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ABSTRACT

A useful performance measure on which to compare manu-
facturing systems is a quantile of the cycle time distribution.
Unfortunately, aside from order statistic estimates, which can
require significant data storage, the distribution of quantile
estimates has not been shown to be normally distributed, vio-
lating a common assumption amongst ranking-and-selection
(R&S) procedures. To address this, we provide empirical
evidence supporting an approach using the mean of a group
of quantile estimates as the comparison measure. The ap-
proach is detailed and illustrated through experimentation
on four M/M/1 queues in which the 0.9 cycle-time quantile
is the performance measure. Results in terms of simulation
effort and accuracy are reported and compared to results
obtained using the macro-replications approach for induc-
ing normality as well as to results obtained by applying
R&S procedures to quantile estimates directly. The sug-
gested procedure is shown to provide significant savings in
simulation effort while sacrificing very little in accuracy.

1 INTRODUCTION

Ranking and Selection (R&S) procedures are statistical tech-
niques designed to select the best system, or a subset of
systems containing the best, from a group of alternatives.
The procedures guarantee a user specified probability of se-
lecting the best system, and typical assumptions include that
the response measure is normally distributed and that the
analysis is based on expected values of a single stochastic re-
sponse. The variance of the response at different treatments
may be equal or unequal, and the variance at treatments may
be known or unknown. Independence between responses
is generally assumed, but techniques exist which employ
common random numbers (CRNs), intentionally inducing
dependence between treatments, but often reducing required
sample sizes. An example of such a technique can be found
in Nelson and Matejcik (1995).
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The simplest and most common application of R&S
approaches involves identifying the best system from a rel-
atively small (< 20) number of alternatives based on mean
performance measures such as time in system (for larger
numbers of systems, approaches such as that suggested in
Nelson et al. (2001) should be applied). However, another
useful measure on which to make comparisons is a specific
quantile of the cycle-time distribution. Comparisons based
on a quantile of the cycle-time distribution allow decision
makers to determine the best system (where a system with
a smaller quantile is considered better) from a group of
competing scenarios at various levels of risk. Conservative
decision makers could use the 0.9 cycle-time quantile on
which to base their system selection, indicating that they
have chosen the best system as the system in which they will
meet 90% of their demand on time in the shortest amount
of time. Or, conversely, more aggressive decision makers
could base the selection on the 0.7 cycle-time quantile, be-
ing comfortable with the possibility of quoting lead times
incorrectly 30% of the time. In many cases, these com-
parisons produce results different than those obtained by
simply comparing the means of the cycle-time distribution,
even when the expected value of the cycle-time distribution
between the systems was the same. For instance, two nor-
mal distributions with the same mean but different standard
deviations produce two different 0.8 quantile estimates. As
a result, comparisons based on cycle-time quantiles provide
an enhanced level of detail for decision making over simple
comparisons on the mean.

Unfortunately, while quantile estimates based on order
statistics satisfy the Central Limit Theorem (David, 1981),
they traditionally require the storage of all observations,
making their use less attractive. Indirect quantile estimates,
on the other hand, which are more attractive in terms of data
storage, have not been shown to be normally distributed,
violating the assumption of the R&S procedure that the
response measure be normally distributed. One solution to
this problem is to develop a new R&S procedure that directly
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compares raw quantile estimates of competing systems and
which does not require that the estimates be normally dis-
tributed. Alternatively, a method could be developed to
utilize already developed R&S procedures by transforming
the quantile estimates to be more normally distributed.

One such solution is suggested by Goldsman et al.
(1991). They suggest making macro-replications, each
consisting of multiple micro-replications. The average of
the values of the performance measure from the micro-
replications are then taken as the single estimate of the
performance measure from the macro-replication. The per-
formance measure from the macro-replication, then, rep-
resents a single data point to be used as part of a R&S
procedure. Based on the Central Limit Theorem (CLT), the
averages of these data points from the micro-replications
will be more nearly normally distributed, and the underlying
assumptions of the procedures will not be violated.

