
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

HIERARCHICAL DISTRIBUTED SIMULATION FOR 300MM WAFER FAB

Sheng Xu
Leon F. McGinnis

School of Industrial Engineering & Systems Engineering
765 Ferst Drive, N.W.

Georgia Institute of Technology
Atlanta, GA 30332, U.S.A.
ABSTRACT

Distributed simulation promises benefits in large-scale si-
mulations, such as in high fidelity simulation of 300mm
wafer fabs, although these benefits have been hard to
achieve in practice. This paper examines the fundamentals
of distributed simulation, and proposes a hierarchical ap-
proach to distributed wafer fab simulation, which has the
potential to achieve significant reduction in model execu-
tion time.

1 INTRODUCTION

Simulation is widely used in analyzing manufacturing sys-
tems to provide a comprehensive view of the system’s
overall performance. High fidelity simulation incorporates
representation of material handling, as well as production
processes and shop floor control and is especially impor-
tant for technically complex and highly capitalized manu-
facturing, such as 300 mm wafer fabs. High fidelity simu-
lation applied to 300mm wafer fabs can support increasing
the system throughput and resource utilization, and reduc-
ing work-in-process and cycle time.

Prohibitively large run times prevent simulation mod-
els from achieving their full potential (Schruben and Roed-
er 2003). To overcome this difficulty, a number of ap-
proaches have been suggested, and one of them is to use
parallel and distributed computing technology. One obvi-
ous advantage of this is the ability to run more complex
simulation models faster.

The High-Fidelity Virtual Environment for 300mm
Wafer Fabrication (HiFiVE) project addresses distributed
simulation to support rapid prototyping and high-speed
analysis of large-scale high-fidelity fab models. The goal
of the research has been to achieve scalability, and more
reliable simulation results within reasonable computation
time for better decision support.
1771-4244-1306-0/07/$25.00 ©2007 IEEE
2 DISTRIBUTED SIMULATION FOR 300MM
WAFER FAB

There are a number of approaches to synchronizing feder-
ates in a distributed simulation (see, e.g., Fujimoto, 2000).
Because different components in manufacturing systems
interact intensively, we choose to avoid approaches that
involve rollback. In this section, we will examine the fun-
damentals of the conservative synchronization approach.

The basic structure of a distributed simulation is a set
of “logical processes” (LPs) or federates, which may be
executed independently, e.g., on different processes. Be-
cause the LPs interact, perhaps by exchanging messages,
some mechanism is required to synchronize their execu-
tion, so that a given LP never receives messages represent-
ing an interaction that should have occurred prior to its cur-
rent “local time.”

2.1 Synchronous Execution

Conservative distributed simulation is based on syn-
chronous execution: during each synchronous phase, the
simulation executive will publish a Lower Bound on Time-
stamp (LBTS) to all LPs, guaranteeing that no event with
time stamp smaller than LBTS will be delivered to them
during the message exchange stage at the end of this phase.
Therefore, it is safe for each LP to process any message or
event with time stamp less than LBTS.

Figure 1 provides an example of the conservative dis-
tributed simulation. At the beginning of each phase, the
simulation executive publishes the LBTS, and each LP fin-
ishes all messages and events with time stamp less than
LBTS, sends out all messages to other processors gener-
ated during the current phase, and sends out the request to
the simulation executive to advance to next phase by send-
ing out the smallest timestamp in its own pending event list
(PEL).
4

McGinnis and Xu
The simulation executive waits until all LPs signal that
they have finished their computation tasks in the current
phase. With the smallest timestamp from all LPs, and their
lookahead values, the simulation executive can calculate
the next LBTS. Then the simulation executive can broad-
cast LBTS after making sure that all messages sent in the
previous phase has arrived at their destination LP.

