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ABSTRACT

Fluctuations of work-in-progress (WIP) levels cause vari-
ability of cycle time and often lead to productivity losses in
semiconductor wafer fabrication plants. To identify sources
of such variability, we are developing a root cause analysis
tool with history logs of operational events, such as high
WIP or equipment downtime, as inputs to automatically
find the chains of events that create the variability. In the
root cause analysis, one of the key steps is to aggregate the
observed events into groups that are likely in cause-effect
relationships. For operational events that involve time lags
in cause-effect relationships, grouping the events requires
identification of the time windows of causality based on
discrete event simulations. This paper describes a design
and implementation of a simulator for this purpose. The
simulator does not assume any statistical or mathematical
model, and thus is simple to maintain.

1 INTRODUCTION

Rapid development of new products, quick delivery, and high
productivity are essential for semiconductor wafer fabrica-
tion plants (fabs) to win against severe market competition.
Throughput, cycle time, and yields are some of the metrics
of productivity. With regards to cycle time, the productivity
can be improved by reducing the cycle time variability. The
reduction of cycle time variability can be done by con-
trolling lot releases, rescheduling equipment maintenance,
and so on, with relatively small costs. However, finding
efficient actions to reduce variability is not easy due to
the high complexity of manufacturing processes involving
hundreds of pieces of equipment. Our approach here is to
focus on particular sources of cycle time variability, namely,
work-in-progress (WIP) bubbles and holes, and to develop
an intelligent tool that finds chains of related causal factors
causing the variability. (WIP bubbles and holes mean high
and low numbers of lots, respectively.) Prior study shows
171-4244-1306-0/07/$25.00 ©2007 IEEE
that the cycle time varies greatly as the number of WIP
bubbles becomes higher (Hassoun, Rabinowitz, and Lachs
2005). Intuitively, the following Little’s Law states that at
a given throughput level, cycle time becomes longer when
WIP bubbles occur (Little 1961):

WIP = Cycle time×Throughput.

WIP levels are affected by transient capacity losses. Table 1
shows 22 capacity loss factors in a fab reported by Robinson,
Fowler, and Neacy (2003) based on surveys and interviewing
experts. It is believed that WIP bubbles are triggered by a
combination of the above factors in which a causal factor,
though not directly inducing WIP bubbles, might trigger
other events and thus be considered as the root cause.
Thus, mitigating the root causes can efficiently minimize
the variability. In an actual fab, it often takes hours for
production control engineers to analyze root causes of WIP
bubbles. Our ultimate goal is to develop a root cause
analysis (RCA) tool that will help reduce this time.

One of the main steps in RCA is to create a causal factor
graph. Figure 1 is an example of such a graph as created by
hand. In our application, each node in a causal factor graph
is represented by an operational event, such as a WIP level,
the number of high priority lots, scheduled/unscheduled
downtime of equipment, and so on. Nodes are linked if
they are likely to have cause-effect relationships. Our RCA
tool is intended to have a function to automatically create
such causal factor graphs from a fab’s history logs.

This paper describes a technique to identify which oper-
ational events in a fab affect other events during certain time
windows. Operational events affect each other due to cause-
effect relationships. Given the realization of such events in
history logs, for events that change or occur simultaneously,
we can identify groups of events by computing probabilities
that they occur together in fixed time buckets. However, the
accuracy of the statistical approach is in general low due
to the interactions between events, including those which
47
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Table 1: Capacity loss factors in semiconductor manufacturing as reported by Robinson, Fowler, and Neacy (2003)
Time constraints between steps Preventive maintenance Factory shutdown Product mix Yield

Dispatching / sequencing Hot / engineering lots Tool dedication Shift plans Setup
Lack of tool redundancy Operator availability Batching policy Inspection

Unscheduled maintenance WIP control strategy Reentrant flow Lot size
Operator cross-training End-of-shift effect Order release Rework

Figure 1: An example of a causal factor graph.
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Figure 2: Examples of the graph of correlated events and
corresponding output of event values.

2 (a) and the event values are observed as in Figure 2 (b),
might be independent of the target events. For events that
are affected by others after some period of time and that
return to normal states after some time (time-lag events), in
order to understand which events occur together, we need
to know the time window of the causality by specifying the
start time when the influence of one event begins and the
end time when its influence on other events vanishes. Such
a time window may not be obvious from a priori knowl-
edge of the target plant system, or even from the statistical
method because of the noises caused by interactions among
many events.

Our approach for identifying correlated events and for
finding the time windows of causality is to use discrete
event simulation (DES). The merits of using DES against
other methods based on statistical approaches are that

• it can perform sensitivity analysis while avoiding
interactions from unrelated events, and

• it can measure the time lags between events.

