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ABSTRACT 

Most classical stochastic inventory models assume that re-
plenishment lead times are independent of the amount of 
orders placed. This assumption is clearly problematic in 
capacitated production systems, where queueing models 
show that mean cycle time is a nonlinear increasing func-
tion of resource utilization. We use a simulation environ-
ment created for rapid prototyping of supply chains to ex-
amine the problem of setting safety stocks in environments 
with workload-dependent lead times. We show that even 
when extensive historical data is used, conventional ap-
proaches to setting safety stocks fail to provide the desired 
service level when lead times are load-dependent, and sug-
gest directions for future research. 

1 INTRODUCTION 

An extensive body of literature on stochastic models of in-
ventory systems has developed since the 1960s (Hadley 
and Whitin (1963); Zipkin (1997)). The vast majority of 
these models has emphasized the stochastic nature of de-
mand, using relatively simple models of the replenishment 
process. Specifically, most models either assume a con-
stant replenishment lead time, or a time-stationary lead 
time distribution. In both cases, the replenishment lead 
time is independent of the quantity ordered. 

While these models may be defensible in distribution 
environments, where the replenishment process involves a 
supplier delivering material from a warehouse, it is prob-
lematic when the replenishment process involves a capaci-
tated production system. It is well known from queueing 
models of production systems (Buzacott and Shanthikumar 
(1993); Hopp and Spearman (2001)) that the expected time 
in system, or cycle time, of a capacitated production sys-
tem is a nonlinear increasing function of the resource utili-
zation, which, in turn, is determined by the production con-
trol policy used to determine the timing of work release 
into the system. This latter body of research suggests that 
1691-4244-1306-0/07/$25.00 ©2007 IEEE
especially at high utilization levels, the assumption that cy-
cle times are independent of the quantity ordered, i.e., the 
quantity of material released into the system, is not valid. 
However, the issue is of considerable practical importance, 
since many practitioners are faced with the problem of de-
termining safety stock levels to support a specified cus-
tomer service level for an inventory that is replenished 
from a production system. 
 In this paper we use the SCOPE simulation environ-
ment developed for rapid evaluation of supply chain con-
figurations Orcun et al. (forthcoming) to illustrate this is-
sue on a simple single-stage production-inventory system. 
We first assume a make to order environment, where de-
mand is released directly to a supplier, who must manufac-
ture the items demanded on a capacitated production line. 
We then examine the behavior of make to stock systems 
with different levels of safety stock, which are set using 
standard techniques from the literature developed under the 
assumption of time-stationary replenishment lead times. 
Our results suggest that the problem of determining the 
level of safety stock required to maintain a specified ser-
vice level for this system is difficult, and that use of the 
standard techniques, even with access to very extensive 
historical data, does not consistently maintain specified 
service levels.  
 In the following section we provide a review of previ-
ous related work. Section 3 gives a brief description of the 
SCOPE environment in which the simulation models are 
implemented. Section 4 describes the different inventory 
systems simulated, and Section 5 presents the results of our 
experiments. We conclude the paper with a summary and 
suggestions for future research. 

2 PREVIOUS RELATED WORK 

The problem of managing production-inventory systems in 
the face of time-varying and uncertain demand has been 
addressed extensively by operations researchers over the 
last five decades. The literature in this area can be broadly 
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classified into three main streams: optimization models of 
production planning, queueing models and stochastic in-
ventory models. 

2.1 Production Planning Models 

The objective of production planning models is to allocate 
production capacity among different products over time in 
order to optimize some objective function, most commonly 
the sum of variable production, inventory holding and 
backorder costs over a finite planning horizon. These mod-
els have generally approached the problem as a determinis-
tic optimization problem, where stochastic quantities are 
represented by deterministic estimates. This body of work 
has led to a wide range of linear and integer programming 
models (Hackman and Leachman (1989); Johnson and 
Montgomery (1974)),as well as the widely used Material 
Requirements Planning (MRP) approach (Vollmann et al. 
(2005)). However, the vast majority of these models treat 
lead times as exogeneous parameters, ignoring the relation-
ship between workload and lead times. In recent years re-
searchers have been developing enhanced models that 
comprehend workload-dependent lead times (Pahl et al. 
(2005)). Among these approaches, the use of clearing func-
tions (Asmundsson et al. (2006b); Karmarkar (1989)), 
which relate the expected output of a production resource 
in a planning period to the expected WIP level over the pe-
riod, have been promising; we will use this approach in the 
simulation models in this paper. 

