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ABSTRACT 

Cluster tools are representatives of a special kind of tool 
where process times of jobs depend on the combination in 
which they are processed together on the tool and hence, 
depending on the sequence in which they are processed at a 
tool. To evaluate schedules of jobs to be processed at such 
a tool an estimation method is needed since a detailed 
simulation takes too long. In this paper, we present a 
method based on slow down factors which produces prom-
ising results and gives hints for the development of intelli-
gent scheduling methods for this kind of tools. 

1 INTRODUCTION 

Cluster tools are special integrated tools for wafer process-
ing in semiconductor manufacturing. They are used to 
maximize throughput and reduce lot cycle times at the cost 
of a very complex behavior. Since wafers with different 
types of process steps can circulate in a cluster tool simul-
taneously it can be regarded as a job shop environment. 
Cluster tools work under vacuum conditions inside the tool 
which means very little particles that could possibly con-
taminate wafers. As a consequence, the clean-room quality 
outside the tool is allowed to be lower than in traditional 
fabs. Cluster tools are the first representative we found so 
far for a special kind of scheduling problem which we refer 
to as sequence-dependent process times.  

In the following sections, we will first describe how 
cluster tools look like and what specifics in behavior there 
are. Section 3 gives a short literature review. Section 4 will 
describe the problem of sequence-dependent setup times. 
Section 5 explains the idea of slow down factors. Section 6  
shows the functionality of the matrix-prediction method 
with some experimental results in chapter 7. Chapter 8 pre-
sents the use of a slow down factor matrix for future sched-
uling approaches and finally chapter 9 will give a short 
conclusion. 
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2 COMPONENTS OF CLUSTER TOOLS 

The basic components of a cluster tool are:  
A vacuum mainframe with one or two wafer han-
dling robots 
Several processing chambers, where some of them 
can be dedicated to identical processes and hence 
used in parallel  
Two load locks to pump to vacuum or vent to at-
mos-pheric conditions 
Optionally there can be transfer chambers if there 
is more than one wafer handling robot 
An equipment front end module (EFEM) with an 
at-mospheric wafer handling robot and several 
load ports, which is attached to the load locks (see 
Figure 1) 

Figure 1: Example cluster tool 
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We assume that lots always contain 25 wafers. Each 
wafer of a lot has to take the same process steps in the 
cluster tool. This sequence of process steps is usually re-
ferred to as “recipe”. In the following examples lots are 
denoted with capital letters which also represent their rec-
ipe. If two lots have the same letter, all wafers of these lots 
follow the same recipe.  

A typical product flow in a cluster tool starts with 
loading lots into one of the load ports. After that single wa-
fers are consecutively transferred from the load port to the 
load lock by the atmospheric robot. Then the load lock will 
pump to achieve vacuum conditions. Now the main frame 
robot can transfer the wafer to its destination chamber 
where it is supposed to be processed. The next step de-
pends on whether the wafer shall leave the system or is re-
quested to be processed in another chamber according to 
its recipe. After the last process step the wafer will be 
guided through the load lock back to the load port. 

With more than one load port occupied the controller 
of the cluster tool will always process lots of the same rec-
ipe sequentially one after another and lots of different reci-
pes in parallel. 

Usually the main frame robot is a dualblade robot with 
the two blades either on the same side or opposite each 
other. Advantages compared to single blade robots are re-
duced wafer transfer times and with regard to multiple 
product flows a reduced amount of possible deadlocks as 
well.

3 RELATED WORK 

A lot of cluster tool research is focused on issues of inside 
cluster tool scheduling and cluster tool controller dispatch 
rules as well as cluster tool simulation. Basic performance 
analysis and model development has been done in Perkin-
son et al. (1994) and Perkinson et al. (1996). Atherton 
(1995) gives a detailed introduction into cluster tools. Joo 
and Lee (1994) present a simulation framework with a vir-
tual cluster tool controller included to reduce times for ver-
fication of algorithms and behavior of real cluster tool con-
trollers.  

LeBaron and Domaschke (2005) compare different 
dispatch heuristics for the cluster tool controller on differ-
ently configured cluster tool models using the commercial 
simulator ToolSim for evaluation. 

