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 ABSTRACT 

It is a common practice to use simulation for validating dif-
ferent types of control and planning algorithms. However, 
the science of how to rigorously integrate simulation and 
decision models is not well understood and becomes criti-
cally important as the complexity and scale of these mod-
els increase. In our research, we have developed a method-
ology for integrating different types of models using a 
Knowledge Interchange Broker (KIB). In this paper we de-
scribe a supply-chain semiconductor application where the 
KIB has been used as an integral part of developing and 
deploying a commercial Model Predictive Control model 
for use in operating a multi-billion dollar supply chain. The 
simulation based experiments facilitated developing and 
validating the controller design and data automation for a 
real-world semiconductor manufacturing system. 

1 INTRODUCTION

The mounting complexity and scale of semiconductor 
manufacturing supply-chain systems have demanded ad-
vances in contemporary modeling and simulation ap-
proaches, tools, and practices. A key concept for handling 
complexity of discrete-part supply-chain systems is to par-
tition them in ways to allow modeling each separately. A 
particular requirement of operating these types of supply-
chain systems is to account for interactions among manu-
facturing and decision systems.  

To achieve optimal inventory of parts, efficient proc-
essing of manufacturing units and delivery of products to 
their destinations in a cost-effective manner, a variety of 
process and planning models are needed (Kempf 2004). A 
class of semiconductor supply-chain system models have 
been developed using Discrete Event System Specification 
(DEVS)(Zeigler, Praehofer, and Kim 2000), Model Predic-
tive Control (MPC) (Qin and Badgwell 2003), and Knowl-
edge Interchange Broker (KIB)(Sarjoughian 2006). These 
models described in multiple formalisms can be composed 
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and executed together through the KIB to reveal dynamics 
of the supply-chain system parts and their interactions. 

The previous models of multi-formalism semiconduc-
tor supply-chain systems have been developed in labora-
tory settings with reduced scale and scope. They were 
shown to exhibit behavior consistent with the real-world 
systems by carrying out a suite of experiments. Although 
these integrated models have been crucial for demonstrat-
ing the viability of KIB for semiconductor supply-chain 
networks, their use in industry had not been undertaken 
previously.  

In this paper we describe a simulation/optimization 
testbed developed to enable the specification and testing of 
a production MPC model. We show the application of the 
systematic integration of DEVS and MPC models using a 
KIB model has resulted in an environment that enabled the 
specification of a MPC suitable for operation in an actual 
semiconductor supply-chain system. The resulting MPC 
configuration was deployed in an industrial scale pilot 
study to control actual material flow over a period of sev-
eral months. We conclude with an analysis of the role of 
KIB in a real world operational setting, the lessons learned, 
and future work. 

2 BACKGROUND 

Simulation and decision science are two distinct disciplines 
with many facets of ongoing research across different ap-
plication domains. In the domain of semiconductor manu-
facturing, a variety of approaches have been devised to in-
tegrate discrete event simulation and optimization models. 
Among existing works, the most common approach is to 
implement ad-hoc interfaces to allow models written in dif-
ferent programming languages to exchange input and out-
put via custom software.  

Unlike those ad-hoc techniques, an approach has been 
developed where disparate model specifications using dif-
ferent execution algorithms can be rigorously composed 
using the Knowledge Interchange Broker (KIB). The con-
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cept behind this approach is to match model semantics and 
enable execution interoperability through the KIB (Figure 
1). This concept has been applied for the class of Discrete 
Event System Specification (DEVS) integrated with Reac-
tive Action Packages (Sarjoughian and Huang 2005), Lin-
ear Optimization (Godding, Sarjoughian, and Kempf 
2004), and more recently Model Predictive Control (MPC) 
(Huang and Sarjoughian 2006).  

In the case of DEVS and MPC, the Knowledge Inter-
change Broker accounts for specificities of the DEVS and 
MPC structural specification and dynamical behaviors. The 
KIBDEVS/MPC model specification accounts for combining 
the DEVS and MPC models and thus ensures the correct-
ness of their integrated structures and behaviors. The 
KIBDEVS/MPC execution algorithm accounts for the com-
bined execution of the DEVS simulator and the MPC 
solver in such a way that it can correctly execute the DEVS 
and MPC model specifications. Separating model compos-
ability and execution interoperability is found to be key for 
modeling of complex interactions among models that are 
described in disparate modeling formalisms. The interac-
tions account for simple and complex data transformations 
and synchronous execution of DEVS and MPC models. 

execution interoperability

Model

Specification

DEVS

Execution

Algorithm

MPC

Execution

Algorithm

Model

Specification

Model

Specification

Execution

Algorithm

KIBDEVS/MPC

model composability

Figure 1: Integration of DEVS and MPC models with KIB 

3 PROBLEM DESCRIPTION 

The MPC must be tested before it can be put into produc-
tion. This is to assure correct operation and avoid un-
planned disruption to the business. We have developed de-
tailed and realistic simulations of the manufacturing lines. 
How to integrate these DES models with production con-
trollers is the challenge. 