The most common treatment of safety stocks in this 
environment appears to be an offline analysis that arrives 
at inventory targets, which are then input into the produc-
tion planning model as constraints. Meal (1979) and Miller 

(1979), among others, discuss the issues related to 
safety stocks in an MRP environment. Another stream of 
work has been the use of optimization formulations with 
chance constraints (Charnes and Cooper (1959); Johnson 
and Montgomery (1974); Kempf and Uzsoy (2007)), which 
also appears promising. However, since the amount of 
safety stock needed will vary with the lead time, which in 
turn varies dynamically over the planning horizon with the 
release decisions, this area continues to be a challenging 
domain for research. 

2.2 Stochastic Inventory Models 

There is a very extensive literature on both deterministic 
and stochastic inventory models (Hadley and Whitin 
(1963); Zipkin (1997)). The majority of these models focus 
heavily on the stochastic nature of demand, and use simple 
models of the replenishment process. Very few of these 
models consider limited production capacity, and those that 
do generally assume workload-independent lead times. In 
recent years, however, a number of authors have examined 
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the problem of setting safety stocks in inventory systems 
replenished from a capacitated production facility. Zipkin 
(1986) links a queuing model with an inventory model to 
examine the effects of lot-sizing on inventory levels in a 
single-stage production-inventory system. This work is fur-
ther extended by Liu et al. (2004). 
 A different approach is followed by Graves and his 
coauthors (Graves (1988); Graves (1998)). This work pos-
tulates a linear relationship between inputs to the produc-
tion system and outputs, either by having output be a frac-
tion of the WIP level in a given period (Graves (1988)), or 
by having the planned output be a linear function of the 
forecast errors over a planning horizon (Graves (1998)). 
The approach in these papers is to characterize the distribu-
tion of the finished goods inventory level, and set a safety 
stock level accordingly. However, when the relationship 
between workload and lead times is nonlinear, this ap-
proach appears to become difficult due to the multiple cor-
relations between the release pattern, WIP level and output 
of the system. 

2.3 Queueing Models 

The extensive literature on queueing models of manufac-
turing systems (Buzacott and Shanthikumar (1993); Hopp 
and Spearman (2001)) differs from the previous streams of 
research in that the nonlinear relationship between work-
load, expressed as average resource utilization, and ex-
pected cycle time, is widely recognized. However, the ma-
jority of this work is descriptive in nature, focusing on the 
characterization of long-run steady-state expected per-
formance measures, which limit its direct applicability to 
practical problems. 

2.4 Summary 

It is apparent from this discussion that the tools provided 
by current research each address a particular aspect of the 
problem of setting safety stocks in capacitated production-
inventory systems. The deterministic planning models gen-
erally fail to consider both the stochastic nature of demand 
and the workload-dependent nature of lead times, although 
some recent work is beginning to address these issues. Sto-
chastic inventory models focus on long-run expected per-
formance, and generally do not consider workload-
dependent lead times. Queueing models capture the work-
load dependent nature of lead times correctly, but their 
long-run steady-state nature does not lend itself to planning 
safety stocks in the short term.  Finally, there is a complex 
feedback relationship between safety stocks and lead times. 
It is well recognized that the amount of safety stock re-
quired in an inventory system with a significant lead time 
depends on the distribution of the demand over the lead 
time. However, in order to produce the material needed to 
provide the safety stock, additional releases are required, 
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which, in turn, increases resource utilization and hence 
lead times.  Thus it would appear that in order to be useful 
to practitioners, a decision support tool would have to inte-
grate resource allocation in the presence of workload-
dependent lead times with explicit recognition of the sto-
chastic nature of demand and the need to maintain service 
levels. Kempf and Uzsoy (2007) propose a model that ad-
dresses these issues, but future research that extends the 
classical formulations in the literature is clearly needed in 
this area.

3 SYSTEM UNDER STUDY 

The objective of this paper is limited in scope: we wish to 
illustrate the difficulty encountered using the classical in-
ventory models to set safety stocks when lead times are 
workload-dependent, even when no production planning of 
any kind is done. To this end, we consider the simple two-
stage supply chain shown in Figure 1, where a retailer re-
ceives orders from customers, and places orders with a 
supplier. The supplier produces the items to order, and 
must ship complete orders to the retailer; hence, if the sup-
plier does not have sufficient material in its finished goods 
inventory to meet the entire demand from the retailer, it 
will hold the entire order until enough material is available 
to ship the entire demand. The supplier has a capacitated 
production facility whose behavior is represented by a con-
cave clearing function of the type used by Asmundsson et 
al. (2006b) and discussed in Orcun et al. (2006).  