Figure 1: Phases in Conservative Distributed Simulation

We can make the following observation on the conser-
vative synchronization:

The simulation computation proceeds in phases.
At the beginning of each phase, all LPs are the
same in simulation time, and wall clock. They al-
so have the valid states and the same LBTS,
which specified the logical time on which they
will be blocked from execution.
Each LP may take different computation time to
finish its computation tasks in each phase, and
LPs which finish earlier have to wait for other
LPs, i.e. their computing power will be wasted.
From the illustration in Figure 1, LP1 and LP2
have to wait for LP3 to finish its computation
tasks before all of them can move to next phase.
During each phase, the LP with the longest com-
putation time will dominate the execution time for
each phase. Therefore, it is desirable to allocate
computation tasks evenly across all LPs, so that
the time spent in waiting for other LPs can be mi-
nimized.
The length of the simulation time for each phase
is determined by the LBTS calculated by the si-
mulation executive. The length of the simulation
time across different phases can be different be-
cause the difference in the timestamp of the earli-
est event in the PEL in each LP, and the looka-
head values.
Phases with smaller length of the simulation time
lead to more synchronization overhead thus long-
er total execution time.
Smaller phases can lead to more total time wasted
in waiting for other LPs to finish their computa-
tion tasks. Figure 2 has the same computer time
for each LP as in Figure 1, its larger phase length
17
can void some wasted waiting time, and result in
shorter overall execution time.

Figure 2: Conservative Distributed Simulation with Fewer
Phases

2.2 The Lookahead Value

The lookahead value is critical for larger synchronization
phase length in simulation time. It is well known in the
distributed simulation community that large lookahead
value is crucial for improving the performance of conser-
vative distributed simulation. Therefore, the simulation
program must be written to maximize its lookahead value
(Fujimoto 2000).

Definition 1 Lookahead: if a logical process at simu-
lation T can only schedule new events with timestamp of at
least T+L, then L is the lookahead for the logical process.
(Fujimoto 2000)

Lookahead value can be derived as follows (Fujimoto
2000):

Limitations concerning how quickly physical
processes can interact with each other.
Physical limitations concerning how quickly one
LP can react to a new event.
Tolerance to temporal inaccuracies.
Non-preemptive behavior.
Pre-computing simulation activities.

However, small lookahead values in some of the LPs
can limit the simulation performance even if other LPs
have large lookaheads. This is due to the way LBTS is
calculated.

Let the set of LPs in a distributed simulation federa-
tion be F . For any LP Fi , let iT be the current simu-
lation time in LP i , it be the time stamp of the smallest
time stamp event in LP i ’s pending event list, and iL be
the lookahead value for LP i . Then the LBTS is calcu-
lated by:

)(min ii
Fi

LtLBTS

 Even if it are comparable in different LPs, the LPs
with smallest lookahead values will determine the LBTS
values, thus the length of synchronous phases in simulation
time.
75

McGinnis and Xu
In conservative synchronization approaches, larger
lookahead values in some LPs may not be able to boost the
simulation performance. Therefore, the optimistic-
conservative synchronization approach is proposed to ex-
ploit the larger lookahead values in some LPs.

2.3 The Request Ahead Value

In conservative synchronization approaches, we impose the
local causality constraint on each LP to ensure the correct-
ness of the simulation results:

Definition 2 Local Causality Constraint: A discrete-
event simulation obeys the local causality constraints if
and only if each LP processes events in nondecreasing
time stamp order.(Fujimoto 2000)

The local causality constraint is a sufficient condition
to ensure the correctness of simulation results, but it is not
a necessary condition. We can find cases where a local
causality constraint is violated but the system simulation
results are still correct. For example, we have two events
to be processed in the same LP: event 1 is to start process-
ing on a machine in bay 1, and event 2 is to start process-
ing on another machine in the same bay. The difference in
timestamp for the two events is 1 second. That is

121 tt . Suppose the processing time for both events
are in minutes, we can process either of the two events
without compromising the correctness of the simulation
results.

Based on the above observations, we proposed the op-
timistic-conservative synchronization approach (Xu and
McGinnis 2006).

Definition 3 The Request Ahead Value: if a logical
process at simulation T with lookahead value L can only
schedule new events with timestamp of at least T+L+R,
then R is the Request Ahead Value for the logical process..

