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ABSTRACT 

This paper presents a Simulation-based Genetic Algorithm 
with Desirability function (SIMGAD) that could be used 
on-line for the dynamic scheduling of a single machine 
with sequence-dependent setups. The weights used to 
combine the criteria (dispatching rules) into a single rule 
using linear weighted aggregation is determined by genetic 
algorithm (GA). The GA evaluates the performance of 
each set of weights with discrete-event simulation that re-
turns a fitness value after multiple performance measures 
(objectives) are each expressed as a desirability function 
and combined into a single objective function. An illustra-
tive simulation example based on the scheduling of an ion 
implanter machine in wafer fabrication plant shows that 
SIMGAD works effectively in solving the multiobjective 
scheduling problem with capability of handling user pref-
erence in decision making to achieve the desired perform-
ances.

1 INTRODUCTION 

Semiconductor manufacturing is probably one of the most 
complex systems in terms of equipment, manufacturing 
routes, and system dependency, and this poses great chal-
lenges for production planning and scheduling, as reported 
in Sivakumar and Gupta (2006). Review papers by Zhu 
and Wilhelm (2006) have also shown that few papers have 
considered the combined aspects of scheduling (i) of a sto-
chastic nature, (ii) with sequence-dependent setup (SDS), 
and (iii) multiobjectives. SDS time implies that the setup 
time depends on both the part that has been processed and 
the next part to be processed. 

Since stochastic scheduling problems involving SDS 
are strongly NP-hard (Baker 1974), heuristics in the form 
of dispatching rules and simulations are suitable solution 
methods. Dispatching is commonly used in practice due to 
its robustness (i.e. ability to react to uncertainties), low 
computational requirements, ease of implementation, and 
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intuitive appeal (i.e. easy to comprehend). However, sim-
ple rules such as first-in, first-out (FIFO), shortest process-
ing time (SPT), earliest due date (EDD), shortest setup 
(SSU), etc., on their own, are unable to optimize amongst 
the contradicting needs of cycle time (i.e. average cycle 
time, avgCT, and standard deviation of cycle time, sdCT) 
and delivery accuracy (i.e. average tardiness, avgTARD, 
and standard deviation of tardiness, sdTARD). 

In studies that consider multiobjective optimization, 
many converted multiple objectives into a single objective 
optimization problem using a weighted combination of 
rules where each rule typically addresses an objective of 
interest (Deb 2001). As the fab managers and engineers are 
better at pinpointing the preferred operating point(s) on the 
characteristics curve than providing a set of weights to ob-
tain the desired scheduling decisions, this paper focuses on 
optimizing the weights used in the weighted rule automati-
cally, in an on-line and user friendly manner using 
SIMGAD. 

The paper is organized as follows: Section 2 presents 
the related works; Section 3 put forth the proposed 
SIMGAD methodology; Section 4 uses an illustrative ex-
ample to illustrate the potential capability of SIMGAD; 
Section 5 discusses the potential application; and Section 6 
concludes the paper with a discussion of future work. 

2 RELATED WORKS 

As dispatching rules are unable to adjust to the dynamics 
of the facility, it is possible that a rule or a set of rules that 
provide unsurpassed performance at one point in time may 
not continue to do so as the facility evolves. Hence, various 
techniques have been developed for the selection of dis-
patching rules. The selection process may be periodically 
triggered, event-driven, or a hybrid of both. These tech-
niques include enumerative periodic selection (Wu and 
Wysk 1989), artificial/competitive neural networks (Min 
and Yih 2003), genetic algorithms (Cardon et al. 2000), 
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discrete-event simulation (Kim et al. 2003), etc., or various 
combinations of the above. 

There is hardly any single dispatching rule that domi-
nates when more than one conflicting objectives are in-
volved.  Hence, emphasis is not only placed on the selec-
tion of rules but also on the application of rules 
simultaneously in the form of a weighted combination of 
rules to optimize multiple performance measures of inter-
est under a factory’s changing condition (Dabbas et al. 
2003, Lin et al. 2005, Chiang et al 2006, and Sivakumar 
and Gupta 2006). The results from all the multiobjective 
scheduling studies reviewed in this paper have generally 
shown significant improvement over the use of single dis-
patching rule. 