First, the I/O for the two models is very different. The 
control model requires an initial state to be populated into 
one set of variables and the results to be read from another 
whereas the DES reads and writes data via event messages. 
Second, the granularity of data sent between the models is 
generally very different. In semiconductor planning / 
manufacturing types of problems, manufacturing systems 
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create data in discrete batches of lots over small time inter-
vals (hourly asynchronous), whereas the decision models 
generally needs an aggregated view of the data over longer 
intervals (days/weeks) of time. Third, coordination of exe-
cution between the two models must be addressed. We 
must consider when to run the control model in respect to 
the simulation and vise versa. This requires the synchroni-
zation of solver runs and simulation events. 

The above requirements suggests that the integration 
methodology must enable the mapping of different types of 
data structures, provide aggregation/disaggregation data 
transformation capabilities, and enable a flexible synchro-
nization capability. These are the capabilities afforded by 
the KIB approach and exemplified below. 

3.1 Example Problem 

Figure 2 shows a semiconductor manufacturing topology 
consisting of two fabrication factories, two assembly ware-
houses, and two semiconductor assembly test (AT) sites 
being controlled by a wafer shipping decision system. The 
factories can ship their products to the two assembly ware-
houses. Material from the warehouses can be released into 
semiconductor assembly test. When and how much product 
being released from the assembly warehouses is deter-
mined by starts schedules from the associated assembly 
test site.

Figure 2 – Example Problem 

A controller is connected to make decisions on routing 
material leaving the fabrication factories. The objective of 
the controller is to keep the warehouse inventory within 
upper and lower control limits. Input states to the controller 
are product that was shipped, warehouse inventory levels, 
forecasted builds of the fabrication plants, and forecasted 
starts from the assembly test sites. The output of the con-
troller are commands that dictate the quantity of each 
product to be shipped from a given fabrication factory to 
the assembly test warehouses.  

This example problem has several sources of stochas-
tic behavior. The fabrication and assembly processes have 
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stochasticity in the throughput time and yield. This intro-
duces error in the forecasted supply and starts schedules 
seen by the controller. The shipping has variability in tran-
sit times to different world geographies. This causes sto-
chastic arrival times of material to the assembly ware-
houses. And finally, the boxes of lots leaving the 
fabrication plant are variable in size due to yield differ-
ences. Lot sizes are not adjusted prior to shipping so the 
quantity of material shipped to a material warehouse may 
be different than what was requested by the controller. For 
example, the controller may instruct 200 units be sent, 
however, if there are 3 lots of quantity 90, all 3 lots would 
be sent resulting in an actual ship quantity of 270. The 
third lot would not be split to match the actual requested 
quantity. 

The material in the manufacturing system exhibit for-
ward flow, however their dynamics are implicitly con-
trolled through feedback effects via the controller (decision 
system). The decision system uses feedback from historical 
events and current state to generate instruction on what to 
do in the near future. Combination of feed-forward and 
feedback flows creates complex dynamics in the individual 
manufacturing and decision systems and across the supply-
chain system.   

The types of studies we want to carry out are to find 
the right data feeds, data granularity, and control frequency 
to effectively keep the warehouse levels within desired 
limits. This implies the simulation environment needs to 
support experimentation with data interfaces to the control-
ler at different synchronization frequencies. Two types of 
questions we could answer would be the granularity of 
forecast data (e.g. weekly and daily) and how often do we 
need to rerun the control (daily, shiftly, or hourly).  

Using our multi-formalism modeling approach, this 
problem is separated into three different models. The con-
troller is modeled and implemented using MPC. The 
manufacturing topology is modeled using DEVS. The data 
and control integration is modeled using the KIB.  