Definition 4 Roll-back free compensation value: If a
logical process at simulation time T received a message
with time stamp T where TT , then S is referred to as
the rollback free compensation value if no rollback is nec-
essary when STT .(Xu and McGinnis 2006)
 To show an example of the roll-back free compensa-
tion value, we consider the case with one automatic ma-
chine and a vehicle. Suppose the vehicle arrives at the ma-
chine, and drops a job on the machine, a message with time
stamp 10 is sent by the vehicle federate to the machine
federate informing it of the drop-off. Suppose further that
the machine federate receives the message at its local time
12, i.e., the message is received in its past, which might be
dealt with by a rollback. However, rollback may be
avoided, e.g., if the minimum processing time for the ma-
chine is 10 time units. Then we can schedule the new
event in the machine federate with time stamp of at least
20, and no rollback is necessary. The rollback free com-
pensation value can be any value between 0 and 10. For
the two boundary values, 0 means no compensation at all,
177
which reduces to the normal conservative synchronization
protocol, and 10 will use up all the room for the lookahead
value, which is not recommended because zero-lookahead
will result. The general approach is to find the balance be-
tween the compensation value and the lookahead value.
(Xu and McGinnis 2006)

To calculate the request ahead value for LP j , we first
define the set of LPs in a distributed simulation federation
receiving timestamp messages from LP j as jF . For any

LP jFi , let iS be the rollback free compensation value
in LP i . Then the Request Ahead Value for LP j is cal-
culated by:

)(min i
Fi

j SR
j

Similar to the lookahead value, the rollback free com-
pensation value S is also derived from:

Limitations concerning how quickly physical
processes can interact with each other.
Physical limitations concerning how quickly one
LP can react to a new event.
Tolerance to temporal inaccuracies.
Non-preemptive behavior.
Pre-computing simulation activities.

Clearly, the rollback free compensation value S
will affect the selection of the lookahead value. If we de-
fine a larger compensation value to an LP, its lookahead
value may decrease accordingly.

Therefore, we can exploit the difference in lookahead
values across different LPs by imposing compensation val-
ues to some of LPs with large lookaheads, which will re-
duce their lookahead value. On the other hand, we can
gain the request ahead value in the LPs with small looka-
head values so that the sum of the lookahead and request
ahead values across LPs will be more balanced.

One example in exploiting the compensation value is
given in (Xu and McGinnis 2006): we have two LPs, a fac-
tory federate with lookahead value of 8 minutes, and a ma-
terial handling federate with a lookahead value of 1 min-
ute. The LBTS is calculated by:

)1,8(min 21 ttLBTS

The smaller lookahead value in the material handling
federate always dominates the LBTS calculation, and re-
sults in small LBTS values.

We add 4 minutes of compensation value in the fac-
tory federate, which resulted in 4 minutes Request Ahead
Value in the material handling federate. At the same time,
the lookahead value in the factory federate is reduced to 4
minutes.
6

McGinnis and Xu
Table 1: Comparison of lookahead L, compensation value
S and request ahead value R
Conservative Synchroniza-

tion
Optimistic-Conservative

Synchronization
Factory
Federate

Material Han-
dling Federate

Factory
Federate

Material Han-
dling Federate

L=8 L=1 L=4 L=1
S=0 S=0 S=4 S=0
R=0 R=0 R=0 R=4

L+R = 8 L+R=1 L+R =4 L+R =5

Then the LBTS is calculated as:
)41,04(min 21 ttLBTS

Therefore, we can exploit the difference in lookahead
values across different LPs by imposing compensation val-
ues to some of LPs, and gaining request ahead values in
some other LPs. As a result, larger LBTS values can be
expected.

2.4 Minimum FEL Time

In the previous two sections, we studied the lookahead and
request ahead values and their relationship to the LBTS
calculation. We assume that the time stamp of the smallest
timestamp events in the FEL in different LPs are similar.

However, the message density in different LPs can be
quite different. Suppose two LPs have significantly differ-
ent minimum FEL time, i.e.

21 tt and RLtt 21 .
Then the minimum FEL time will affect LBTS calcu-

lation significantly.
As the minimum FEL time is always positive, it may

result in larger LBTS value, which can improve the simula-
tion performance.

Based on these observation, we may include LPs with
no FEL, and small lookahead value in the distributed simu-
lation federation, i.e. standalone controllers.

Modeling controllers as federates is often difficult in
conservative distributed simulation, because of their very
small response time, i.e. a fraction of a second. As we dis-
cussed in the previous sections, an LP with small looka-
head value may dominate LBTS calculation, and result in
poor performance in distributed simulation.