Niedermayer and Rose (2003) analyze cycle time de-
lays occuring when lots of different recipes are processed 
in parallel in a cluster tool and present a method for lot cy-
cle time prediction through slow down factors for cluster 
tools with two load locks. Our paper can be regarded as se-
quel to this work. 
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4 SEQUENCE-DEPENDENT PROCESS TIMES 

To explain the problem of sequence-dependent process 
times, we assume a given set of lots. The only important 
parameter for each lot shall be its recipe denoted by capital 
letters. So a given sequence could be, e.g., ABBCBACA. 
There are different types of recipes. The recipe can require 
the wafers to be processed in all of the existing process 
chambers of a cluster tool or just in one of the chambers or 
a mixture of these types. As a consequence, each recipe re-
quires a certain amount of resources in the cluster tool, 
where the set of required resources S of each recipe may 
overlap with another. 

BA SS  (1) 

We process the queue on a cluster tool with two load 
ports. Here, it is possible to process two lots at the same 
time. There will be an improvement in overall makespan 
( 0maxC ) through parallel processing but resource con-
flicts will extend the cycle time of each lot ( 0, BA CC )
(see Figure 2). 
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Figure 2: Comparison Single Mode vs. Parallel Mode 

In contrast to problems of sequence dependent setup times, 
where the time for changing between two types of jobs can 
be exactly determined in advance, in case of cluster tools 
the problem is, that the process time is depending on the 
combination of recipes of the lots at the load ports. This 
combination will be referred to as load port recipe combi-
nation (LRC) in the following. Furthermore, the combina-
tion may change dynamically over time with lots slowed 
down to a different extend in the middle of their processing 
since resource conflicts may change depending on the reci-
pes. Thus, solutions for problems of sequence dependent 
setup times can not easily be adapted for our case. 

5 SLOW DOWN FACTORS 

Slow down factors are one way to define the amount of 
time a lot of a certain recipe is slowed down when proc-
essed together with other recipes. The procedure is already 
known in the literature but only for cluster tools with a two 
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load lock configuration without EFEM. Our investigations 
include also cluster tools with EFEM and a number of load 
ports greater than two. 

Definition 1 (Niedermayer and Rose 2003) 
The slow down factor of lot A while processed in par-

allel with lot B is defined as 

)(
),(),(

ACT
BAACTBAASDF  (2) 

where ),( BAACT is the cycle time of lot A when proc-
essed in parallel with lot B and )(ACT  represents the cy-
cle time of lot A when processed alone. 

Thus, if there are more than two load ports available at 
the cluster tool slow down factors like 

),( DCBAASDF or ),( ABAASDF  are possi-
ble as well. With the last example there is a problem occur-
ring in terms of whether the slow down factors of both of 
the lots of type A are the same or not. As mentioned in Sec-
tion 2, lots of the same recipe are processed sequentially 
and thus the second lot of A will stay longer in the system 
than the first and therefore have another slow down factor. 

To determine the slow down factors, a cluster tool 
simulator is required. For our simulation experiments, we 
use a cluster tool simulator named ToolSim from Brooks 
Automation, Inc., which is already established and used by 
the industry for several years. With this simulator we are 
able to model most up-to-date cluster tool equipments in a 
sufficiently detailed manner.  

Once the slow down factors are calculated, they can be 
used for the prediction of cycle times and completion dates 
for any queue of lots to be processed on a cluster tool with 
a given configuration. 

6 MATRIX PREDICTION METHOD 

In Unbehaun and Rose (2006) we already presented two 
methods for the prediction of cycle times and completion 
dates but stated that these were not sufficiently accurate 
und further investigation needed to be done.  

The basis of the new method is a matrix containing the 
slow down factors of all possible recipe combinations (see 
Table 1). 

Table 1: Example SDF-Matrix (3 Recipes, 3 Load Ports) 
SFID\Recipe A B C 

A 1.0 0 0 
B 0 1.0 0 
C 0 0 1.0 

AB 1.3 1.7 0 
AC 1.5 0 1.6 
BC 0 1.2 1.3 

ABC 1.8 1.7 1.9 
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The slow down factors have to be determined for all load 
port recipe combinations which solely contain the recipes 
given with the corresponding SDF, e.g., SDF(AB) will be 
used for all LRCs just containing recipes A and B like 
(A+A+B) or ( +A+B) etc.. So, if the LRC is (A+A+B) each 
lot of A will be slowed down by the factor 1.3 and lot B by 
the factor 1.7.  These values represent an average which is 
obtained by calculating the SDFs for each single possible 
LRC containing the corresponding recipes. 