The drawback of this approach is that the use of macro-
replications requires a large amount of simulation data. For
example, if an initial sample size of five data points was
desired for a R&S procedure, 5 macro-replications would
be required for each system. If the number of micro-
replications making up each macro-replications was 20,
then the total number of initial observations of the perfor-
mance measure from each system would be 100 (= 20*5). If
the R&S procedure then dictated additional sampling, each
additional sample for each system would again represent
the average of 20 micro-replications. The likelihood of
additional sampling increases as the variability of the per-
formance measure increases. Therefore, as the variability
in the performance measure increases, the simulation effort
can quickly explode, making the implementation of R&S in
this manner impractical, particularly for large models such
as those found in the semiconductor industry in which run
lengths can be extremely long.

Ideally, an approach for using quantile estimates as the
performance measure would allow existing R&S procedures
to be used while not requiring an unreasonable sample size.
The contribution of such an approach would not be in alter-
ing the R&S procedures themselves. These procedures are
generic to the performance measure on which comparisons
are made, provided that the distribution of the performance
measure estimator meets certain assumptions, and simply
using a cycle-time quantile as the performance measure over
the mean cycle-time, for instance, would not provide any-
thing novel. However, given that quantiles estimates are not
normally distributed and that most R&S procedures require
a normally distributed performance measure, a procedure for
transforming quantile estimates into a representative normal
distribution while not requiring enormous simulation effort
would be valuable.

The purpose of this paper is to provide empirical evi-
dence supporting an approach for using quantile estimates as
the comparison measure for a single-stage R&S procedure
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for comparing systems with unequal but known variances.
The procedure uses the variance of an initial set of quantile
estimates to determine the corresponding variance of the
distribution surrounding the mean of a group of quantile
estimates. The distribution surrounding the group mean
is, by the CLT, more normally distributed than the original
quantile estimates, and the variance of these means are used
with the R&S procedure to determine the required number
of observations (group means) from each system. The ap-
proach capitalizes on the initial set of runs used to determine
the variance of the quantile estimates by reusing the same
runs toward observations for the R&S procedure. Once the
initial runs are done, however, the procedure is very similar
to the macro-replications approach, as it requires a group of
runs to yield a single observation for use in a R&S proce-
dure. Consequently, the approach is particularly useful for
comparisons between systems in which the variance of the
comparison metric is not high but where the effort to obtain
a single estimate of that performance measure is very high.
In such cases, the majority of simulation effort comes from
initial data collection, which is efficient in the proposed
procedure. An example of such a system is a model of a
semiconductor wafer fab. Typically, these models take a
very long time to run, but usually do not produce highly
variable results.

The remainder of the paper is organized as follows.
Section 2 details the proposed procedure for the use of
quantiles as a comparison measure with R&S procedures,
and Section 3 then gives experimentation using the procedure
and discusses the results. Conclusions and areas for future
work are then given in Section 4.

2 PROCEDURE FOR USING QUANTILES IN R&S

The objective of the procedure is to use quantile estimates
in a R&S procedure, which assumes that the variable upon
which comparisons are made is normally distributed. To
do so, we use the distribution surrounding the mean of a
group of quantile estimators, which we know to be closer
to normal than the original quantile estimates. Moreover,
from basic probability, a relationship exists between the
original set of quantile estimates, ŷq(1), ŷq(2), . . . , ŷq(n) and
the distribution surrounding their mean, ŷq:

E[ŷq] = E[ŷq] and Var[ŷq] = Var[ŷq]/n.

Therefore, assuming we know (or can estimate very
well), the variance of the original quantile estimates, we can
also determine the variance of the distribution surrounding
the mean of a group of n quantile estimates. The R&S
procedure is then performed on the ŷq values, which represent
samples from a new random variable that shares properties
with the original random variable of interest, but which
23
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also has the desired property of coming from a normal
distribution. A detailed description of the procedure follows:

Grouped Quantile Approach: Using Precise Estimates
of Variance with Known Variance R&S Procedure

1. Make n f independent simulation replications of
each system i = 1,2, . . . ,k. We recommend n f ≥
50.

2. From each simulation replication, obtain an esti-
mate of the q quantile, ŷq(1), ŷq(2), . . . , ŷq(n f ).

3. Using ŷq(1), ŷq(2), . . . , ŷq(n f ), estimate Var[q̂]i for
each system i = 1,2, . . . ,k.

4. For each system, estimate the variance of the dis-
tribution surrounding the mean, ŷq, of a group

of nb quantile estimates, where ˆVar[ŷq]i =
ˆVar[ŷq]i

nb
.

