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ABSTRACT 

Distributed simulation promises benefits in large-scale si-
mulations, such as in high fidelity simulation of 300mm 
wafer fabs, although these benefits have been hard to 
achieve in practice.  This paper examines the fundamentals 
of distributed simulation, and proposes a hierarchical ap-
proach to distributed wafer fab simulation, which has the 
potential to achieve significant reduction in model execu-
tion time.   

1 INTRODUCTION

Simulation is widely used in analyzing manufacturing sys-
tems to provide a comprehensive view of the system’s 
overall performance.  High fidelity simulation incorporates 
representation of material handling, as well as production 
processes and shop floor control and is especially impor-
tant for technically complex and highly capitalized manu-
facturing, such as 300 mm wafer fabs.  High fidelity simu-
lation applied to 300mm wafer fabs can support increasing 
the system throughput and resource utilization, and reduc-
ing work-in-process and cycle time. 

Prohibitively large run times prevent simulation mod-
els from achieving their full potential (Schruben and Roed-
er 2003).  To overcome this difficulty, a number of ap-
proaches have been suggested, and one of them is to use 
parallel and distributed computing technology.  One obvi-
ous advantage of this is the ability to run more complex 
simulation models faster. 

The High-Fidelity Virtual Environment for 300mm 
Wafer Fabrication (HiFiVE) project addresses distributed 
simulation to support rapid prototyping and high-speed 
analysis of large-scale high-fidelity fab models. The goal 
of the research has been to achieve scalability, and more 
reliable simulation results within reasonable computation 
time for better decision support. 
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2 DISTRIBUTED SIMULATION FOR 300MM 
WAFER FAB 

There are a number of approaches to synchronizing feder-
ates in a distributed simulation (see, e.g., Fujimoto, 2000).  
Because different components in manufacturing systems 
interact intensively, we choose to avoid approaches that 
involve rollback.  In this section, we will examine the fun-
damentals of the conservative synchronization approach. 

The basic structure of a distributed simulation is a set 
of “logical processes” (LPs) or federates, which may be 
executed independently, e.g., on different processes.  Be-
cause the LPs interact, perhaps by exchanging messages, 
some mechanism is required to synchronize their execu-
tion, so that a given LP never receives messages represent-
ing an interaction that should have occurred prior to its cur-
rent “local time.” 

2.1 Synchronous Execution 

Conservative distributed simulation is based on syn-
chronous execution:  during each synchronous phase, the 
simulation executive will publish a Lower Bound on Time-
stamp (LBTS) to all LPs, guaranteeing that no event with 
time stamp smaller than LBTS will be delivered to them 
during the message exchange stage at the end of this phase.  
Therefore, it is safe for each LP to process any message or 
event with time stamp less than LBTS.  

Figure 1 provides an example of the conservative dis-
tributed simulation.  At the beginning of each phase, the 
simulation executive publishes the LBTS, and each LP fin-
ishes all messages and events with time stamp less than 
LBTS, sends out all messages to other processors gener-
ated during the current phase, and sends out the request to 
the simulation executive to advance to next phase by send-
ing out the smallest timestamp in its own pending event list 
(PEL). 
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The simulation executive waits until all LPs signal that 
they have finished their computation tasks in the current 
phase.  With the smallest timestamp from all LPs, and their 
lookahead values, the simulation executive can calculate 
the next LBTS.  Then the simulation executive can broad-
cast LBTS after making sure that all messages sent in the 
previous phase has arrived at their destination LP. 