Given this matrix and the raw process times of each 
recipe, when processed alone in the cluster tool, the algo-
rithm works as follows: 

Step1: 
Initially assign lots to load ports until all load ports are oc-
cupied (assuming that enough lots are in the queue). 
Step 2: 
Calculate the completion date of each assigned lot i by  

iii SDFRPTCT . (3) 
Step 3: 
Set T equal to the smallest completion date. If there are still 
lots in the queue replace the corresponding completed lot 
with the next from the queue and decrease the queue size. 
Otherwise, remove the lot  and continue. 
Step 4: 
If the recipe of the new lot is unique in the LRC then cal-
culate its completion date through  

iii SDFRPTTCD  (4) 

Else, find the lot of this recipe in the LRC which is waiting 
the longest time and set this completion date according to 
Equation 4. If no lot was introduced in Step 3 check for 
unique recipes with unassigned completion dates and apply 
Equation 4 as well. 
Step 5: 
If the LRC changed adjust the remaining completion dates 
of lots with recipes different to the one of the new lot 
through  

newi
oldi

oldi
newi SDF

SDF
TCD

TCD ,
,

,
,  (5) 

with oldiCD , as the former completion date used so far, 

oldiSDF ,  as the former slow down factor and newiSDF , as
the slow down factor for the new load port recipe combina-
tion. 
Step 6: 
If lots are still in progress repeat from Step 3. Stop other-
wise. The makespan Cmax is equal to the completion date of 
the latest finished lot. 
7



Unbehaun and Rose 
With raw process times given in Table 2, Table 3 illus-
trates the computation of the makespan Cmax of a schedule. 
The queue to be processed is ABCCABCABCCB.

Table 2: Example raw process times 

Recipe rj Raw Process Time RPT(rj)
A 10 
B 20 
C 30 

Table 3: Example calculation 

Time stamp T Load port assignment 
A B C 

T = 0 18 34 57 
C2 B C1

T = 18 x 29,3 44,7 
C2 A C1

T = 29,3 x 44,3 48,3 
C2 B C1

T = 44,3 x 68,3 47,6 
C2 B C3

T = 47,6 86,6 68,3 x 
C2 A C3

T = 68,3 90,8 83,3 x
C2 B C3

T = 83,3 89,4 107,3 x 
C4 B C3

T = 89,4 x 107,3 128,4 
C4 C5 C3

T = 107,3 x x 123,5 
C4 C5 B

T = 123,5 162,5 x 147,5 
C4 C5 x

T = 147,5 159 x x 
x C5 x

T = 159 x 189 x
x x x 

T = 189 x x x 

Initially, we take the first three lots, assign them to the 
three load ports and calculate their completion date (3). 
Then, we proceed to the next completion date T = 18 and 
replace lot A with lot C2 from the queue. Since there al-
ready exists a lot of recipe C the new lot will have to wait 
for processing until the completion of this lot (C1). Due to 
the recipe combination changes in this step, the completion 
dates of all lots in progress have to be adjusted (5). When 
the queue is empty the remaining lots in the load ports will 
be finished and the algorithms terminates. We obtain 
makespan of Cmax = 189. 
1

7 EXPERIMENTAL RESULTS 

In this section, we present a variety of results comparing 
our new prediction approach to simulation.  

Two configurations were chosen. For both a cluster 
tool with three load ports, three process chambers and a 
single handling robot is used, which is only able to transfer 
one wafer at a time. In the first test case, the process cham-
bers are dedicated to different tasks and the wafers of all 
recipes need to pass all chambers in the same order (se-
quential configuration). In the second case, the process 
chambers are used in parallel and the wafers of each recipe 
only need to be processed in one of the chambers (parallel 
configuration). For both configurations the recipes differ 
by the time they need to be processed in a chamber. A 
queue of 40 lots is processed with ten independent runs for 
each configuration. 