Use Var[q̂]i calculated in Step 3. We recommend
nb ≥ 20.

5. Select confidence level P∗ (PCS) and indifference
zone parameter, δ ∗ > 0.

6. Use the following formulas to determine the num-
ber of observations, ni required from each system
(Bechhofer et al., 1995) Use ˆVar[ŷq]i in place of

σi. Values for Z(1−P∗)
t−1,1/2 can be found in Bechhofer

et al. (1995).

ni =


⌈

σi

√
2(σ2

1 +σ2
2 )(Z1−P∗

1,1/2 /δ ∗)2
⌉

k = 2

⌈
2
(

σiZ
(1−P∗)
t−1,1/2/δ ∗

)2
⌉

o.w.

7. Make nt = (ni ∗ nb)− n f independent simulation
replications of each system i = 1,2, . . . ,k.

8. From each simulation replication, obtain an esti-
mate of the q quantile, ŷq(1), ŷq(2), . . . , ŷq(nt).

9. Select the system with the smallest ŷqi(ni), where
ŷqi(ni) represents the mean of all observations ob-
tained from each system, including the those ob-
tained from the original n f simulation runs.

3 EMPIRICAL EVALUATION

To evaluate the approach described in Section 2, it was
applied to four M/M/1 systems. The performance measure
upon which comparisons between systems were made was
the 0.9 CT quantile, where the best system was chosen
as the one with the smallest 0.9 cycle-time quantile. The
four M/M/1 systems were configured so that systems 1, 3, 4
have true 0.9 cycle-time quantile values which are exactly δ

greater than the true value of the 0.9 CT quantile for system
2. This configuration is known to be the most difficult in
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which to identify the best system. Table 1 gives the arrival
and service rates selected for the four M/M/1 systems.

Using the four systems described in Table 1, the ap-
proach based on using a precise estimate of the variance in
place of the true variance of the means, described in Section
2, was applied to select the best system. For comparison
purposes, the macro-replications approach by Goldsman et
al. (1991) was also used to select the best of the same
five systems. To combine the macro-replications procedure
with a ranking-and-selection procedure, a R&S procedure
that assumes that the variance of the performance measure
is unknown must be used, as the variance of the observa-
tions from the macro-replications is not known in advance.
We use Rinott’s procedure (Rinott 1978) for this purpose
since it is one of the simplest and most well known of
the multi-stage ranking-and-selection procedures. Rinott’s
procedure makes the following assumptions: there are k≥ 2
systems, Xi j is the jth independent observation from system
i, Xi j ∼ N(µi,σ

2
i ), where µi and σ2

i are unknown, and the
data across systems are independent. To implement the pro-
cedure, the following steps are taken, where PCS represents
the probability of a correct selection, and δ represents the
minimum detectable difference between competing systems.

Rinott’s Procedure

1. Select confidence level 1−α (PCS), indifference
zone parameter, δ > 0, and first stage sample size
(n0 ≥ 2).

2. Obtain Rinott’s constant h = h(n0,k,1−α) from
Wilcox (1984).

3. Obtain n0 observations Xi j, j = 1,2, . . . ,n0 from
each system i = 1,2, . . . ,k.

4. Compute the sample variance of data from system i:

s2
i =

1
n0−1

no

∑
j=1

(Xi j−X i(no))2

5. Compute the number of observations required from
system i:

Ni = max
{

n0,

⌈
h2s2

i
δ 2

⌉}
.

Table 1: Description of M/M/1 systems used to evaluate
approaches for using quantiles with R&S procedures.

System Service Rate Arrival Rate 0.9 Quantile
1 1.000 1.101 25.00
2 2.000 2.463 24.50
3 1.500 1.740 25.00
4 2.000 2.452 25.00
4
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6. If n0 ≥ Ni, stop and choose system with largest
X i(n0) . Otherwise, take Ni−n0 additional obser-
vations from each system i for which Ni > n0 and
then select the system with the smallest X i(Ni).

