimum 
makespan schedules because PF-U does not deal with the 
due dates. To increase performance of our JSS algorithm, 
we need to find a global pruning function or a local prun-
ing rule dealing with due dates directly. 

Let us define the following pruning rule PR-JDD1: In 
a model, if a job cannot meet its due date (that is, the sum 
of its remaining processing times is greater than the re-
maining time to its due date), then eradicate the model 
from the population.

We included PR-JDD1 with PF-U in the JSS algo-
rithm (JSSD algorithm). Our testing confirmed an in-
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creased performance of the JSSD algorithm, as discussed 
in (Mejtsky 1986c, Mejtsky 1986d). 

This concludes the previously reported research in the 
algorithm, and the new development in research follows. 

5 NEW DEVELOPMENT 

In this section, we present new pruning rules and a pruning 
function for solving JSSD followed by results of JSS stan-
dard benchmarks testing. Finally, we discuss possible im-
provement in the algorithm. 

5.1 New Pruning Rules and Pruning Function for 
Solving JSSD 

We added the following 3 new pruning rules to the JSSD 
algorithm and replaced the pruning function PF-U with the 
new pruning function PF-LS. 

Pruning rule PR-JDD2: In a model, suppose that a job 
arrives at a machine for processing; however, the machine 
is busy processing another job. If the machine remaining 
processing time is greater than the slack time of the arriv-
ing job, then eliminate the model because the arriving job 
cannot meet its due date (that is, the sum of its remaining 
processing times plus waiting time for processing on the 
machine is greater than the remaining time to its due date). 

Pruning rule PR-JDD3: In a model, suppose a job a
starts processing on a machine and there is a job b  in the 
machine waiting queue. If the processing time of the job a
on the machine is greater than the slack time of the job b,
then discard the model because the waiting job b cannot 
meet its due date (that is, the sum of its remaining process-
ing times plus waiting time for processing on the machine 
is greater than the remaining time to its due date). 

Pruning rule PR-MDD1: In a model, if a machine 
cannot meet its due date (that is, the sum of its remaining 
processing times is greater than the remaining time to the 
machine due date), then eliminate the model.

Pruning function PF-LS: Maximizing least slack time. 
The slack time of a job is determined to be the remain-

ing time until its due date minus the sum of its remaining 
processing times. The machine due date can be derived 
from job due dates and operation due dates of the machine. 

In each model, find the job with the least slack time. 
This least slack time is the performance measure of the 
model, and the PF-LS function prefers the models with the 
largest values of the performance measure. 

Results from testing the JSSD algorithm point to in-
creased performance in finding schedules meeting due 
dates.  

During a sweep, the pruning rules PR-JDD1 and PR-
MDD1 are triggered after jobs consume their slack times 
which is towards the end of the sweep. The rules PR-JDD2 
and PR-JDD3 are activated earlier in the sweep before job 
slack times are completely spent. In a sweep, the earlier the 
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poor quality models are discovered and wiped out from the 
population, the better for the quality of the population and 
therefore the better for the solution. The pruning function 
PF-LS outperforms PF-U in examples where due dates are 
defined tight; therefore, not too much slack time is left for 
jobs. On the other hand, the function PF-U performs better 
in cases when there is plenty of slack time for jobs. This 
leads to a future possible improvement of the JSSD algo-
rithm: using PF-U early in a sweep and then switching to 
PF-LS. 

5.2 Experimental Evaluation 

To test the sweep algorithm, we considered 38 instances 
from four classes of JSS standard benchmark problems: 

Adams et al. (1988) ABZ 5 and ABZ 6; 
Applegate and Cook (1991) ORB 1 – ORB 10; 
Fischer and Thompson (1963) FT 6, FT 10, and 
FT 20; and 
Lawrence (1984) LA 1 – LA 21, LA 26, and LA 
27. 