DES in general requires a precise model of the target system
which needs to be carefully recalibrated until it can reproduce
what happens in reality. We propose in this paper a log-
driven simulator which can traverse the history logs of
events to exactly reproduce what happened in reality. The
proposed simulator can also simulate the history logs along
with additional events, such as a new unscheduled downtime
or a lot hold.

The aims of using a log-driven simulator are to under-
stand which pairs of events correlate with each other based
on sensitivity analysis, in order to identify the time win-
dows in which time-lag events are correlated, and to output
groups of observed data (event values) for the correlated
events. When correlated events are identified as in Figure
174
the event values for events A, B, C and D are grouped into
(1,3,1,1) and (0,2,2,1). The bold bordered enclosed area
in Figure 2 (b) represents a group of event values that are
correlated. Note that the enclosed area covers event values
at different time.

This paper is organized as follows. Section 2 provides
an overview of root cause analysis. Section 3 describes
the design and implementation of our log-driven simulator
which does not assume any statistical or mathematical model,
and thus is relatively simple to maintain. Section 4 gives a
numerical study of the log-driven simulator. We summarize
our paper with a brief conclusion in Section 5.

2 ROOT CAUSE ANALYSIS

2.1 Overview

In general, RCA is defined as a structured procedure to
guide an analyst in finding the underlying root causes of
events or failures, such as WIP bubbles or holes in fabs.
Many arguments exist about the definition of root causes,
however, they can simply be taken as answers to explain why
certain events happened instead of how it happened or what
happened. Root causes are underlying causes that can be
reasonably identified, effectively controlled, and mitigated
(Rooney and Heuvel 2004).

RCA consists of the following main steps:

1. collect data to list all of the events related to the
events of interest,

2. verify the relationships among the events and gen-
erate a graph of correlated events,

3. create a causal factor graph,
4. identify the root causes,
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5. list priority of actions for mitigating the effect of
these root causes.

There are many tools to perform the above steps in RCA.
Five-why and Pareto analyses are some of them which
are popular in manufacturing. In the most basic Five-why
analysis, questions are asked about events, starting from
the events of interest or failures, iteratively until the analyst
thinks he has found the underlying root causes. For example,
in Figure 1, the first why is asked about the events of inline
test sector had high WIP. Assume that the answer is the
number of lots on hold is high in the previous sector. Then
the next why is also applied to this answer and so on until the
analyst finds that a high number of engineering lots is one of
the possible root causes. (Of course, he can also proceed to
ask why for this event but let us assume that the analyst stops
at this answer.) It can be seen immediately from this example
that the Five-why analysis has some weak points. It heavily
depends on the analyst’s capability to ask the right questions
in addition to finding the appropriate answers. Moreover,
different analysts might end up finding different root causes
simply because there are multiple causes, especially in fabs
whose operations are very complex. In such case, the Pareto
analysis can be used to treat the most frequent candidates
as the root causes. However, many analysts are concerned
that the events that appear most frequently might just be
immediate symptoms rather than root causes.

To address such weaknesses, Weidl, Madsen, and Israel-
son (2005) proposed a graphical model, a method combining
statistics and graph theory, for RCA and decision support,
which is applicable to industrial processes. However, it still
depends on the judgment of experts to infer the relationships
between events (i.e., drawing the edges in Figure 1).

On the other hand, we aim at providing a fully automated
and intelligent tool for supporting the RCA procedures,
including an automated procedure to create causal chains of
events leading to root causes. The purpose of this paper is to
explain the approaches in Steps 1 and 2. These are essential
for identifying the root causes and listing priority of actions
by, e.g., data mining or machine learning techniques in the
following steps. The next subsection describes our method
to extract correlated events from logs in manufacturing
execution system (MES). SiView (IBM Corporation) is a
major MES used in many fabs, including the IBM East
Fishkill plant.

2.2 Extraction of Operational Events

In this subsection, we describe our approach to extract the
operational events: lot-related events such as WIP levels and
equipment-related events such as unscheduled downtime.
An operational event can be a candidate as a node in a
causal factor graph. Robinson, Fowler, and Neacy (2003)
listed unscheduled downtime as one of the five biggest loss
17
factors in fabs. Therefore, it is reasonable to use such events
in our experiments. The procedures to extract those events
from the history logs are outlined below.