Figure 1: Phases in Conservative Distributed Simulation 

We can make the following observation on the conser-
vative synchronization: 

The simulation computation proceeds in phases. 
At the beginning of each phase, all LPs are the 
same in simulation time, and wall clock.  They al-
so have the valid states and the same LBTS, 
which specified the logical time on which they 
will be blocked from execution. 
Each LP may take different computation time to 
finish its computation tasks in each phase, and 
LPs which finish earlier have to wait for other 
LPs, i.e. their computing power will be wasted.  
From the illustration in Figure 1, LP1 and LP2 
have to wait for LP3 to finish its computation 
tasks before all of them can move to next phase. 
During each phase, the LP with the longest com-
putation time will dominate the execution time for 
each phase.  Therefore, it is desirable to allocate 
computation tasks evenly across all LPs, so that 
the time spent in waiting for other LPs can be mi-
nimized.
The length of the simulation time for each phase 
is determined by the LBTS calculated by the si-
mulation executive.  The length of the simulation 
time across different phases can be different be-
cause the difference in the timestamp of the earli-
est event in the PEL in each LP, and the looka-
head values. 
Phases with smaller length of the simulation time 
lead to more synchronization overhead thus long-
er total execution time. 
Smaller phases can lead to more total time wasted 
in waiting for other LPs to finish their computa-
tion tasks.  Figure 2 has the same computer time 
for each LP as in Figure 1, its larger phase length 
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can void some wasted waiting time, and result in 
shorter overall execution time.   

Figure 2: Conservative Distributed Simulation with Fewer 
Phases

2.2 The Lookahead Value 

The lookahead value is critical for larger synchronization 
phase length in simulation time.  It is well known in the 
distributed simulation community that large lookahead 
value is crucial for improving the performance of conser-
vative distributed simulation.  Therefore, the simulation 
program must be written to maximize its lookahead value 
(Fujimoto 2000). 

Definition 1 Lookahead: if a logical process at simu-
lation T can only schedule new events with timestamp of at 
least T+L, then L is the lookahead for the logical process.
(Fujimoto 2000)

Lookahead value can be derived as follows (Fujimoto 
2000): 

Limitations concerning how quickly physical 
processes can interact with each other. 
Physical limitations concerning how quickly one 
LP can react to a new event.   
Tolerance to temporal inaccuracies. 
Non-preemptive behavior. 
Pre-computing simulation activities. 

However, small lookahead values in some of the LPs 
can limit the simulation performance even if other LPs 
have large lookaheads.  This is due to the way LBTS is 
calculated.

Let the set of LPs in a distributed simulation federa-
tion be F .  For any LP Fi , let iT  be the current simu-
lation time in LP i , it  be the time stamp of the smallest 
time stamp event in LP i ’s pending event list,  and iL  be 
the lookahead value for LP i .  Then the LBTS is calcu-
lated by: 

)(min ii
Fi

LtLBTS

 Even if it  are comparable in different LPs, the LPs 
with smallest lookahead values will determine the LBTS 
values, thus the length of synchronous phases in simulation 
time. 
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In conservative synchronization approaches, larger 
lookahead values in some LPs may not be able to boost the 
simulation performance.  Therefore, the optimistic-
conservative synchronization approach is proposed to ex-
ploit the larger lookahead values in some LPs. 

2.3 The Request Ahead Value 

In conservative synchronization approaches, we impose the 
local causality constraint on each LP to ensure the correct-
ness of the simulation results: 

Definition 2 Local Causality Constraint: A discrete-
event simulation obeys the local causality constraints if 
and only if each LP processes events in nondecreasing 
time stamp order.( Fujimoto 2000)

The local causality constraint is a sufficient condition 
to ensure the correctness of simulation results, but it is not 
a necessary condition.  We can find cases where a local 
causality constraint is violated but the system simulation 
results are still correct.  For example, we have two events 
to be processed in the same LP: event 1 is to start process-
ing on a machine in bay 1, and event 2 is to start process-
ing on another machine in the same bay.  The difference in 
timestamp for the two events is 1 second.  That is 

121 tt .  Suppose the processing time for both events 
are in minutes, we can process either of the two events 
without compromising the  correctness  of the simulation 
results. 

Based on the above observations, we proposed the op-
timistic-conservative synchronization approach (Xu and 
McGinnis 2006). 