Dabbas et al. (2003) and Lin et al. (2005) used a 
mixed design of experiments (DOE), response surface me-
thodology (RSM), and desirability function to determine 
the weights for the weighted combination of multiple crite-
ria for semiconductor scheduling. However, weights are 
determined off-line and in a manual manner that requires 
user to have the expertise to fit meta-models to each re-
sponse for example. 

Chiang et al. (2006) uses genetic algorithm to search 
for the optimal combination of release and machine select-
ing rules, and the weights for five linearly combined dis-
patching rules, and proposes colored timed Petri nets with 
the queueing systems for performance evaluation and 
scheduling for wafer fabrication. However, no sequence-
dependent setups are considered. 

3 SIMULATION-BASED GENETIC ALGORITHM 
WITH DESIRABILITY FUNCTION 

The overview of the proposed Simulation-based Genetic  
Figure 2: Detailed fram
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Algorithm with Desirability function (SIMGAD) is sum-
marized in Figure 1 and the detailed framework used in 
SIMGAD is shown in Figure 2. The desirability function, 
discrete event simulation, and genetic algorithm used in 
SIMGAD are described in Sections 3.1, 3.2, and 3.3 re-
spectively.

Main Simulation Model

Genetic Algorithm

Sub Simulation Model

To evaluate the fitness of chromosomes

To perform search for desired weights such 
that outputs are minimized or controlled to 

meet user-specified target value(s) 

To simulate real-time factory environment

Desirability Function
To combine multiple performance 

measures into single objective function

Figure 1: Overview of SIMGAD 

3.1 Desirability Function 

The desirability function approach is one of the most wide-
ly used methods in industry for dealing with the optimiza-
tion of multiple-response problems (Pasandideh and Niaki 
2006). The multiple responses (more commonly known as 
performance measures or objectives) are each expressed as 
a desirability function and combined into a single objective 
function. Depending on whether a particular response yi is 
to be maximized, minimized, or assigned a target value, 
different desirability functions introduced by Derringer and 
Suich (1980) could be applied to transform each yi into a 
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Desirability function for response with a target is 
given by 

1

2

0, ,

, ,

( )

, ,

0, ,

i i

i i
i i i

i i
i i

i i
i i i

i i

i i

y l

y l
l y t

t l
d y

y u
t y u

t u
y u

 (1) 

where li, ui, and ti are the lower, upper, and target value of 
the response yi respectively such that li < yi < ui, and the 
exponents 1 and 2 determine how strict the target value 
is desired. The overall (or total) desirability, D, is defined 
as the geometric mean of the individual desirability values: 

1/
1 1 2 2( ) ( ) ... ( ) ,n

n nD d y d y d y  (2) 
where n denotes the number of responses.  

3.2 Discrete-Event Simulation 

Discrete-event simulation is used to simulate both the 
real-time factory (main simulation module) as well as for 
the evaluation of the weights used in the weighted rule 
(sub simulation module) since stochastic scheduling with 
multiobjectives and sequence-dependent setup (SDS) is 
analytically intractable. A model for the illustrative prob-
lem described in Section 4 is constructed and simulated 
using AutoSchedTM Accelerated Processing (Auto-
SchedAP) v7.2 by Brooks Automation Inc. Some cus-
tomizations of the dispatching rules used are necessary. 
The simulation models and rules are debugged and veri-
fied in a number of iterations using the ‘trace’ technique 
(Law  2007).  

3.2.1 Dispatching Rules 

As no dispatching rule has been shown to consistently 
produce better performance than all other rules under a 
variety of shop configurations and operating conditions 
(Blackstone et al. 1982), preliminary simulations have 
been carried out to identify the dispatching rule that is 
reasonably good for minimizing average cycle time 
(avgCT), standard deviation of cycle time (sdCT), aver-
age tardiness (avgTARD), and standard deviation of tar-
diness (sdTARD) respectively. For brevity, results are not 
presented. However, the dispatching rules are described 
below: 

Smallest SetUp Modified (SSU+) rule takes into 
account the relative cost of a particular setup by 
considering the potential runtime of available 
work in process that can make use of the setup 
on the machine. SSU+ is defined as si’i/nipi
where si’i is the setup time between lot i' that has 
been processed and lot i considered for process-
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ing next, ni is the number of lots in the queue that 
could use the same setup required by lot i, and pi
is the expected average processing time of lot i.
SSU+ is used to minimize avgCT. 
First-In, First-Out (FIFO) rule selects the lot with 
the earliest arrival time to the queue of the ma-
chine. FIFO is capable of minimizing sdCT. 
Critical Ratio (CR) rule selects the lot with the 
lowest critical ratio as defined by (di – tnow)/RPTi,
where di is the due date of lot i, tnow is the simu-
lated time at which the rule is applied, and RPTi
is the remaining mean processing time of lot i
(for a single machine one operation system, RPTi
= pi). CR can be used to minimize avgTARD and 
sdTARD in tandem. 