However, if we design the controller federate by proc-
essing messages based on received order, and other incom-
ing messages are processed in the same phase in synchro-
nous execution, then the minimum FEL time will always
be as there is no event in the FEL. Thus, the controller
federate will not affect LBTS calculation even if it has very
small lookahead value. For example:

),(min 221 LtLLBTS
177
where LP 1 is a controller federate with small lookahead

1L , and LP 2 is a federate with normal lookhead

12 LL .
Although LPs without FEL can have smaller looka-

head values, they must send out messages at the same
phase as they receive the incoming message triggering the
outgoing messages. This requirement does not align with
the synchronous execution procedure, and extra manipula-
tion is required. It can be applied in conservative distrib-
uted simulation when stand alone controller cannot be
avoided.

In distributed simulation for 300mm wafer fab, we
avoided using the stand alone controller by combining
them with other components in the manufacturing system.

2.5 Maximum Workload

Large LBTS values are important to reduce the synchroni-
zation overhead and to improve parallelism in execution.
However, the computational burden across different LP in
each synchronous phase has significant impact on simula-
tion performance.

According to Amdahl’s law in parallel computation,
the speedup is limited by the percentage of the sequential
part of the program, which must be computed by one proc-
essor, with other processors waiting for its completion.

)1(1)1(
1

pf

p

pff
speedup

Where f is percentage of the sequential part of the
program, and p is the number of processors. (Parhami
2002)

When the sequential part is small, the speedup is sig-
nificant, but when the percentage of the sequential part in-
creases, the speedup becomes less significant. If the ma-
jority of the program is sequential, the benefits from
parallel computation will be minimized. Amdahl’s law is
illustrated in Figure 3.

If 1.0f , the speedup will be bounded by a factor of
10 no matter how many processors are used, and even if no
synchronization penalty is occurred.

10
)1(1.01

lim
p

p
speedup

p
p

If 9.0f , the speedup will be bounded by a factor of

9
10 no matter how many processors are used, and even if

no synchronization penalty is occurred.

9
10

)1(9.01
lim

p

p
speedup

p
p

7

McGinnis and Xu
f = 0,
Linear speedup

f = 0.1

f = 0.9

Figure 3: Amdahl’s law

Therefore, we should evenly distribute the computa-
tion tasks to different LPs so that no single LP has large
percent of the total computation tasks, if large synchroniza-
tion overhead can be avoided.

3 HIERARCHICAL DISTRIBUTED SIMULATION

Various federation design alternatives have been tested in
HiFiVE (High-Fidelity Virtual Environment for 300mm
Wafer Fabrication) (McGinnis et al. 2005, Wang et al.
2005, McGinnis et al. 2006, Xu and McGinnis 2006). We
found that the Factory/AMHS approach with optimistic-
conservative synchronization approach delivers best com-
putational performance by reducing the synchronization
overhead.

However, the Factory/AMHS approach did not bal-
ance the computation tasks across the LPs in the federa-
tion; based on the discussion in the previous section, there
may be potential to further improve the computaional per-
formance if a more balanced federation can be developed.

In this section, we will first introduce the Fac-
tory/AMHS approach, and analyze its performance and
limitations. Then an innovative new design with hierarchi-
cal distributed simulation is proposed and its correctness is
analyzed.

3.1 The Factory/AMHS Approach (McGinnis et al.
2005)

The Factory/AMHS Approach has three federates: the Fac-
tory Federate, the AMHS Federate and the Fab Control Fe-
derate. The Factory Federate models all process tools, and
the AMHS Federate models stockers, Interbay/Intrabay
transporters, and the AMHS controller, which manage the
flow of the lots in the Fab. The Fab Control Federate
models the lot release operations in the fab, simulating the
job arrivals to the system.
17
The reason for such a configuration is mainly from the
lessons learned from large computational burden resulting
from the previous distributed simulation design, which has
a root in the previous non-distributed HiFiVE version. We
analyze this design based on the principles we derived in
Section 2:

Lookahead: The Factory/AMHS approach has rel-
atively large lookahead values in both the Factory
federate and the AMHS federate, as we incorpo-
rated the controllers within them. The Fab Con-
trol federate has large lookahead as we precom-
pute the lot release time.
Compensation and Request Ahead Values: we
implemented the compensation value in the Fac-
tory Federate, and the Request Ahead value in the
AMHS federate.
Time Complexity: same as the sequential simula-
tion, but we eliminated the global event list,
which may reduce the time complexity.
Message Complexity: for each process step in the
wafer fab, we need one message from the factory
federate and one message from the AMHS feder-
ate. These are the essential messages for distrib-
uted simulation, and significantly reduced from
our previous distributed simulation design.