3.2 Integration Example 

We will work through an integration example based on the 
model in Figure 2 using MPC and DEVS. The MPC will 
send instructions to the DEVS simulation based on state 
values it has received from the simulation. The integration 
requires modeling of instructions going to the fabrication 
plants and all required state messages back to the MPC. 
How to coordinate the execution of the MPC and DEVS 
simulation also needs to be modeled.  

3.2.1 Manufacturing Integration Data 

The fabrication plant processes material in batches or lots. 
Each lot has a quantity and product name. The output 
states for factory ships and warehouse inventory are de-
173
fined in terms of collections of lots. The lot has a unique 
name and a quantity of one type of product. A structure for 
a lot is defined as: 

Lot Structure 
   Name: Unique identifier 
   ProductName: String 
   Quantity:  Integer 

The data for the supply forecast is specified as a vector 
of material currently in the factory. The factory can be di-
vided into a number of ‘buckets’. For example, the factory 
could be divided into two buckets, material in the front and 
back halves of the factory. The controller can use this vec-
tor to predict supply.  

The demand forecast is a vector giving the controller a 
view into the future orders. This vector is specified in time 
units. In the real world this vector would be supplied by the 
assembly test sites as future starts schedules. In the simula-
tion it is generated from a distribution.  

3.2.2 Controller Integration Data 

Assume the controller outputs a matrix of quantities for 
each factory that specifies how much to release of each 
product and where it should be shipped. For the model 
shown in Figure 2 there would be two output matrices, one 
for each factory.  

 An example of how this matrix could look is shown 
below (1). The matrix is a 3 n  vector that specifies a 
product number, a destination warehouse number, and a 
quantity where n  is the number of product and destination 
combinations.  

                        

n

n

n

QQ

DD

PP

...

...

...

1

1

1

                             (1) 

The product number is mapped to one of the products 
built by the factory. The destination number specifies 
which warehouse the material should be shipped to, and 
the quantity specifies how much.  

3.2.3 Data Transforms 

The control model requires data to be input in terms of 
units. For some types of data such as factory shipments, the 
quantity of product that leaves must be aggregated over a 
controller interval. For example, if the controller interval is 
one day, the quantities from all lots that left the factory in 
the previous day would be aggregated into a single value 
for input into the controller on the start of the current day. 
The value is calculated as shown in equation (2): 

Product 
Destination 

Quantity 
1
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tdpLotsOutlot

quantitylotdpf
,,

),(             (2) 

where p  products, d  destinations, previousCon-
trolTime < t  currentControlTime. 

If the controller interval is daily and the manufacturing 
model runs hourly, the controller instructions need to be 
disaggregated. For the mapping of the controller release to 
the simulation, lets assume that the value needs to be di-
vided equally over each of the simulation time intervals. 
For example, if the simulation is running at an hourly 
granularity and the controller is generating instructions 
once a day, the controller instruction would be divided by 
24. In general, the disaggregation could be more complex, 
but for illustration this simplified algorithm will be used. 
The equation for the equally divided disaggregation is: 

                          
sf

cf
crdpg qdp ,,),(                          (3) 

where g(p,d) is factory release quantity for product p going 
to destination d, cr is controller release quantity, cf is con-
troller frequency, and sf is simulation frequency.  

3.2.4 Mapping between Vectors and Events 

We must now consider how the data and control will trans-
ferred between the two formalisms. For the discrete event 
simulation we must read and write events to a running 
simulation. For the controller, we must populate input vari-
ables, initiate a solver run, and then read the output vari-
ables.   

Suppose the simulation is running at hourly granular-
ity and the controller is generating instructions once a day 
using the format shown in (1). Next lets assume the con-
troller outputs a matrix of quantities specifying how much 
to release of each product and where it should be shipped 
for factory 1 as shown below: 

          Factory1Ships =  

50010001000
121
211

            (4) 

The controller output instruction needs to be mapped to 
simulation input events. The simulation input events have 
the following structure: 

ReleaseEvent(
 SimulationPort,   
 Data(product, destination, quantity)) 

The simulation port specifies where the event should 
be directed to. The data has three elements, what product 
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this event is for, what destination warehouse the product 
should be shipped, and the quantity to ship.  