The goal in solving these JSS problems is minimizing 
makespan. To obtain the best solution for each instance, 
we fine-tuned the sweep algorithm by selecting from the 
following menu: 

the JSS algorithm with the pruning function PF-U, 
the JSSD algorithm with PF-U and the 4 pruning 
rules, or 
the JSSD algorithm with PF-LS and the 4 pruning 
rules;
forward or backward simulation approach; and 
a level of CEILING (FLOOR is CEILING/2). 

Table 1 presents the best solution found by our algo-
rithm for each instance. It lists in the first two columns the 
instance names and sizes (the number of jobs × the number 
of machines). Column OPT shows the optimum solutions. 
The next two columns report the best solutions (Best) pro-
duced by the algorithm and the corresponding percentage 
deviations (%) from OPT values. The last column (Time) 
reports the run times in minutes for the best solution. In 
Table 1, we did not include results when run time exceeded 
25 minutes (mostly when CEILING > 250).  

The algorithm was implemented in OpenOffice.org 
Basic, and the tests were carried out on a HP Compaq 
Presario PC with a 2.19 GHz AMD Athlon 64 Processor, 
with 448 MB of RAM, on the MS Windows XP Home 
Edition 2002 SP 2 operating system.  

Testing stressed the importance of weeding out under-
performing models as early as possible either by global 
pruning (the pruning function in pruning events) or by lo-
cal pruning (pruning rules on an individual model level). 
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Table 1: Results of solving JSS benchmark problems. 
Name Size 

(JxM)
OPT Best % Time

(min.)

ABZ 5 
ABZ 6 
ORB 1 
ORB 2 
ORB 3 
ORB 4 
ORB 5 
ORB 6 
ORB 7 
ORB 8 
ORB 9 
ORB 10
FT 06 
FT 10 
FT 20 
LA 1  
LA 2 
LA 3 
LA 4 
LA 5 
LA 6 
LA 7 
LA 8 
LA 9 

LA 10 
LA 11 
LA 12 
LA 13 
LA 14 
LA 15 
LA 16 
LA 17 
LA 18 
LA 19 
LA 20 
LA 21 
LA 26 
LA 27 

10x10
10x10
10x10
10x10
10x10
10x10
10x10
10x10
10x10
10x10
10x10
10x10

6x6 
10x10
20x5 
10x5 
10x5 
10x5 
10x5 
10x5 
15x5 
15x5 
15x5 
15x5 
15x5 
20x5 
20x5 
20x5 
20x5 
20x5 

10x10
10x10
10x10
10x10
10x10
15x10
20x10
20x10

1234 
943 
1059 
888 
1005 
1005 
887 
1010 
397 
899 
934 
944 
55

930 
1165 
666 
655 
597 
590 
593 
926 
890 
863 
951 
958 
1222 
1039 
1150 
1292 
1207 
945 
784 
848 
842 
902 
1046 
1218 
1235 

1263 
980 

1119 
907 

1076 
1060 
911 

1072 
428 
940 
963 
994 
55
981 

1202 
666 
655 
622 
611 
593 
926 
899 
863 
951 
958 

1222 
1039 
1150 
1292 
1207 
988 
794 
910 
877 
949 

1168 
1308 
1395 

2
4
6
2
7
5
3
6
8
5
3
5
0
5
3
0
0
4
4
0
0
1
0
0
0
0
0
0
0
0
5
1
7
4
5

12
7

13

5
1
8

17
8

23
12
1
4
3

17
5
1

13
7
5
4
2
2
2
6
2
3
1
1
9
1
2
1

18
4

14
12
3
2

14
11
13

Testing confirmed equal importance of backward and 
forward simulation in solving JSS when we use zero-delay 
dispatching. The zero-delay dispatching is common in dis-
patching rule scheduling. As said in Section 4.1, whenever 
a machine becomes available, a dispatching rule inspects 
the waiting jobs and selects the next job for processing. 
The selected job starts processing on the machine without 
delay (zero-delay). However, sometimes we can get a bet-
ter schedule by not selecting any waiting job, doing noth-
ing, letting the machine be idle and processing the next 
arriving job before processing the already waiting jobs.  
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Therefore, we need to be careful in designing a deci-
sion choice event, DCE, when solving an optimization 
problem. Do we really have only k decision choices? Do 
we need to include the “doing nothing” choice? So far we 
have not included the “doing nothing” choice in our JSS 
algorithm since backward simulation (or backward simula-
tion optimization) will partially take care of the problem, 
as concluded in Mejtsky (1985). 