The weighted rules made up of FIFO, CR, SSU+ is 
hereafter known as the MOFCS+ rule. Each of the criteria 
(presented in the form of dispatching rules) is normalized, 
weighted and combined into a single criterion. The indi-
vidual rule index, IR,i is computed for each lot i in the 
queue at the time when machine is available to select the 
next lot, where R refers to the rules/criterion used. The 
minimum and maximum index for each rule is denoted as 
IR,min and IR,max respectively. The weighted sum of normal-
ized index, Ii for each lot i is computed as follows: 

3 3
,min ,

1 1,min ,max

,    1R R i
i R R

R RR R

I I
I w w

I I
 (3) 

where weight wR reflect the relative importance of the cri-
terion associated with the rule. The lot with the lowest 
weighted sum of normalized index is selected for process-
ing next. 

3.2.2 Sub Simulation Model 

When genetic algorithm is invoked, for example, at main 
simulation model’s simulated time tnow, a sub simulation 
is automatically generated and updated with the WIP pre-
sent in the main simulation model at tnow. The sub simula-
tion model uses the same lot arrival and processing time 
distribution as the main simulation model and will per-
form a five-replicates simulation that begins from time 
tnow and look-ahead in time to get the estimates of the 
steady state responses for the evaluation of each set of 
weights.  

3.3 Genetic Algorithm 

Genetic Algorithm (GA) is first developed by Holland 
(1975). The GA is a search algorithm based on the me-
chanism of natural selection and natural genetics. GAs 
have been extensively used as search and optimization 
tools in various problem domains due to their broad ap-
plicability, ease of use, and global perspective (Goldberg  
1989). In GAs, each individual solution is represented in 
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the form of a finite length string called a chromosome. A 
set of randomly generated chromosomes forms an initial 
population. Through the use of genetic operators, such as 
crossover and mutation, modifications to the chromo-
somes of randomly selected solutions are introduced in a 
systematic fashion to generate a new generation of solu-
tion alternatives, moving towards the optimization of cer-
tain criteria (Goldberg 1989). As generations increase, the 
optimal set of bit patterns (or schemata) will be found for 
the chromosome, from which the optimal weights are ob-
tained. 

In this study, we incorporate GAlib (Wall 1996), a 
highly customizable and well documented C++ library of 
GA objects, into AutoSchedAP as the library includes 
tools for facilitating the use of GA to perform optimiza-
tion using any representation and genetic operators. 

3.3.1 Encoding 

For the problem under consideration, each chromosome (a 
candidate solution) comprises decision variables (refer to 
the weights used in MOFCS+ rule), xi (i = 1,2,3) that are 
encoded into binary sub-strings of length Li. For two-
decimal-place precision, Li is chosen to be the smallest 
integer satisfying 210 2 1iL

i ib a , where bi and ai

refers to the upper and lower bound of variable xi respec-
tively. Each weight can take the value between zero and 
one, bi – ai = 1 for i = 1,2,3. As such, each variable xi will 
be encoded as a binary sub-string of length seven and the 
total string length of each chromosome is therefore 21 bits. 
The first sub-string of seven bits encodes the weight to be 
used for the FIFO rule. The next and last sub-strings of 
seven bits encode the weights to be used for CR and 
SSU+ rules respectively. 

3.3.2 Fitness Evaluation 

The sub simulation model is used to evaluate the per-
formance or fitness of each chromosome. The fitness 
measure is the overall (or total) desirability, D, given in (2) 
where the responses include avgCT, sdCT, avgTARD, 
and sdTARD. Due to the embedded random variations 
used in simulation, it is necessary to determine the length 
of simulation run and the number of simulation replica-
tions for the evaluation of one chromosome. In this study, 
five replications with simulation run length of 60 days are 
used. 