To accomplish the mapping and transform we need to 
first consider which entity the controller output matrix is 
for. Since the name of the matrix is Factory1Ships, we 
can assume it is for factory1. This must be explicitly 
mapped in the KIB integration model. The controller out-
put matrices with name Factory1Ships will be mapped to 
DES events going to the release input port for factory one. 
Next, each column of the matrix needs to be transformed 
into simulation input events. Each matrix element [column 
i, row j] is a positive scalar value (e.g., Factory1Ships 
[0,2]=1000). We will work through the first column in ma-
trix (4). This column shows that 1000 units of product 1 
should be sent to warehouse 1. Lets assume that both the 
controller and simulation use the same number scheme for 
products and destinations. Since the controller is running 
once a day and the simulator running hourly, we will need 
to generate 24 simulation events for each hour of the simu-
lation on that day. The quantity will need to be transformed 
using equation (3). The transformed quantity value for the 
first column in (4) would be 1000 * 1/24. The simulation 
data event values in the 24 generated events would be: 
data(1,1,1000/24). The mapping between structures would 
look like: 

ReleaseEvent(FactoryOneReleasePort,

Data(Factory1Ships[0,0],

     Factory1Ships[1,0], 

     g(Factory1Ships[0,0], 

       Fatory1Ships(1,0]))) 

Pictorially, the mapping of data between the two mod-
els is shown in Figure 3. Read and writes of the data are 
happening between the simulation event structures and the 
controller matrices across different time scales. In addition, 
the data is being transformed to match the semantics of the 
target model.  
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3.2.5 Data and Time Synchronization 

For the experiments, we require that the models can be 
configured to run in multiples from the other. For example, 
we could have the simulation run every hour and have the 
controller to run every simulation interval, or it could run 
once every 8 hours, 12 hours, etc…  

When we change the synchronization frequency it will 
impact when to send the data between the models and the 
aggregation/disaggregation data transformations. For ex-
ample, when running the controller daily and simulation 
hourly, the quantity of die in all the lots that have left the 
factory in the last 24 hours on each control cycle need to be 
added. If we were to change the frequency to control once 
a shift (8 hours), then we would only need to sum the die 
over the last shift. Conversely for the factory release com-
mands, in the daily control cycle, 24 events would need to 
be sent. In the shiftly control scenario, only 8 events sent 
per control cycle. 

4 KIB APPROACH 

To integrate the models we use a Knowledge Interchange 
Broker (KIB). The KIB provides a methodological way to 
integrate multi-formalism models. The KIB enables the 
modeling of data transforms, mapping of data elements, 
and the specification of control. Figure 4 shows the con-
ceptual view of a KIB model applied to the model shown 
in Figure 2. 

Figure 4. Composition of DEVS and MPC with KIB 

The KIB allows the data integration to be modeled in-
dependently from the other models. In the case where we 
want to design a controller, it enables the experimentation 
of running a controller against an established detailed 
simulation. When changing controller interfaces to read 
different abstraction of the data, we can change the KIB 
model independently of the simulation model.  
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4.1 KIB Mapping and Transforms 

The KIB must support both the mappings of fields within 
data structures and transformation of the data. The data in 
an array entry may need to be mapped to a record field, but 
the array data may also may need to be transformed to a 
different abstraction. 

The general requirements for mapping between the 
source and target transforms in our supply network prob-
lem are: 

Multiple source data structures can be mapped to the 
same target structure. An example would be arrays 
from two different sources need to be mapped to sin-
gle target set structure.  
One source structure can have multiple targets. Exam-
ple is when elements of a source set need to be 
mapped to multiple target variables.  
Different fields of a source structure may map to dif-
ferent target structures 
Multiple mappings and transforms must be configur-
able on the same data.  

In the following two sections we will describe the 
mappings and transformations needed to implement our 
DEVS/MPC simulation test environment.  

4.1.1 Mappings 

This section lists the data mappings that had to be provided 
by the KIB configuration modeling language. 
 UnorderedSetToArray: This mapping copies an un-
ordered set of tuples to an ordered array. One of the data 
fields in the set has to be specified as an index field. The 
transform uses the index data values to do the ordering. 

ArrayToUnorderedSet: An array of values is copied 
to a set of unordered tuples. The array index value can be 
copied to a set tuple field. If the array is part of structure, 
the other fields of the structure will be copied to one of the 
set tuple fields. For example, if you have a structure that 
contains field for product name and another field that con-
tains an array of n values, a set can be created with n tuples 
where each tuple contains the product name, one of the ar-
ray values, and the index for that array value. The starting 
value for the index can be specified.  