2.2.1 Extraction of Events from Lot Operation History
Logs

The events recorded in logs, or the raw events, are
often too detailed and do not correspond to opera-
tional events in fabs. First, we extract the operational
events by collecting the history of lot operations in the
logs. We extract 4-tuple instances of data expressed
as (timespan/timestamp,sector,attribute,value). Here, a
sector is a group of pieces of equipment categorized by
wafer fabrication process such as lithography, inline test,
and furnace. In the IBM East Fishkill plant, there are 15
sectors according to the types of equipment in SiView which
we refer to sectors 1–15. Table 2 shows the attributes of
statistics we are using in the experiments. We also studied
other attributes, such as rework counts and the numbers of
released lots, but due to limitation of space we omit them.
Note that for all of this data, the value of the attribute is
numerical. Next, we discretize the values of those instances
by setting thresholds and classifying them (i.e., replacing
their numerical values) with three labels: High, Normal,
and Low (or respectively, Bubble, Normal, and Hole for
WIP level).

2.2.2 Extraction of Events from Equipment Status
Change History Logs

SEMI E10, or E10, is the specification for definition and
measurement of equipment reliability, availability, and main-
tainability (SEMI 2004). E10 defines the categories of equip-
ment conditions that can be used to track, compare, and
evaluate the performance and other metrics of the equipment
within a factory or among different factories. According to
E10, the equipment status consists of 6 states: Engineering,
Nonscheduled, Productive, Scheduled downtime, Standby,
Unscheduled downtime. We label the status of equipment in
the fab according to states in E10 and, similarly as before,
obtain 4-tuple instances of data whose attribute is called
“Equipment status”.

3 LOG-DRIVEN DISCRETE EVENT SIMULATOR

3.1 Our Approach

Due to the large numbers of pieces of equipments, lots,
routes, and dispatching rules in fabs, building a detailed
simulation model is almost impossible. It is possible to get
a more accurate result, however the simulator tends to be
expensive to maintain and implement. Thus, it is important
to select an appropriate design of the simulator to build
49
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Table 2: Typical statistics categories.
Attribute Description
WIP level Number of lots/wafers waiting in a sector at a certain time
Frequency Number of lots/wafers arrived at a queue of a sector in a certain period
Throughput Number of lots/wafers completed at a sector in a certain period
Processing time Average processing time (per lot/wafer) of a sector
Hold lot Number of lots/wafers holding in a certain period
High priority lot Number of waiting lots/wafers whose priority is high in a certain period
Small lot Number of waiting lots/wafers whose number of wafers is low in a certain period
a reliable graph of correlated events as inexpensively as
possible.

There are two main approaches for analyzing the perfor-
mance of the fabs that can be used to model and infer a graph
of correlated events: those based on analytical approaches
(Kumar and Kumar 2001, Connors, Feigin, and Yao 1996)
and those based on simulation approaches (Schmidt, Rose,
and Weigang 2006, Qi, Tang, and Sivakumar 2002). Analyt-
ical approaches use a stationary assumption and therefore are
good for modeling the long term WIP levels. However, they
may be unsuitable for modeling the short term WIP levels
due to frequent changes of product or priority mix or human
intervention. For this reason, many researchers are studying
the performance by using simulation approaches (Schmidt,
Rose, and Weigang 2006) that can show the most effec-
tive strategies for lot releases, dispatching, and scheduling
equipment maintenance (Qi, Tang, and Sivakumar 2002).

Since our objective is to analyze the root causes of
WIP bubbles which occur on the short term, we prefer a
simulation approach. In this paper, we restrict our discussion
to finding relationships between equipment downtime and
throughput in a sector or among different sectors of a fab.
Our discrete event simulator is based on actual logs in
an MES as already mentioned, and therefore is called a
log-driven simulator. Compared to analytical approaches,
a log-driven simulator assumes no mathematical models or
parameter settings. Thus, it is more robust against changes
in product mix, priority, and dispatching rules and is less
expensive to maintain. However, it also imposes some
limitations as discussed in Section 5.

3.2 Simulator Design

We describe our simulator design. Figure 3 gives an overall
picture of the design. It consists mainly of three components:
data collection, simulation, and statistics generation. Both
data collection and statistics generation support simulations,
but they can be used without running a simulation.

3.2.1 Data Collection

This component executes SQL queries and saves the results
as CSV files. The simulator manages a fab object, which
contains attributes such as equipment status and lot attributes,
175
Figure 3: The log-driven simulator design.

and a priority queue to execute the simulation events and
update the object. Thus, it requires the information about
the lot, equipment, and route for a fab object and history
logs about the lot operations and equipment status changes
for the simulation events.

3.2.2 Simulation

This component consists of four sub-components: object
generator, event graph generator, event injector, and sim-
ulator. The simulator needs a simulation event graph and
a fab object.