Definition 3 The Request Ahead Value: if a logical 
process at simulation T with lookahead value L can only 
schedule new events with timestamp of at least T+L+R, 
then R is the Request Ahead Value for the logical process.. 

Definition 4    Roll-back free compensation value: If a 
logical process at simulation time T  received a message 
with time stamp T  where TT , then S  is referred to as 
the rollback free compensation value if no rollback is nec-
essary when STT .(Xu and McGinnis 2006)
 To show an example of the roll-back free compensa-
tion value, we consider the case with one automatic ma-
chine and a vehicle.  Suppose the vehicle arrives at the ma-
chine, and drops a job on the machine, a message with time 
stamp 10 is sent by the vehicle federate to the machine 
federate informing it of the drop-off.   Suppose further that 
the machine federate receives the message at its local time 
12, i.e., the message is received in its past, which might be 
dealt with by a rollback.  However, rollback may be 
avoided, e.g., if the minimum processing time for the ma-
chine is 10 time units.  Then we can schedule the new 
event in the machine federate with time stamp of at least 
20, and no rollback is necessary.  The rollback free com-
pensation value can be any value between 0 and 10.  For 
the two boundary values, 0 means no compensation at all, 
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which reduces to the normal conservative synchronization 
protocol, and 10 will use up all the room for the lookahead 
value, which is not recommended because zero-lookahead 
will result.  The general approach is to find the balance be-
tween the compensation value and the lookahead value. 
(Xu and McGinnis 2006) 

To calculate the request ahead value for LP j , we first 
define the set of LPs in a distributed simulation federation 
receiving timestamp messages from LP j  as jF .  For any 

LP jFi , let iS  be the rollback free compensation value 
in LP i .  Then the Request Ahead Value for LP j   is cal-
culated by: 

)(min i
Fi

j SR
j

Similar to the lookahead value, the rollback free com-
pensation value S  is also derived from:  

Limitations concerning how quickly physical 
processes can interact with each other. 
Physical limitations concerning how quickly one 
LP can react to a new event.   
Tolerance to temporal inaccuracies. 
Non-preemptive behavior. 
Pre-computing simulation activities. 

Clearly, the rollback free compensation value S
will affect the selection of the lookahead value.  If we de-
fine a larger compensation value to an LP, its lookahead 
value may decrease accordingly. 

Therefore, we can exploit the difference in lookahead 
values across different LPs by imposing compensation val-
ues to some of LPs with large lookaheads, which will re-
duce their lookahead value.  On the other hand, we can 
gain the request ahead value in the LPs with small looka-
head values so that the sum of the lookahead and request 
ahead values across LPs will be more balanced. 

One example in exploiting the compensation value is 
given in (Xu and McGinnis 2006): we have two LPs, a fac-
tory federate with lookahead value of 8 minutes, and a ma-
terial handling federate with a lookahead value of 1 min-
ute.  The LBTS is calculated by: 

)1,8(min 21 ttLBTS

The smaller lookahead value in the material handling 
federate always dominates the LBTS calculation, and re-
sults in small LBTS values. 

We add 4 minutes of compensation value in the fac-
tory federate, which resulted in 4 minutes Request Ahead 
Value in the material handling federate.  At the same time, 
the lookahead value in the factory federate is reduced to 4 
minutes.   
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Table 1:  Comparison of lookahead L, compensation value 
S and request ahead value R
Conservative Synchroniza-

tion
Optimistic-Conservative 

Synchronization 
Factory
Federate 

Material Han-
dling Federate 

Factory
Federate 

Material Han-
dling Federate 

L=8 L=1 L=4 L=1 
S=0 S=0 S=4 S=0 
R=0 R=0 R=0 R=4 

L+R = 8 L+R=1 L+R =4 L+R =5 

Then the LBTS is calculated as: 
)41,04(min 21 ttLBTS

Therefore, we can exploit the difference in lookahead 
values across different LPs by imposing compensation val-
ues to some of LPs, and gaining request ahead values in 
some other LPs.  As a result, larger LBTS values can be 
expected. 