3.3.3 Selection and Population Replacement 

The selection process consists of determining from which 
chromosomes the next population would be generated. 
This study applies a tournament selector that uses the rou-
lette wheel method to select two individuals and then 
picks the one with the higher fitness.  
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Since it is possible that the fittest chromosomes of the 
population may fail to produce offspring that is at least as 
fit as itself in the next generation, to avoid fitter chromo-
somes from being lost in the evolutionary process, an elit-
ist strategy is adopted to ensure there are overlapping 
generations. The commonly known ( + ) selection strat-
egy is applied in which the  parents and  offspring 
compete for survival and the  best of offspring and old 
parents are selected as parents of the next generation. In 
this study, =  is used. 

Apart from the elitist strategy used from one genera-
tion to another, a global replacement strategy has also 
been introduced to bring the best individual from one GA 
run to another GA run. Apart from the best individual, the 
remaining individuals are randomly generated at the be-
ginning of each GA run (except for the first run where 
equal weights are applied).  

3.3.4 Genetic Operation 

A genetic operation refers to the generation of an off-
spring (child) from the selected chromosomes using the 
crossover and mutation operators. In this study, two-point 
crossover is applied in which two positions are chosen 
uniformly at random and the segments between them ex-
changed. Crossover is not applied to all pairs of individu-
als selected for mating. A random choice is made accord-
ing to a crossover probability (one of the GA parameters). 

The mutation operator defines the procedure for mu-
tating each chromosome. If the mutation probability is 
small (such that less than one bit requires a flip test), the 
flip test is performed on each bit based on the mutation 
probability. Otherwise, for streamlined execution as sug-
gested in GAlib (Wall 1996), the known number of bits is 
mutated based on the mutation probability. 

3.3.5 Parameter Optimization 

As this is a preliminary study to evaluate SIMGAD, we 
circumvent the need to spend hours of computation time 
on fine parameter tuning by referencing existing rule of 
thumb and then choosing the GA parameters based on a 
few trial simulation runs. Population size, number of gen-
eration, crossover probability and mutation probability are 
fixed at 20, 10, 0.6, and 0.14 respectively for this study. 

3.4 Reactive Optimization of Weights  

The optimization of weights can be performed periodi-
cally (time-driven), upon the occurrence of events (event-
driven), or under a hybrid of both depending on the dy-
namism of the factory and how responsive it must be to 
the state of the system. Apart from the change of dis-
patching rules, performance objectives, and user prefer-
ences that highly necessitates the re-optimization of 
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weights, it is not known (not available in the literature to 
the best of our knowledge) what degree of disruptions and 
factory changes, or what kind of disruptions or unex-
pected events would invalidate the weights. In this study, 
re-optimization of weights is carried out after every 500 
lots and 1000 lots. 

4 AN ILLUSTRATIVE EXAMPLE 

This study involves scheduling a dynamic and stochastic 
serial (i.e. single lot processing) ion implanter machine 
with SDS. The assumptions considered are: 

Operators, handlers, and hardware are not explic-
itly modeled. 
No yield losses are considered. 
No rework is modeled. 
Preemptions are not allowed. 
No machine breakdowns are modeled. 
All lots hold equal weights. 

In this study, three lot types (namely T1, T2, and T3) 
are considered and released to the machine in proportional 
amounts (product mix of 1:1:1) to promote greater prob-
ability of machine setups.  The processing times are lot-
type dependent and the expected average processing times 
for T1, T2, and T3 jobs are 45, 50, and 55 minutes respec-
tively. The lot processing times in both sets are perturbed 
using a uniformly distributed interval of U(-5,5) minutes. 
The perturbation is included to account for machine 
and/or operator efficiencies, yield losses, and loading and 
unloading variability.  

Lots are assumed to arrive dynamically to the ma-
chine to maintain a Constant WIP of size six (denoted as 
CW6). The proportion of average setup time to average 
processing time is set at 20% which according to Kim and 
Bobrowski (1997), is comparable to the situation of a real 
job-shop. Under this setting, same sequence-dependent 
setup time of 10 minutes is applied when the type of the 
lot that has been processed is different from the type of 
the next lot to be processed. No setup is required to proc-
ess consecutive lots of the same type.  