Table 4: Results  
Sequential Parallel 

Avg. Cmax Error 8.8% 7.3% 
Avg. CD Error 2.7% 4.0% 
Avg. CT Error 10.3% 13.9% 
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Figure 3: Predicted completion dates - sequential configu-
ration 
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Figure 4: Predicted cycle times - sequential configuration 
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Figure 5: Predicted completion dates - parallel configura-
tion 
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Figure 6: Predicted cycle times - parallel configuration 

In Table 4, we present the prediction results for the sequen-
tial as well as the parallel test configuration. The two con-
figurations were compared by means of the average devia-
tion from the objective value Cmax and the average 
deviation of the completion date (CD) and cycle time  (CT) 
of every single lot from the simulated values. 

The average estimation errors of makespan and com-
pletion dates are below ten percent in both cases and the 
average cycle time deviation is below fifteen percent. We 
intend to use our new approach for further analysis of the 
problem described in Section 4, because the results are 
considerably better than those of the methods presented in 
Unbehaun and Rose (2006). The reason for the improved 
performance is mainly the introduction of additional sys-
tem knowledge into the prediction method. The considera-
tion of same lots being processed sequentially and different 
lots being processed in parallel leads to better results. 
Nonetheless more test runs need to be made to show the 
robustness of the approach with respect to configuration 
changes.  
17
As depicted in  Figures 3 and 5 , approximated com-
pletion dates can be very close to the simulated values, 
while Figures 4 and 6 show that cycle times are not esti-
mated very accurately for all lots. Since positive and nega-
tive deviations compensate each other in both configura-
tions, completion dates are effected to a smaller extend. 
Still, the precision of completion date prediction suffers if 
raw process times of different recipes vary considerably. 
But this is only an academic case, since differences of raw 
process times of, e.g., several hours between recipes would 
lead to unnecessary long waiting times for certain lots and 
a processing on separate machines should be considered 
then. However, the impact of cycle time deviations on 
completion date estimates needs to be investigated further. 

8 USING SLOW DOWN FACTORS FOR 
SCHEDULING 

Given a matrix of slow down factors, an analysis of useful 
load port recipe combinations - based on the assumption 
that reduced cycle times will lead to a reduced makespan - 
can be applied.  

The basic idea is that, any order of processing will not 
yield a makespan worse than sequential processing of the 
lots one after another, because in this case parallel process-
ing will not provide any benefit. Thus, this particular 
makespan represents an upper bound which can be used as 
reference to implement, e.g., a Branch and Bound algo-
rithm. In addition, it is possible to evaluate single LRCs of 
a slow down factor matrix. Similar to the approach for a 
whole schedule a certain lot combination is useful if paral-
lel processing of the corresponding recipes is faster than 
sequential processing. The cycle time for sequential proc-
essing CTs is defined as 

SFIDj
js rRPTCT  (6) 

where SFID represents the recipes contained in the slow 
down factor combination under consideration and jrRPT
the raw process time of recipe j when processed alone in 
the cluster tool. 

The cycle time for parallel processing CTp is defined 
as

jjSFIDjp rRPTSFIDrSDFCT |max  (7) 

where SFIDrSDF j |  is the slow down factor of recipe j
in the corresponding combination SFID and jrRPT  the 
raw process time of recipe j.

Now, for example, with the slow down factor matrix 
given in Table 1 and raw process times given in Table 2, 
we obtain the following result (Table 5). 

As a result, only some of the given combinations can 
be expected to reduce cycle time through parallel lot proc-
essing. It also turns out, that with more different recipes 
processed together the parallel processing tends to be fa-
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vorable. But this also depends on the increase of the slow 
down factors. 

Table 5: Example Calculation  
SFID CTs CTp

A 10 10 
B 20 20 
C 30 30 

AB 30 34 
AC 40 48 
BC 50 39

ABC 60 57

9 CONCLUSIONS 

In this paper, we presented the problem of sequence-
dependent process times and cluster tools as a possible ap-
plication area. Moreover, we provided a method to esti-
mate makespans, completion dates and cycle times for 
these kind of problems. Our approach can also be used to 
evaluate schedules and, hence, provides the basis for de-
veloping scheduling algorithms.  

We also presented first thoughts which might help to 
find an intelligent scheduling strategy. In this context, the 
knowledge about load port recipe combinations  which are 
useful for parallel processing allows us to save cycle time 
and helps us to reduce the makespan.  
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