ArrayValueToVariable: This mapping copies a spe-
cific array value to a single variable. The array index needs 
to be specified. Also, if the array is part of a structure, a 
key field with its matching data value can be specified. An 
example is would be a structure that contains a product 
name and an array of values. You could specify that array 
entry 3 of productX be written to this variable. 

VariableToArrayValue: This mapping copies a vari-
able value to a specific array entry. An index number needs 
33
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to be specified. Also, a key entry can be specified for ar-
rays that are part of a structure. 
 SetFieldValueToVariable: This mapping copies a 
specific field value to a single variable. A key field needs 
be specified to determine which set tuple to use. For exam-
ple, if you have a set of tuples where each contains a prod-
uct name and quantity, you can specify that the quantity for 
productX be copied to this variable. 
 VariableToSetFieldValue: This transform copies a 
variable to specific field in a set tuple. The field name in 
the tuple needs to be specified, along with a key value. 
 Copy: The values of the fields from one model is cop-
ied into variable in the other model. The names do not need 
to match, just the data type. For example, integers can only 
be copied to integer fields. 
 Copy Exactly: The structure and data is copied to 
identical structure in other model. Names of variable and 
their values are maintained. 

4.1.2 Transformations 

This section lists the data transformations that had to be 
provided by the KIB modeling language. 

FloatToInteger: This transforms the data value from 
float to integer. A rounding algorithm of floor, ceiling, or 
round must be specified. 

IntegerToFloat: Converts an integer value to a float. 
AssignValue: Assigns a value that is configured in the 

KIB model to a data field. This is a static value that cannot 
change during the execution.  

Aggregations (Mean, Median, Min, Max, Sum): All
these transforms aggregate multiple values into a single 
value. The aggregation can be for all values in the current 
time period, or for all values in multiple time periods. 
Also, if data values are in arrays, the aggregation can re-
turn an array where the entries in the returned array are ag-
gregated from multiple arrays.  

Disaggregation: Different types of disaggregation can 
be supported. A general purpose disaggregation is to divide 
the source value into equal target values. The design of the 
KIB enables extensions for customized disaggregation al-
gorithms.   

Scale: Multiplication or division operations can be 
specified to scale the data values. 

4.1.3 KIB Control Modeling 

The KIB is required to support a synchronization model 
that enables the controller to run in multiples of the simula-
tion. Experiments were designed with daily, shiftly, and 
hourly control against a simulation that could run at hourly 
granularity. The KIB configuration model allowed the exe-
cution of either model to run in multiples of the other. 

To provide this capability, the KIB had to coordinate 
the timing of simulation input/output events with the solver 
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execution. It also needed to execute aggrega-
tion/disaggregation transforms across the correct time in-
tervals. The ability to adjust the aggregation/disaggregation 
of data based on execution frequency is a key enabler of 
experimentation at different control frequencies. For ex-
ample, if you want to try daily control against hourly data, 
you must aggregate all events that occurred over last 24 
hours of logical simulation time.. If you then want to try 
shiftly (8 hour shifts) control, then you must only aggre-
gate over the last 8 hours for logical simulation time. 

5 PILOT EXPERIMENT 

The real world supply network topology is shown in Figure 
5. This topology is an extension to the model shown in 
Figure 2. For simplicity, shipping components are depicted 
as arrows. This topology has 3 factories, 27 shipping lanes, 
9 warehouses, and 9 assembly sites. Each of the fabrication 
plants can produce up to 15 different products.  
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Figure 5. Real world topology 

The MPC was implemented using the Honeywell 
Profit SuiteTM set of applications. The DES had been de-
veloped using the DEVSJAVA simulation environment.  

The MPC controller design required a different model 
instance for each product built from the fabrication plants. 
This resulted in 15 different product controllers that needed 
to run concurrently. The product controllers were coordi-
nated using a dynamic, real-time optimizer. This optimizer 
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provided both dynamic coordination and steady-state opti-
mization to the underlying 15 control applications.  

A separate simulation model was connected to each of 
the 15 product controllers resulting in a distributed simula-
tion. That is, each of the fifteen controllers had a desig-
nated simulation model. Each simulation matched the to-
pology shown in Figure 5 but had different stochastic 
distributions configured to match each of the products 
characteristics for the supply and demand forecast vectors.  

The KIB had to coordinate the execution of the 15 dif-
ferent simulations, 15 different controllers, and one dy-
namic, real-time optimizer. It also needed to map and 
transform the data between each of the simulation and con-
troller models. 