The due date of lot i, di is determined by assigning a 
random flow allowance to each lot upon its arrival to gen-
erally represent the actual environment in which due dates 
are requested by the customer (Weng and Ren 2006) and 
is defined as di = ai + (1 + u ) pi, where ai is the arrival 
time of lot i to the queue of the machine, u U(0,1),  is 
the due date tightness factor, and pi is the expected aver-
age processing time of lot i. In this study, due date is set 
parallel to the loose due date setting used in Kim and Bo-
browski (1997). The  value is adjusted based on 10 
simulation runs to result in approximately 20% tardy lots 
for the FIFO dispatching rule and found to take the value 
of 29. 
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Since we do not have any historical data based on our 
illustrative example described above, a randomly selected 
set of weights ( 0FIFOw , 0.67CRw , 0.33SSUw ) used 
in (3) is simulated for 20 replications to produce a set of 
performance measures (with appropriate warmup) which 
we will use to represent user specified target values. 

Table 1 shows the results of simulation with fixed 
weights (based on 20 replications), SIMGAD-500 and 
SIMGAD-1000 (based on one problem instance of 5000 
lots each) where 500 and 1000 refers to the number of lots 
processed, based on which the re-optimization of weights 
is carried out. While the results of the SIMGAD-500 and 
SIMGAD-1000 is not exactly close to the user specified 
target values, it is not dominated by any of the tested sets 
of weights (fixed throughout the simulation) as shown in 
Table 2 (refer to Appendix A). It should be noted that 
these sets of weights are comprehensive enough for using 
the mixed design of experiment (DOE), response surface 
methodology (RSM) and desirability function to deter-
mine the optimal or desired weights in an off-line manner 
as described in Dabbas et al. (2003) and Lin et al. (2005). 
The preliminary results are reasonably good considering 
the GA parameters are not yet optimized. 

Table 1: Results of simulation with fixed weights (user 
specified target is based on 20 replications), SIMGAD-
500 and SIMGAD-1000 (based on one problem instance 
each)

Method avgCT sdCT avgTARD sdTARD

User 
Specified 

Target
327.079 291.424 0.699 8.596 

SIMGAD-
500 324.505 278.041 1.718 15.061 

SIMGAD-
1000 324.626 283.070 1.370 12.758 

5 APPLICATION 

In general, it takes approximately nine seconds for the 
evaluation of one chromosome (involving five simulation 
replications). Hence, one GA run with population size of 
20 and 10 generations takes approximately 30 minutes (i.e. 
9/60 minutes x 20 x 10). This implies that SIMGAD 
could potentially be incorporated into the scheduler and 
applied on-line to provide real-time optimization of the 
weights based on updated factory condition with weights 
re-optimization carried out after each lot is processed if 
the expected mean processing times for each lot is ap-
proximately 30 minutes or more. In fact, the time can be 
shortened easily through parallelization of the GA. 
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6 CONCLUSION 

This paper presented the concepts, development and po-
tential application of simulation-based genetic algorithm 
with desirability function (SIMGAD) for determining the 
weights to schedule an ion-implanter subjected to multi-
ple conflicting objectives and sequence-dependent setups 
in semiconductor manufacturing. The initial results show 
considerable promise for the SIMGAD to be applied on-
line, in an user-friendly manner to generate weights for 
the weighted rule automatically. With the use of 
SIMGAD, the user now has the capability to control the 
trade-off between the objectives. As with any new meth-
ods, continual improvement and refinement of this meth-
odology is essential and is on-going. Further work in-
cludes GA parameter optimization, analysis of the effects 
of disruptions and disturbances on the rate of weights op-
timization, and carrying out computation experiments 
based on real factory data for various machine configura-
tions. 
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A APPENDIX A: SETS OF WEIGHTS USED 

Table 2 lists the other 15 sets of weights tested over the 
problem configuration described in Section 4.  

Table 2: Weights used for the MOFCS+ rule 
Set ID of Weights FIFOw CRw SSUw

1 0.000 0.333 0.667 
2 0.000 0.500 0.500 
3 0.000 0.667 0.333 
4 0.167 0.417 0.417 
5 0.167 0.667 0.167 
6 0.167 0.167 0.667 
7 0.333 0.333 0.333 
8 0.333 0.667 0.000 
9 0.333 0.000 0.667 

10 0.417 0.167 0.417 
11 0.417 0.417 0.167 
12 0.500 0.000 0.500 
13 0.500 0.500 0.000 
14 0.667 0.167 0.167 
15 0.667 0.000 0.333 
16 0.667 0.333 0.000 
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