2.4 Minimum FEL Time 

In the previous two sections, we studied the lookahead and 
request ahead values and their relationship to the LBTS 
calculation.  We assume that the time stamp of the smallest 
timestamp events in the FEL in different LPs are similar.   

However, the message density in different LPs can be 
quite different.  Suppose two LPs have significantly differ-
ent minimum FEL time, i.e.  

21 tt  and RLtt 21 .
Then the minimum FEL time will affect LBTS calcu-

lation significantly. 
As the minimum FEL time is always positive, it may 

result in larger LBTS value, which can improve the simula-
tion performance. 

Based on these observation, we may include LPs with 
no FEL, and small lookahead value in the distributed simu-
lation federation, i.e. standalone controllers.   

Modeling controllers as federates is often difficult in 
conservative distributed simulation, because of their very 
small response time, i.e. a fraction of a second.  As we dis-
cussed in the previous sections, an LP with small looka-
head value may dominate LBTS calculation, and result in 
poor performance in distributed simulation. 

However, if we design the controller federate by proc-
essing messages based on received order, and other incom-
ing messages are processed in the same phase in synchro-
nous execution, then the minimum FEL time will always 
be  as there is no event in the FEL.  Thus, the controller 
federate will not affect LBTS calculation even if it has very 
small lookahead value.  For example: 

),(min 221 LtLLBTS
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where LP 1 is a controller federate with small lookahead 

1L , and LP 2 is a federate with normal lookhead 

12 LL .
Although LPs without FEL can have smaller looka-

head values, they must send out messages at the same 
phase as they receive the incoming message triggering the 
outgoing messages.  This requirement does not align with 
the synchronous execution procedure, and extra manipula-
tion is required.  It can be applied in conservative distrib-
uted simulation when stand alone controller cannot be 
avoided.   

In distributed simulation for 300mm wafer fab, we 
avoided using the stand alone controller by combining 
them with other components in the manufacturing system. 

2.5 Maximum Workload 

Large LBTS values are important to reduce the synchroni-
zation overhead and to improve parallelism in execution. 
However, the computational burden across different LP in 
each synchronous phase has significant impact on simula-
tion performance.   

According to Amdahl’s law in parallel computation, 
the speedup is limited by  the percentage of the sequential 
part of the program, which must be computed by one proc-
essor, with other processors waiting for its completion.  

)1(1)1(
1

pf

p

pff
speedup

Where f   is percentage of the sequential part of the 
program, and p   is the number of processors. (Parhami 
2002) 

When the sequential part is small, the speedup is sig-
nificant, but when the percentage of the sequential part in-
creases, the speedup becomes less significant.  If the ma-
jority of the program is sequential, the benefits from 
parallel computation will be minimized.  Amdahl’s law is 
illustrated in Figure 3.   

If 1.0f , the speedup will be bounded by a factor of 
10 no matter how many processors are used, and even if no 
synchronization penalty is occurred. 

10
)1(1.01

lim
p

p
speedup

p
p

If 9.0f , the speedup will be bounded by a factor of 

9
10  no matter how many processors are used, and even if 

no synchronization penalty is occurred. 

9
10

)1(9.01
lim

p

p
speedup

p
p
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f = 0,
Linear speedup

f = 0.1

f = 0.9

Figure 3: Amdahl’s law 

Therefore, we should evenly distribute the computa-
tion tasks to different LPs so that no single LP has large 
percent of the total computation tasks, if large synchroniza-
tion overhead can be avoided. 

3 HIERARCHICAL DISTRIBUTED SIMULATION 

Various federation design alternatives have been tested in 
HiFiVE (High-Fidelity Virtual Environment for 300mm 
Wafer Fabrication) (McGinnis et al. 2005, Wang et al. 
2005, McGinnis et al. 2006, Xu and McGinnis 2006).  We 
found that the Factory/AMHS approach with optimistic-
conservative synchronization approach delivers best com-
putational performance by reducing the synchronization 
overhead. 