Then, combining the macro-replications approach with
Rinott’s procedure gives the following procedure:

Macro-Replications with Rinott’s Procedure

1. Select confidence level 1−α (PCS), indifference-
zone parameter,δ > 0, and first-stage sample size
(no ≥ 2) for Rinott’s procedure.

2. Make n f = n0 ∗ng independent simulation replica-
tions of each system i = 1,2, . . . ,k. Each indepen-
dent simulation run represents a micro-replication,
and ng represents the number of micro-replications
in a single macro-replication.

3. From each simulation replication, obtain an esti-
mate of the q quantile, ŷq(1), ŷq(2), . . . , ŷq(n f ).

4. Calculate the average of every ng estimates of [ŷq]i
from each system i. Each average value, [ŷq]i
represents a macro-replication, and, by the CLT,
the distribution surrounding [ŷq]i is more nearly
normally distributed.

5. Compute the sample variance of the [ŷq]i values
from each system i using the formula presented in
Step 4 of Rinott’s procedure.

6. Compute the number of [ŷq]i observations required
from system i, Ni, using the formula presented in
Step 5 of Rinott’s procedure.

7. If n0 ≥ Ni for all systems, stop and choose system
with smallest [ŷq]i(n0), where [ŷq]i(n0) represents
the mean of the no [ŷq]i observations for each
system i.

8. Otherwise,

(a) Make nt = ng ∗ (Ni− n0) additional indepen-
dent simulation replications from each system
i in which Ni > n0.

(b) From each simulation replication, obtain an es-
timate of the q quantile, ŷq(1), ŷq(2), . . . , ŷq(nt)

(c) Select the system with the smallest [ŷq]i(Ni),
where where [ŷq]i(Ni) represents the mean of
all [ŷq]i observations obtained from each sys-
tem.

In addition to the macro-replications approach, the pro-
posed procedure was also compared to approaches using the
original quantile estimates, without any attempt to correct
for their non-normality. The quantile estimates were used
both in combination with the known variance R&S proce-
dure, after estimating their variance from an initial set of n f
quantile estimates, and with Rinott’s procedure, assuming
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we do not know the variance in advance. The details of these
approaches follow; note that the procedure using Rinott’s
procedure is identical to the macro-replications approach
using ng = 1.

Raw quantiles with Rinott’s Procedure

1. Select confidence level 1−α (PCS), indifference-
zone parameter,δ > 0, and first-stage sample size
(no ≥ 2) for Rinott’s procedure.

2. Make n0 independent simulation replications of
each system i = 1,2, . . . ,k.

3. From each simulation replication, obtain an esti-
mate of the q quantile, ŷq(1), ŷq(2), . . . , ŷq(n f ).

4. Compute the sample variance of the [ŷq]i values
from each system i using the formula presented in
Step 4 of Rinott’s procedure.

5. Compute the number of [ŷq]i observations required
from system i, Ni, using the formula presented in
Step 5 of Rinott’s procedure.

6. If n0 ≥ Ni for all systems, stop and choose system
with largest [ŷq]i(n0), where [ŷq]i(n0) represents the
mean of the no [ŷq]i observations for each system
i. Otherwise,

(a) Make nt = Ni−n0 additional independent sim-
ulation replications from each system i in
which Ni > n0.

(b) From each simulation replication, ob-
tain an estimate of the q quantile,
ŷq(1), ŷq(2), . . . , ŷq(nt).

(c) Select the system with the smallest [ŷq]i(Ni),
where where [ŷq]i(Ni) represents the mean of
all [ŷq]i observations obtained from each sys-
tem.