Figure 4. The Factory/AMHS Design.

Figure 4 illustrates the Factory/AMHS federation, with
three federates, where the AMHS federate consists of the
transportation systems and the AMHS controller.

3.2 The Hierarchical Distributed Simulation Model for
300mm Wafer Fab

Between two consecutive process steps in the factory fed-
erate, there are a set of intrabay and/or interbay transporta-
tion activities. For each process step in the factory, we on-
78

McGinnis and Xu
ly need to process two events, the start processing event
and end processing event, while in the AMHS federate, up
to hundreds of events are possible to move the lot in the
transportation system from the machine to the next ma-
chine, possibly moving the lot between stockers or storing
it temporarily if the machine for next process step is not
available.

Within each LP, all the associated events are in the
FEL. As the number of events in the AMHS federate is
one or two orders of magnitude larger than the number of
events in the factory federate, the computational time for
each computer processor to finish their respective compu-
tation tasks are quite different, which makes the AMHS fe-
derate the bottleneck of the simulation execution.

In order to further improve the distributed simulation
performance, we propose the hierarchical distributed simu-
lation in Figure 5:

Figure 5. The Hierarchical Distributed Simulation Design.

The hierarchical distributed simulation design replace the
AMHS federate in the AMHS federate in the Fac-
tory/AMHS design with a child federation, i.e. the AMHS
federation, which distributes the AMHS subsystem in the
300mm Wafer Fab.

It has two levels of distributed simulation, a parent
federation, and a child federation. The parent federation
consists of three federates: factory, fab control, and
AMHS. The AMHS subsystem is itself distributed across
25 federates: 24 bay federates, and an interbay federate
(include interbay AMHS and the AMHS controller). We
combine the interbay AMHS and the AMHS controller to
avoid small lookahead federate in the child federation. The
details are illustrated in Figure 6.
1

Conservative Synchronization PROTOCOL for Hierarchi-
cal Distributed Simulation
1. initialization
2. run all LPs

FEDERATE
3. while (~stop) {
4. while (TimeAdvanceGrant(T)) {}
5. e f(L)
6. while (e.ts < T) {
7. execute (e)
8. local_clock e.ts
9. e f(L)
10. }
11. NextEventRequest(e.ts)
12.}

CHILD FEDERATION
13. while (~stop) {
14. while (TimeAdvanceGrant(T)) {}
15. T’ min(T, LBTS)
16. while (T’ < T) {
17. broadcast T’ to child federates
18. receive NextEventRequest(t) from child federates
19. LBTS calculation
20. T’ min(T, LBTS)
21. }
22. NextEventRequest (LBTS)
23.}

CHILD FEDERATE
24. while (~stop) {
25. while (TimeAdvanceGrant(T)) {}
26. e f(L)
27. while (e.ts < T) {
28. execute (e)
29. local_clock e.ts
30. e f(L)
31. }
32. NextEventRequest(e.ts)
33.}
Figure 6: Algorithm of Conservative Synchronization Pro-
tocol for Hierarchical Distributed Simulation

The federates in Figure 6 proceed as normal federates
in distributed simulation, the only difference between a fe-
derate in the parent federation and a federate in the child
federation is that the child federate talks only to the Run
Time Infrastructure (RTI) in the child federation, while the
parent federate talks only to the RTI in the parent federa-
tion.