However, the Factory/AMHS approach did not bal-
ance the computation tasks across the LPs in the federa-
tion;  based on the discussion in the previous section, there 
may be potential to further improve the computaional per-
formance if a more balanced federation can be developed. 

In this section, we will first introduce the Fac-
tory/AMHS approach, and analyze its performance and 
limitations.  Then an innovative new design with hierarchi-
cal distributed simulation is proposed and its correctness is 
analyzed.

3.1 The Factory/AMHS Approach (McGinnis et al. 
2005) 

The Factory/AMHS Approach has three federates: the Fac-
tory Federate, the AMHS Federate and the Fab Control Fe-
derate.  The Factory Federate models all process tools, and 
the AMHS Federate models stockers, Interbay/Intrabay 
transporters, and the AMHS controller, which manage the 
flow of the lots in the Fab.  The Fab Control Federate 
models the lot release operations in the fab, simulating the 
job arrivals to the system. 
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The reason for such a configuration is mainly from the 
lessons learned from large computational burden resulting 
from the previous distributed simulation design, which has 
a root in the previous non-distributed HiFiVE version.  We 
analyze this design based on the principles we derived in 
Section 2: 

Lookahead: The Factory/AMHS approach has rel-
atively large lookahead values in both the Factory 
federate and the AMHS federate, as we incorpo-
rated the controllers within them.  The Fab Con-
trol federate has large lookahead as we precom-
pute the lot release time. 
Compensation and Request Ahead Values: we 
implemented the compensation value in the Fac-
tory Federate, and the Request Ahead value in the 
AMHS federate. 
Time Complexity: same as the sequential simula-
tion, but we eliminated the global event list, 
which may reduce the time complexity. 
Message Complexity: for each process step in the 
wafer fab, we need one message from the factory 
federate and one message from the AMHS feder-
ate.  These are the essential messages for distrib-
uted simulation, and significantly reduced from 
our previous distributed simulation design. 

Figure 4.  The Factory/AMHS Design. 

Figure 4 illustrates the Factory/AMHS federation, with 
three federates, where the AMHS federate consists of the 
transportation systems and the AMHS controller. 

3.2 The Hierarchical Distributed Simulation Model for 
300mm Wafer Fab 

Between two consecutive process steps in the factory fed-
erate, there are a set of intrabay and/or interbay transporta-
tion activities.  For each process step in the factory, we on-
78
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ly need to process two events, the start processing event 
and end processing event, while in the AMHS federate, up 
to hundreds of events are possible to move the lot in the 
transportation system from the machine to the next ma-
chine, possibly moving the lot between stockers or storing 
it temporarily if the machine for next process step is not 
available.

Within each LP, all the associated events are in the 
FEL.  As the number of events in the AMHS federate is 
one or two orders of magnitude larger than the number of 
events in the factory federate, the computational time for 
each computer processor to finish their respective compu-
tation tasks are quite different, which makes the AMHS fe-
derate the bottleneck of the simulation execution. 

In order to further improve the distributed simulation 
performance, we propose the hierarchical distributed simu-
lation in Figure 5:  

Figure 5.  The Hierarchical Distributed Simulation Design. 

The hierarchical distributed simulation design replace the 
AMHS federate in the AMHS federate in the Fac-
tory/AMHS design with a child federation, i.e. the AMHS 
federation, which distributes the AMHS subsystem in the 
300mm Wafer Fab. 