In conclusion, the results suggest that the algorithm 
still has plenty of room for improvement. There are more 
effective search algorithms with better results in solving 
the JSS standard benchmark problems. For comparison see 
results of the filter-and-fan algorithm in (Rego and Duarte 
2006) or results of 13 methods tested in a study by Gon-
çalves et al. (2005). Our algorithm clearly needs a local 
search procedure which is currently being implemented 
and tested. Preliminary results point to improvement in 
performance. 

5.3 Future Improvement 

There is still much to learn, discover, and improve on the 
sweep algorithm. The current version of the single-sweep 
algorithm (with only one single sweep, only one single 
wavefront propagating through a DCE tree) represents a  
simple way to implement simultaneous simulation optimi-
zation and the simplest way to search a DCE tree for solu-
tions. We expect that the following enhancements will im-
prove its search performance: 

multiple sweeps with backtracking (depth-first 
search),
pyramid-building sweeps (breadth-first search), 
and
using parallel or distributed computing with cross-
pollination. 

5.3.1 Multiple Sweeps with Backtracking (Depth-
First Search) 

The multiple-sweep algorithm starts running the first 
sweep from time t0. After completion of the first sweep at 
time tend, a backtracking step follows. In the backtracking 
step, the algorithm rewinds the simulation time to some 
earlier time tS, where tS < tend. Then it starts running the 
next sweep (next wave) from tS, and so on. For that reason, 
the algorithm cannot terminate all subpar models found in 
pruning events. Some inferior models can only be sus-
pended, deactivated, and the rest of the inferior models can 
be eradicated forever from the search. In a pruning event 
(at the time tP), we call the set of deactivated models: an 
island. Hence, during a sweep, each pruning event drops an 
island of deactivated models (island population) so the path 
of the sweep is littered with islands.  
1

At the beginning of a sweep (except the first one), the 
sweep picks up its initial (seed) population from the popu-
lation of the nearest island. During the sweep, it encounters 
islands dropped there by previous sweeps. In each encoun-
ter with an island, the sweep needs to decide whether to 
pick up some models from the island and include them in 
the sweep population or not. 

At the end of each sweep, its best solution is produced. 
The algorithm should maintain the best solution (BEST) 
found so far by the sweeps. That is why, during a sweep, 
the sweep could compare the performance of its population 
with a benchmark: the BEST performance (as measured by 
the pruning function during the BEST run). If even the best 
performers of the sweep population cannot keep up with 
the BEST performance, then the sweep (1) could be 
aborted before time tend is reached, and after a backtracking 
step, the next sweep would be launched; or (2) could 
unload its population and pick up a better performing 
population from an island. In the same way, in any island 
population, the performance of each individual (as meas-
ured by the pruning function at the pruning time tP) can be 
compared with the benchmark, and for example, the whole 
island population can be wiped out if underperforming the 
benchmark. 

One could see similarities between the purpose of mul-
tiple sweeps with islands and the purpose of time dilation 
(Schruben 1997). Other similarities one could find between 
the sweep (branch-and-prune) algorithm and the filter-and-
fan algorithm (Glover 1998) are: (1) the purposes of the 
filter approach and the fan approach of the filter-and-fan 
algorithm resemble the purposes of the pruning phase and 
the branching phase, respectively, of the sweep algorithm, 
(2) the functions of 1 (filter candidate list) and 2 pa-
rameters of the filter-and-fan algorithm resemble the func-
tions of the CEILING (like 1. 2) and the FLOOR (like 1)
parameters of the sweep algorithm. 