However, the LBTS calculation in the child federation
has to take into consideration the LBTS value from the
parent federation.
779

McGinnis and Xu
Suppose parentLBTS is the LBTS granted from the

parent RTI, childLBTS is the LBTS for the child federation,

childF is the set of LPs in the child federation, it is the
minimum FEL timestamp in federate childFi , and iL is
the lookahead value in federate childFi . We can calcu-
late LBTS for the child federation by:

))(min,min(ii
Fi

parentchild LtLBTSLBTS
child

To avoid violating the local causality constraint, we
should ensure that parentchild LBTSLBTS . We can con-
tinue to run the child federation as long as

)(min ii
Fi

parent LtLBTS
child

However, if)(min ii
Fi

parent LtLBTS
child

, which means the

child federation wants to proceed beyond the parent LBTS
limit, it must call NextEventRequest with the parameter

)(min ii
Fi

Lt
child

 just as a normal federate in the parent fed-

eration. After that, the child federation will wait for the
parent federation to broadcast next parentLBTS .

3.3 The Optimistic-Conservative Synchronization for
the Hierarchical Distributed Simulation

In the previous section, we assume that the conservative
synchronization protocol is used in the hierarchical distrib-
uted simulation design. However, the optimistic-
conservative synchronization protocol also can be used:

The optimistic-conservative protocol is applied in
the parent federation.
The child federation still uses the conservative
synchronization protocol. This is due to the factor
that the lookahead values in the child federation
are all equal, and the optimistic-conservative pro-
tocol is not applicable for the child federation.
The compensation value is applied to the factory
federate in the parent federation, and the request
ahead value is applied to the AMHS federation,
which is a federation in the parent federation.

4 SUMMARY

In this paper, we introduced the hierarchical distributed
simulation approach for the 300mm wafer fab. It is the ex-
tension of the Factory/AMHS distributed simulation ap-
proach applied successfully in HiFiVE. While the hierar-
chical distributed simulation is promising in achieving
significantly speedup via massive distributed simulation of
the 300mm wafer fab, extensive computational experi-
ments (in progress at the time of this writing) are required
to test actual speedup resulting from this approach.
178
REFERENCES

Fujimoto, R.M. 2000. Parallel and Distributed Simulation
Systems, John Wiley & Sons.

McGinnis, L. F., S. Xu and K. Wang. 2005. Evaluate Si-
mulation Design Alternatives for Large Scale Manu-
facturing Systems. In Proceeding of the IEEE Interna-
tional Symposium on Semiconductor Manufacturing.
Page(s): 344 – 347.

McGinnis, L. F. K. Wang, and S. Xu, 2006. Distributed
Simulation of Manufacturing Systems, In Proceedings
of the 16th Flexible Automation and Intelligent Manu-
facturing Conference. 26-28 June, 2006 in the Univer-
sity of Limerick, Ireland.

Parhami, B. 2002. Introduction to Parallel Processing Al-
gorithms and Architectures, Kluwer Academic Pub-
lishers.

Wang K., S. Xu, L. F. McGinnis. 2005. Time management
in distributed factory simulation, a case study using
HLA. In Proceeding of Proceedings of the Winter Si-
mulation Conference. Page(s): 1781-1786.

Xu, S., L. F., McGinnis. 2006. Optimistic-conservative
synchronization in distributed factory simulation. In
Proceeding of Proceedings of the 37th conference on
Winter simulation Conference. Page(s): 1069-1074.

AUTHOR BIOGRAPHIES

SHENG XU earned his M.ENG. in Mechanical Engineer-
ing and Automation at Zhejiang University, China,
M.ENG. in High Performance Computing at National Uni-
versity of Singapore (the Singapore-MIT Alliance Pro-
gram). He worked as an Associate Research Fel-
low/Research Engineer in Singapore Institute of
Manufacturing Technology. He also worked as a software
engineer, senior program designer, systems analyst etc. for
many years in China. He is currently a Ph.D. student at the
Georgia Institute of Technology and an OR analyst at Sa-
bre Airline Solutions, and his current research focuses on
modeling and simulation of manufacturing and logistics
systems. . He can be reached via email at
<sxu@isye.gatech.edu>.

LEON MCGINNIS is Gwaltney Professor of Manufactur-
ing Systems at Georgia Tech, where he also serves as Di-
rector of the Product and Systems Lifecycle Management
Center, Associate Director of the Manufacturing Research
Center, and Director of the Keck Virtual Factory Lab. His
research is focused on the representation of complex indus-
trial systems, such as warehouses and factories, to enable
analytic and simulation modeling to support performance
assessment, behavioral prediction, and system design. His
email address is <leon.mcginnis@gatech.edu>.
0