The object generator creates a fab object from lot,
equipment, and route information. The lot of an object has
a unique ID, a type (Production, Engineering, Monitor), a
priority, a route ID, a number of wafers, and so on. The
equipment of an object has a unique ID, a sector, a capacity,
a batch size, and so on. The route of an object has a unique
ID and a sequence of step IDs. The step has a unique
ID, the order in the route, and a list of equipment that can
process.

The event graph generator creates a simulation event
graph from lot operation history logs and equipment status
change history logs. Figure 4 shows an example of a
simulation event graph. A simulation event, which is equal
to a record in the history logs, is defined as a node in the
graph. If two events are dependent, they are connected by a
directed edge. Each edge has a weight defined by the time
difference between the nodes at the each end of the edge.
0
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Figure 4: An example of a simulation event graph.

Figure 5: Original and modified graph inserted two events:
unscheduled down and standby.

The event injector can insert, remove or modify simula-
tion events and related edges of the simulation event graph.
Figure 5 shows an example of inserting new events. In or-
der to investigate the effects of 480 minutes of unscheduled
downtime of a piece of equipment, we insert two simulation
events, one Unscheduled downtime event (event ID 102.1)
and one Standby event (event ID 102.2). In this case, the
weight of the edge is 480 (minutes). Since the status of
the equipment with ID 1 in the fab object is unscheduled
downtime from the event with ID 102.1 to the event with
ID 102.2, then all of the OperationStart events about the
equipment with ID 1 cannot be fired between them and are
on hold in front of the queue. When the event with ID 102.2
is fired and the status of the equipment with ID 1 becomes
standby, the events on hold related to the equipment with
ID 1 are released.
175
The simulator reproduces the history logs based on the
simulation event graph modified by the event injector. If
no events are injected, the simulator just replays the history
logs. The simulator manages a timestamp-based priority
queue. A simulator event has a timestamp attribute. The
root node of the graph is put into the priority queue. This
is the SimulationStart node in Figure 4. After execution,
the simulator eliminates the outcoming edges from the node
and put the nodes which have no incoming edges into the
priority queue. When a node is executed, the simulator
changes the current capacity or status of the equipment
according to the simulation event type. This operation is
repeated until the queue is empty.

3.2.3 Statistics Generation

This component compiles the statistics from the history
logs. It can read not only the results from the simulator
but also the original history logs in the MES. The types of
statistics are shown in Table 2.

4 SENSITIVITY ANALYSIS

4.1 Outline

A graph of correlated events is constructed by linking its
nodes (representing operational events), that are in cause-
effect relationships. If the nodes are simply linked when
their occurrence times are close to one another, the resulting
graph of correlated events is almost complete. This will
obviously lower the performance of data mining tools in
extracting the root causes.

This section describes our proposed method of extract-
ing correlated events by sensitivity analysis (SA). SA is a
set of techniques for studying the sensitivity between the
changes of the inputs and the changes of the outputs as
summarized in Saltelli, Chan, and Scott (2000). In this
paper, we used the correlation coefficient as the measure
of sensitivity. The correlation coefficient is the linear cor-
relation coefficient computed from the input-output pair of
points (xi,yi) where i = 1, . . .,N. The correlation coefficient
rxy between x and y is defined as

rxy = ∑
N
i=1(xi− x̄)(yi− ȳ)√

∑
N
i=1 (xi− x̄)2

√
∑

N
i=1 (yi− ȳ)2

where x̄ = ∑
N
i=1 xi/N and ȳ = ∑

N
i=1 yi/N. If rxy is close to 1

or −1, we say there is a strong positive or strong negative
correlation, respectively, between the input x and the output
y. On the other hand, if rxy is close to 0, we say there is
only a small correlation.

Operational events are generated at regular time intervals
from history logs, with time tk (k = 1, . . .,n). Then it is
1
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Table 3: Correlation coefficients between equipment down-
time and throughput in a sector.

Sector Correlation coefficient
1 -0.288
2 -0.672
4 -0.594
5 -0.938
6 -0.774
7 -0.962
8 -0.662

11 -0.845
13 -0.807
15 -0.730

clear that

Li(tk) > Li(tk−1) if λi(tk) > µi(tk), and
Li(tk) < Li(tk−1) if λi(tk) < µi(tk),

where λi(tk) is the frequency in sector i from time tk−1 to tk,
µi(tk) is the throughput in sector i from time tk−1 to tk, and
Li(tk) is the WIP level in sector i at time tk. We first study
the sensitivity between unscheduled downtime of equipment
and throughput in a sector. Note that the unscheduled
downtime is ranked as one of the most significant factors
causing capacity loss in fabs (Robinson, Fowler, and Neacy
2003). In addition, we also study the relationships between
the throughput in sector i and the frequency in other sectors
j ( j 6= i).