Figure 1: Simple 2-stage supply chain studied 

Specifically, we derive the clearing function as fol-
lows: In order to represent the entire supplier facility using 
a single clearing function, we follow an approach similar in 
spirit to the Practical Worst Case analysis of Hopp and 
Spearman (2001). We assume that the average cycle time 
of 90 shifts corresponds to a bottleneck utilization level of 
0.90. Since the supplier process requires many manufactur-
ing steps, the shortest possible time in which material that 
is introduced can emerge as finished product is given by 
the raw process time (RPT), which represents the average 
time for a lot to pass through the empty facility as defined 
by Hopp and Spearman (2001). We assume that the aver-
age cycle time (CT) will follow relationship of the form  
 CT=RPT+ ud (WIP/Cd) (1) 

where RPT is the raw processing time, ud the desired 
average utilization, WIP the work-in-progress inventory 
level and Cd the desired average capacity that is utilized. 
The desired capacity in our case is thus given by 0.90C, 
where C is the maximum theoretical (design) capacity of 
16
the facility. Then, by Little’s Law, the average throughput 
rate of the facility per period is given by 
 TH = WIP/CT  (2) 

Substituting (1) in (2) we obtain 
 TH = WIP (Cd / ud) / [(Cd / ud) RPT + WIP]  (3) 

where the term (Cd/ud) RPT represents the time re-
quired to clear fully utilized plant. Equation (3) generates 
the behavior shown in Figure 2 when Cd, ud and RPT are 
set to 1400 units, 0.90 and 0.6428, respectively. Under 
these parameter values, the desired capacity utilization is 
reached when WIP is 8400 units. This leads to an average 
cycle time of 84/14 = 6 at the desired utilization level of 
0.90.  

Figure 2: Clearing function where equivalent load is sum 
of equivalent throughput (which a function of equivalent 
work-in-progress) and equivalent work-in-progress 

In most practical settings, a common approach is to es-
tablish a base stock level that assumes the distribution of 
the demand over the lead time to be normal. Let us denote 
the mean and standard deviation of the replenishment lead 
time by L and L, respectively, and let D and D denote 
the mean and standard deviation of the demand per period. 
Then, the base stock level can be established as 

Y L D  + z L D
2

L
2

D
2

 (4) 
where z  denotes the number of standard deviations re-
quired to provide a service level of , or, equivalently, a 
stock-out probability of 1- . (Eppen 1988 #109) discuss 
the performance of this approach when demand over lead 
time violates the assumption of normality.  

In order to establish a baseline (scenario 1), we first 
examine the behavior of the system where the supplier 
holds no safety stock at all, and operates in a pure make to 
order mode. Hence the pattern of work release into the 
supplier’s production line represents the stream of de-
mands from the market, passed through the retailer’s order 
stream unaltered. We then examine three different scenar-
ios (2a, 2b and 2c) where the supplier sets safety stocks us-
ing the expression above. In the first of these, we use the 
entire history of the simulation results from the baseline 
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scenario to estimate the mean and variance of the lead time 
used in setting the base stock level. Scenario 2b uses the 
mean lead time from the historical data, but assumes the 
variance of lead time is zero. Last scenario (Scenario 2c) 
represents absence of historical data where mean lead time 
is set to its value at desired utilization, i.e. 6, and neglects 
its variance as in scenario 2b.  

4 SIMULATION ENVIRONMENT AND 
COMPUTATIONAL EXPERIMENTATION 

The simulation studies of the scenarios are conducted using 
SCOPE environment. SCOPE views a supply chain as a 
directed graph whose nodes represent facilities such as 
manufacturing plants and distribution centers, while arcs 
represent both information and material flows. Information 
flows are divided into a backward information flow (back-
ward pass) and forward information flow (commit pass) in 
addition to forward material flow (realization pass). The 
purpose of this distinction is to at least approximately rep-
resent the iterative negotiations/interactions that occur be-
tween elements of a supply chain.  

During the backward pass, information flows from the 
market back up the supply chain towards the raw material 
suppliers, with each entity developing its production plans 
and placing orders with its suppliers. Once the information 
from the market has propagated upstream to the origin of 
the supply chain, the forward, or commit, pass is initiated. 
During the commit pass information flows from the raw 
material suppliers back towards the consumer, with each 
entity adapting its original plans to the amounts of inputs 
its suppliers are willing to provide. The realization pass 
updates the state of the system as it evolves in time, which 
may also capture realizations of process uncertainty within 
each node. This allows us to model many different situa-
tions where the realization of a system variable differs 
from that predicted by the models used to control the be-
havior of the system, such as the presence of random vari-
ables or the failure of planning models to accurately repre-
sent the behavior of the system. 