5.1 Controller Development Approach 

The goal of the simulation environment was to enable the 
development and validation of the controller prior to put-
ting it in production. Although this kind of simulation-
based design is common practice, the use of the KIB en-
abled experiments and engineering of the complex interac-
tions between discrete manufacturing processes and con-
troller. A two step iterative process was devised (Figure 6).  

Figure 6. Simulation Iterations vs. Real World 
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the enterprise data systems. The production data automa-
tion toolkits would be developed against simulated data 
feeds.  

The real world components section of Figure 6 shows 
the physical systems we needed to work with. There is the 
physical supply network, the corporate data systems that 
capture current states and information about the physical 
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The first iteration of experiments supported the devel-
opment of the controller. Realistic stochastic simulations 
were run and validated against historical data. The control-
ler was then developed and integrated with these simula-
tions using the KIB. This stage of simulation supported the 
development of the controller and its required data inter-
faces. Base issues were worked out such as scalability and 
controller design. 

In iteration two the KIB was changed to output data to 
the controller in a format that matches the corporate data 
systems. The production data automation toolkits were de-
veloped during this iteration. The same simulation of the 
physical models were used, however, the KIB data output 
to the MPC was different. This enabled testing and devel-
opment of the production data automation toolkits for the 
controller.  

After the two iterations of development, the controller 
and associated data automation toolkits were put into the 
production configuration. 

5.1.1 Findings

On the first simulation/controller runs, it was found there 
would be scalability issues with the controller design and 
the simulation. Although each of the models ran OK in 
standalone mode, the integration highlighted invalid as-
sumptions each had made about the other system. The con-
troller had to be changed into a hierarchical design where 
separate instances controlled each product. Performance 
tuning had to be performed on the simulation to manage 
the large numbers of active simulation entities. Changes 
also had to be made in the simulation to correctly model 
how discrete lots are shipped from the factory. It was 
found this was an important behavior to simulate for the 
controller. The discrete nature of lot sizing errors had im-
pacts on how the controller needed to be tuned.  

In the second iteration, we changed KIB models to ex-
actly reproduce how data is sent and received from the 
production data systems. This resulted in development of 
the data automation toolkits prior to plugging the controller 
into production. The KIB enabled experimentation and re-
finement of the aggregation needed for forecast vectors. It 
also highlighted some invalid assumptions on how data is 
provided from internal company systems versus subcon-
tractors. The KIB provided a quick and efficient way to do 
experimentation with many different types of aggregation 
strategies.

5.2 Results

The MPC models and production data automation toolkits 
worked as designed on the first run in production. This was 
a significant accomplishment since it was the first time 
MPC was used in an actual production instance of a dis-
crete semiconductor manufacturing problem.  
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The controller design worked with a daily update to 
the shipping signals. The supply and forecast vectors 
needed daily granularity for the first few days, and then 
could use weekly buckets for the next few weeks. When 
the controller was plugged into production, it was able to 
keep inventory within limits automatically at all ware-
houses as good as the current manual processes. 

The team that developed the controller and simulation 
comprised of 3 engineers, two senior control engineers one 
software / simulation engineer. Projects of this scale typi-
cally take much more resources. Without the KIB model-
ing approach, the ability to experiment with different con-
trol frequencies and data sources would have been limited 
or impossible within the time constraints. Either more time 
would have been required for the simulation or less robust 
controller put in at start of production. 

6 CONCLUSIONS  

An important benefit was the combined flexibility and 
rapid controller design prototyping enabled with the KIB. 
The pilot experiment was carried out concurrent with the 
actual control of the production line and thus demonstrated 
the impact of the KIB in industrial strength setting. This 
approach to simulation-based design is indispensable in 
employing new mixed tactical and strategic operation of 
multi-billion dollar industries. The KIB enabled much 
more experimentation (e.g., validating controller) than 
would be normally possible in short time frames.  

The KIB also allows for better experiments since it 
highlights the integration mismatch between the models. 
That is, it explicitly provides visibility to the integration 
issues and provides a capability to understand the issues 
and methodologically design solutions around them. 

7 FUTURE WORK 

We plan to extend the existing models onto other product 
lines and other segments in the supply network. This adds 
complications such as the increased number of planning 
product configurations and consideration of complex bills 
of material. We also plan to develop more advance aggre-
gation and disaggregation transforms into the KIB. The 
advanced functions would be based on more detailed 
knowledge of the segments of the supply network domain 
being modeled. 
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