Raw Quantiles Using Precise Estimates of Variance R&S
procedure

1. Make n f independent simulation replications of
each system i = 1,2, . . . ,k.

2. From each simulation replication, obtain an esti-
mate of the q quantile, ŷq(1), ŷq(2), . . . , ŷq(n f ).

3. Using ŷq(1), ŷq(2), . . . , ŷq(n f ), estimate Var[q̂]i for
each system i = 1,2, . . . ,k.

4. Select confidence level P∗ (PCS) and indifference
zone parameter, δ ∗ > 0.

5. Use the following formulas to determine the num-
ber of observations, ni required from each system
(Bechhofer et al., 1995). Use ˆVar[q̂]i in place of
σi. Values for Z(1−P∗)

t−1,1/2 can be found in Bechhofer
25
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et al. (1995).

ni =


⌈

σi

√
2(σ2

1 +σ2
2 )(Z1−P∗

1,1/2 /δ ∗)2
⌉

k = 2

⌈
2
(

σiZ
(1−P∗)
t−1,1/2/δ ∗

)2
⌉

o.w.

6. Make nt = ni−n f independent simulation replica-
tions of each system i = 1,2, . . . ,k.

7. From each simulation replication, obtain an esti-
mate of the q quantile, ŷq(1), ŷq(2), . . . , ŷq(nt).

8. Select the system with the smallest ŷqi(ni), where
ŷqi(ni) represents the mean of all observations ob-
tained from each system, including the those ob-
tained from the original n f simulation runs.

For all four approaches (macro-replications, raw quan-
tiles using the known-variance approach, raw quantiles using
Rinott’s procedure, and the suggested approach based on
assuming known variance based on an estimate from initial
runs), to obtain the 0.9 cycle time quantile estimates, in-
dependent simulation runs of each system were made, and
the approach suggested by Bekki et al. (2006) and McNeill
et al. (2003), based on the Cornish-Fisher expansion, was
used. The simulation run length, m, was set at 250k ob-
servations, with an additional run length of 10% truncated.
In all cases, the Probability of Correct Selection (PCS)
for the R&S procedure was selected to be 0.95, and the
indifference-zone parameter was chosen to to be δ = 0.5.
Each of the four approaches was applied to the four M/M/1
system 500 times. Finally, for the approaches in which the
variance is determined based on an initial set of runs and is
then assumed to be known, the n f parameter was set to 50
and the nb parameter used was 20. In cases where Rinott’s
procedure was used, the n0 parameter was set to 5.

After applying each of the approaches, Figure 1 shows
the average percentage of simulation effort allocated to each
system across the 500 replications. The categories on the
x-axis represent the different approaches combined with the
R&S procedure to determine the best system. This chart
illustrates that when grouping is involved, the allocation of
simulation effort is less sensitive to the variability of quantile
estimates. For example, a larger amount of effort is allocated
to system 1, the system with the highest traffic intensity and,
therefore, greatest variability in quantile estimates, in each
of the techniques that do not involving grouping the quantile
estimates. This effect may be due to the fact that the variance
of the mean of a group is equivalent to the variance of the
ungrouped values divded by the number of observations in
the group (see Section 2, making the estimates based on the
mean of grouped values less variable in general than the
variance of raw observations. Overall, Figure 1 illustrates
that both approaches using raw quantiles are very sensitive
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in terms of simulation effort allocation to the variability
differences between systems.
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Figure 1: Allocation of simulation effort across the four
M/M/1 systems.

Figure 2 gives a summary of the results in performance
space. The y-axis of the chart shows the average simulation
effort across all four systems, in terms of 250 thousands
of observations, required for a single replication of R&S
procedure using each of the four approaches. The x-axis
shows a 0.95 confidence interval surrounding 1 - the realized
PCS. The confidence intervals were built using the following
formula, which utilizes the fact that the binomial distribution
can be approximated with a normal distribution. In this
formula, p̂ represents the proportion of times the correct
system was chosen, z1−α/2 represents the 1−α/2 quantile
of a standard normal distribution, and n is the sample size
of 500

p̂± z1−α/2

√
p̂(1− p̂)

n
.