4.2 Relationships between Unscheduled Downtime and
Throughput in a Sector

We selected a piece of equipment for each sector i
(i = 1, . . .,15) and changed its status from Standby to Un-
scheduled downtime for k hours (k = 1, . . .,20). Then, we
computed the correlation coefficient between downtime and
observed average throughput. The results are shown in Ta-
ble 3. Note that Sectors 3, 9, 10, 12, and 14 are not listed
because their correlation coefficients are small, i.e., their
throughputs were not affected because alternative equipment
had sufficient capacity to cover for the down equipment. For
the other sectors, there are negative correlations between
downtime and throughput. From these results, we can con-
firm that when the capacity is saturated and equipment is
down for a long period in a sector, then the throughput
tends to decrease.

4.3 Relationships between Throughput of a Sector and
Frequency of Other Sectors

In the previous experiment, we studied the relationships of
equipment downtime and throughput in the same sector. In
175
Table 4: Correlation coefficients between average through-
put λ̄3 of Sector 3 and average frequency µ̄ j of sector j
( j 6= 3).

Sector Correlation coefficient
1 0.03
2 0.60
4 0.91
5 -0.50
6 0.71
7 0.50
8 -0.10
9 0.46

10 -0.02
11 -0.13
12 0.31
13 0.63
14 -0.04
15 0.75

contrast, the objective of the experiment in this subsection is
to study the relationships of events among different sectors.
When the throughput of a sector decreases, it is expected
that the frequency of the neighboring sectors also decreases.

Our experiment is as follows. For each sector i, the
number of pieces of down equipment is increased incremen-
tally. We then compute the correlation coefficients between
the average throughput of sector i and the average frequency
of sector j such that j 6= i for all pairs (i, j). If the correla-
tion coefficient is strong positive, we say sector i influences
sector j. Due to limitations of space, in Table 4 we only
present the results of an experiment for the throughput of
Sector 3 and the frequency of the other sectors. According
to the route definition in the MES, almost all of the next
steps of Sector 3 are in Sector 15. However the capacity
of Sector 15 is not saturated because of its low processing
time, so Sector 3 influences Sector 4 rather than Sector 15.
Since Sector 15 is a neighbor of various sectors, we got
useful information about the actual effects from Sector 3.

4.4 Time Lags between Equipment Downtime and
Throughput Declines

The experiments in Subsection 4.2 showed the relationships
between unscheduled downtime and throughput in a sector.
As mentioned before, there may be a time lag between
them. Here, we study the average elapsed times from the
occurrences of equipment downtime until the change point
in the throughput. We injected 8 hours of unscheduled down
simulation events into a piece of equipment in Sector 6 at
randomly chosen times. The results are shown in Table 5.
The average elapsed time can be used for grouping events.
In particular, the value of the throughput from the time when
the equipment goes down (or from the standby time) plus the
2
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Table 5: Average elapsed time from the occurrenes of equip-
ment downtime until the declines of throughput.

Sector Average elapsed time [mins] Variance
3 10.0 39.1

average elapsed time can be considered as a single value of
grouped events. This can also be used to measure the time
lags between the occurrences of unscheduled downtimes
and the declines of throughput.

5 CONCLUSIONS

We have discussed the design of a discrete event simulator
for extracting a graph of correlated events from raw events
in the history logs of SiView. Using the simulator, we
proposed a method of extracting the relationships among
the operational events and showed some preliminary results
of experiments to obtain:

1. the relationships between equipment downtime and
the throughput in a sector,

2. the relationships between the decrease of the
throughput in a sector and the decrease of the
frequency in other sectors,

3. a method to measure time lags between the occur-
rences of unscheduled downtime and the declines
of throughput.

Our simulator does not assume any statistical or math-
ematical model and uses only the history logs in the MES.
Nevertheless, it allows us to generate a graph of correlated
events by creating links between events while considering
the time windows and removing links between uncorrelated
events. We believe that these are unique features of our
simulator. Our future work will seek to verify that the re-
sulting graphs of correlated events can be used to enhance
the performance of data mining tools in root cause analysis.

While the simulator is simple to maintain, it still needs
additional modeling and implementation for cases when in-
formation not included in the logs is needed. For example,
to simulate lot split events, we need to decide how many
wafers are included in each split lot, the routing path, pro-
cessing times, and so on. Currently, our simulator cannot
simulate these types of events. Adding additional capa-
bilities while maintaining the low cost of maintenance is
another challenge for future work.
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