It has two levels of distributed simulation, a parent 
federation, and a child federation.  The parent federation 
consists of three federates: factory, fab control, and 
AMHS.  The AMHS subsystem is itself distributed across 
25 federates: 24 bay federates, and an interbay federate 
(include interbay AMHS and the AMHS controller).  We 
combine the interbay AMHS and the AMHS controller to 
avoid small lookahead federate in the child federation.  The 
details are illustrated in Figure 6. 
1

Conservative Synchronization PROTOCOL for Hierarchi-
cal Distributed Simulation 
1. initialization 
2. run all LPs 

FEDERATE 
3. while (~stop) { 
4.   while (TimeAdvanceGrant(T)) {} 
5.    e  f(L) 
6.    while (e.ts < T) { 
7.         execute (e) 
8.         local_clock   e.ts 
9.         e  f(L) 
10.   } 
11.   NextEventRequest(e.ts) 
12.} 

CHILD FEDERATION 
13. while (~stop) { 
14.   while (TimeAdvanceGrant(T)) {} 
15.      T’   min(T, LBTS) 
16.      while (T’ < T) { 
17.        broadcast T’ to child federates 
18.        receive NextEventRequest(t) from child federates 
19.        LBTS calculation 
20.        T’   min(T, LBTS) 
21.     } 
22.   NextEventRequest (LBTS) 
23.} 

CHILD FEDERATE 
24. while (~stop) { 
25.   while (TimeAdvanceGrant(T)) {} 
26.    e  f(L) 
27.    while (e.ts < T) { 
28.         execute (e) 
29.         local_clock   e.ts 
30.         e  f(L) 
31.   } 
32.   NextEventRequest(e.ts) 
33.} 
Figure 6: Algorithm of Conservative Synchronization Pro-
tocol for Hierarchical Distributed Simulation 

The federates in Figure 6 proceed as normal federates 
in distributed simulation, the only difference between a fe-
derate in the parent federation and a federate in the child 
federation is that the child federate talks only to the Run 
Time Infrastructure (RTI) in the child federation, while the 
parent federate talks only to the RTI in the parent federa-
tion.

However, the LBTS calculation in the child federation 
has to take into consideration the LBTS value from the 
parent federation. 
779
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Suppose parentLBTS  is the LBTS granted from the 

parent RTI, childLBTS is the LBTS for the child federation, 

childF  is the set of LPs in the child federation, it  is the 
minimum FEL timestamp in federate childFi , and iL  is 
the lookahead value in federate childFi .  We can calcu-
late LBTS for the child federation by: 

))(min,min( ii
Fi

parentchild LtLBTSLBTS
child

To avoid violating the local causality constraint, we 
should ensure that parentchild LBTSLBTS .  We can con-
tinue to run the child federation as long as 

)(min ii
Fi

parent LtLBTS
child

However, if )(min ii
Fi

parent LtLBTS
child

, which means the 

child federation wants to proceed beyond the parent LBTS 
limit, it must call NextEventRequest with the parameter 

)(min ii
Fi

Lt
child

 just as a normal federate in the parent fed-

eration.  After that, the child federation will wait for the 
parent federation to broadcast next parentLBTS .

3.3 The Optimistic-Conservative Synchronization for 
the Hierarchical Distributed Simulation 

In the previous section, we assume that the conservative 
synchronization protocol is used in the hierarchical distrib-
uted simulation design.  However, the optimistic-
conservative synchronization protocol also can be used: 

The optimistic-conservative protocol is applied in 
the parent federation. 
The child federation still uses the conservative 
synchronization protocol.  This is due to the factor 
that the lookahead values in the child federation 
are all equal, and the optimistic-conservative pro-
tocol is not applicable for the child federation. 
The compensation value is applied to the factory 
federate in the parent federation, and the request 
ahead value is applied to the AMHS federation, 
which is a federation in the parent federation. 

4 SUMMARY 

In this paper, we introduced the hierarchical distributed 
simulation approach for the 300mm wafer fab.  It is the ex-
tension of the Factory/AMHS distributed simulation ap-
proach applied successfully in HiFiVE.  While the hierar-
chical distributed simulation is promising in achieving 
significantly speedup via massive distributed simulation of 
the 300mm wafer fab, extensive computational experi-
ments (in progress at the time of this writing) are required 
to test actual speedup resulting from this approach.   
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