Notice an analogy with the simulated annealing algo-
rithm where a global parameter T (called the temperature)
has the same function as CEILING and FLOOR – to allow 
the algorithm to escape a local extreme. Interestingly, 
when T reaches the lowest level (T = 0), the simulated an-
nealing algorithm is reduced to the greedy algorithm. Simi-
larly, when FLOOR is set to its lowest level (FLOOR = 1), 
the sweep algorithm is also degraded to the greedy algo-
rithm. 

As well, notice that the lower the CEILING and 
FLOOR are set, the more the multiple-sweep algorithm 
becomes the traditional sequential simulation optimization 
approach.

As possible area for improvement, we should look at 
variable levels of CEILING (sweep width) and FLOOR 
during a sweep. Finally, do we need the synchronization of 
the simulation time in each model by the single “global” 
event calendar? No. However, pruning events would re-
quire modification. 
841
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5.3.2 Pyramid-Building Sweeps (Breadth-First 
Search)

The algorithm with pyramid-building sweeps starts running 
the first short sweep from time t0 to only tL1, where  t0 < 
tL1 < tend. This first short sweep is the first “stone block” at 
the first pyramid step level L1. After backtracking to the 
first (the earliest) island (or another earlier island), the al-
gorithm launches the second short sweep to time tL1 , the 
second stone block at level L1, with the seed population 
from the island. After building the first pyramid level L1 
with several stone blocks, the algorithm  builds the second 
level L2. 

Several best performing models from each short sweep 
in level L1 form the L2 seed population, “material”, for 
building level L2 stone blocks. Each short sweep at level 
L2 selects its seed population from the L2 seed population 
and runs from time tL1 to tL2, tL1 < tL2 < tend. Several 
pyramid levels could be build with the smaller number of 
stone blocks at each higher level (similar to sport rounds: 
quarterfinal, semifinal, and final). Only the last stone block 
at the top of the pyramid would be allowed to run to tend
and present its best solution – the solution found by this 
pyramid-like breadth-first search of a DCE tree.  

There are many ways to assemble an algorithm by 
combining multiple sweeps and pyramid-building sweeps. 
What about embedding multiple sweeps in pyramid-
building sweeps or vice versa? It is better to leave nesting 
sweeps for parallel computers due to their superior com-
puting power. 

5.3.3 Using Parallel or Distributed Computing with 
Cross-Pollination 

In using parallel or distributed computing, we can envision 
our algorithm (with a single sweep, multiple sweeps, 
pyramid-building sweeps, or any combination of them) 
running on each processor and searching a different subtree 
of a DCE tree. After initial distribution of work (a seed 
population) from a “root” processor, each processor runs 
asynchronously (without “global” simulation time syn-
chronization) with others since each processor has its own 
“local” simulation calendar of events. Occasionally, each 
processor sends the best individuals from its population 
and its BEST benchmark to other processors. This cross-
pollination should increase the quality of overall popula-
tion and therefore, increase the quality of results. We be-
lieve that such large-grain open and scalable parallelism 
with minimum communication and no synchronization can 
significantly increase performance of the algorithm. 

6 CONCLUSION 

We discussed a different simultaneous paradigm for simu-
lation optimization than the traditional sequential approach. 
184
The sweep algorithm (1) utilizes model internal data (white 
box access) and competition among models running in 
parallel, and (2) exhibits front-end and back-end savings of 
computational resources in contrast to simulation models 
running from time t0 to tend.

The high modeling capability of simulation and the 
general nature of decision choices (options) in decision 
choice events offer a large array of applications for the 
sweep algorithm. For example, in job shop scheduling, the 
algorithm can be applied to evaluate different dispatching 
rules (as, for example, recursive simulation was used in 
Chong et al. (2005)), where the rules would represent the 
decision choices. 

The results from the experimental evaluation are posi-
tive and suggest that the sweep algorithm (1) can be used 
for solving some combinatorial problems, (2) still has 
plenty of room for improvement, and (3) appears to be a 
promising alternative to the traditional simulation optimi-
zation. 
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