In Figure 2, approaches are comparatively better as
they get closer to the lower left corner of the figure. In this
corner, the realized PCS is high, and the simulation effort
is low. Points that have the same simulation effort with
lower realized PCS are weakly dominated, as are points that
have the same realized PCS but require greater simulation
effort. In Figure 2,the confidence interval surrounding the
grouped quantiles approach overlaps with both the known
and unknown variance R&S procedures done with raw
quantiles. Consequently, in terms of the realized PCS,
the grouped quantiles approach is statistically the same as
both approaches based on raw quantiles. However, of the
three approaches, the suggested grouped quantiles approach
requires considerably less (25% - 35%) simulation effort
than the other two approaches. Also of note is the fact
that the confidence interval surrounding the raw quantiles
approach in conjunction with the known variance R&S
procedure does not contain the PCS value of 0.95 set by
the procedure, while the approach using Rinott’s procedure
26



Bekki, Fowler, Mackulak, and Nelson
with raw quantiles does contain 0.95. This indicates the
possibility that the known variance R&S procedure is more
sensitive to non-normality in the comparison metric than
the two-stage procedure which assumes unknown variance.

The confidence interval representing the macro-
replications approach in Figure 2 is not dominated by
any other points. Although the simulation effort for
the macro-replications approach is considerably higher
(more than twice as much) than the approach using
the known variance of the means, the accuracy is also
greater. Therefore, should a decision maker desire an
extremely high realized PCS, he could choose to sacrifice
simulation effort and use the macro-replications approach
to achieve the increased level of accuracy. Overall,
Figure 2 shows that the confidence intervals surrounding
all the approaches, except the approach using quantiles
directly with the known variance R&S procedure, contain
the specified PCS value 0.95, but the grouped quantiles
approach did so with considerably reduced simulation effort.
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Figure 2: Simulation effort vs. realized probability of correct
selection for all approaches.

4 CONCLUSIONS AND FUTURE WORK

In this paper, the variance of a group of quantile estimates is
used to estimate the variance of a new variable surrounding
the mean of a group of the same quantile estimates. The
distribution surrounding the mean shares properties with the
original set of quantile estimates, but also has the normal dis-
tribution required by the assumptions used to develop most
R&S procedures. The variance of the variable surrounding
the mean is used in conjunction with a R&S procedure to
determine the required sample size from each system. The
results in Section 3 highlight that the use of this approach
allows quantiles to successfully be used as the comparison
metric for ranking-and-selection procedures. The approach
yielded high realized PCS values for the example given
in this paper, while requiring significantly less simulation
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effort than either the macro-replications or raw quantile
approaches.

Additionally, the approach focuses on saving effort in
the initial data collection phases of R&S procedures by
reusing the original n f simulation runs used to calculate the
variance of the quantile estimates as observations for the
R&S procedure. We believe these savings to be significant
for systems such as semiconductor wafer fabs in which the
variability of comparison metrics is not high, but the effort
to obtain a single observation of that metric is very high. In
such cases, the number of total observations needed from
each system is not likely to be high, and the number of initial
observations collected represents a large portion of the sim-
ulation effort. R&S procedures based on unknown variance
require an initial sample size, n0 ≥ 3, and values of n0 used
in practice are often higher, making the initial effort required
to get an estimate of the variance greater than the number
of observations actually required to differentiate between
systems. Alternatively, the approach used in this paper uses
an initial set of n f runs to obtain a precise estimate of the
variance surrounding the performance measure of interest.
In many cases, the number of simulation runs requred to
generate the n0 observations, particularly if grouping of any
kind is required to account for non-normality, is greater
than the number of runs, n f , required to precisly estimate
the variance, resulting in an overall savings of simulation
effort for these types of systems.

Also of note is the fact the R&S procedures with both
known variance and unknown variances used in the empirical
analysis in this paper are conservative. Rinott’s procedure,
for example, is not the most efficient R&S procedure in
terms of required sample size and often allocates more
samples than necessary to achieve the desired probability
of correct selection (Chen and Kelton 2003). As a result,
it is possible that other R&S procedures (with both known
and unknown variances) would require less simulation effort
than that illustrated in this paper.

Future work in this area will include the empirical
evaluation of the procedures to other system configurations
in which all systems are not exactly δ away from the best
system. Additional evaluations in which the run length,
m, is greater will also be performed. The run length of
m = 250k given in this paper was intentionally chosen to be
fairly short so that the quantile estimates would be variable,
increasing the simulation effort requirements. Future work
will investigate how the realized PCS and simulation effort
are comparatively affected by this run length parameter and
by the configurations of the systems themselves.
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