This separation of forward and backward information 
flows provides the user significant flexibility in modeling 
information flows and modes of interaction between ele-
ments of the supply chain. During both forward and back-
ward passes, time lags of different durations as well as dif-
ferent levels of information aggregation can be used to 
model different modes of interaction. The Commit Pass in 
particular allows the user to embed a wide variety of logic 
to determine how elements of the supply chain allocate 
their outputs among different customers, and how the ef-
fects of decisions by individual elements of the supply 
chain affect the rest of the system. The Backward Pass, on 
the other hand, provides considerable scope for modeling 
different degrees and forms of information sharing be-
tween elements of the supply chain. For example, the Col-
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laborative Forecasting, Planning and Replenishment 
(CFPR) approach advocated in the retail sector and studied 
extensively by several researchers can be implemented as a 
module invoked during the backward pass of a SCOPE run. 

Further details on SCOPE environment can be found 
elsewhere (Orcun et al. (forthcoming)). Next section ex-
plains how the SCOPE environment has been set-up for 
computational experimentation of scenarios described in 
the previous section which is followed by discussion of the 
results of this experimental exploration. 

4.1 SCOPE Set-Up for Computational Experiments 

For the purpose of this experimental exploration the supply 
chain of Figure 1 is setup in the SCOPE environment. Re-
tailer in all scenarios is a passive actor: retailer sees the 
demand (stationary and normally distributed with mean 
1200 and variance 3002) at the market and passes it to the 
supplier instantaneously. The supplier releases new jobs 
equivalent to the demand it sees to its production facility. 
The production is governed by the clearing function given 
in Figure 2 which corresponds to realization pass of 
SCOPE environment. The supplier ships an order only if it 
can fulfill it completely obeying to first come first serve 
policy. For example the supplier will not be able to ship 
anything if the order in the line is 100 and the amount pro-
duced plus the finished goods inventory from last period is 
99 even if an outstanding order of 80 is in the queue. At 
each period only one shipment which might fulfill more 
than one order is allowed between supplier and retailer. 
The retailer receives and relays the shipments instantane-
ously. Scenario 1, base case, carries zero safety stock, i.e. 
empty finished goods inventory but starts with steady state 
WIP (3400 determined from equation 3: 1200 = WIP 
(1400/0.90) / [(1400/0.90) 0.6428 + WIP] to meet the 
mean/expected demand) . This base case simulation results 
(100 replications) is used to determine the average lead 
time and demand, and their standard deviations (see Table 
1). The purpose of looking at the lead time distribution in-
stead of alternative approaches such as average inventory 
is study the effect of non-symmetrical non-linearity intro-
duced by the clearing function due to congestion. 

Table 1: Lead-time and demand characteristics inferred 
from scenario 1 results and used in scenario 2a and sce-
nario 2b. 

Average Standard Deviation 
Lead Time 2.999257 0.470976 

Demand 1199.163 299.6311 

Using equation (4), i.e. Base Stock:
FGI+WIP=1200*3+300*30.5, the base stock is determined 
and split between work-in-progress, WIP, and finished 
goods inventory, FGI, with z=1.96 as given in Table 2. For 
scenarios 2a and 2b, WIP is calculated from the clearing 
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function (equation 3: 1200 = WIP (1400/0.90) / 
[(1400/0.90) 0.6428 + WIP]) such that the throughput will 
approximately be equal to the expected/mean demand. 
Scenario 2c sets WIP using the expected lead-time at the 
desired utilization assuming linear relationship (equation 2: 
WIP=6*1200 where 6 is the expected lead time at desired 
utilization). Note that starting with empty production facil-
ity with FGI equals to base stock at the long run (at the 
steady state) will yield the WIP and FGI split of Table 2 
where FGI and WIP are analogous to inventory-on-hand 
and inventory-on-order, respectively. 

Table 2: Base stock policy calculated for scenarios 2a, 2b 
and 2c from scenario 1 simulation results. 

Base 
Stock

WIP FGI 

Scenario 2a 5100 3400 1700 
Scenario 2b 4614 3400 1215 
Scenario 2c 8640 7200 1440 

Noting that the demand in the market is assumed sta-
tionary and releases to the production follows exactly the 
demand, the base stock policy is kept constant throughout 
the simulation (stationary base stock policy) to represent 
the current practices. 

All the scenarios are simulated using the same demand 
stream of scenario 1 (common random numbers) to gener-
ate the results presented in the next section where work-in-
progress cost, finished goods inventory cost and production 
cost are 1, 0.6, 8 respectively. The simulations are hot 
started using the WIP and FGI of Table 2. 

4.1 Results and Discussions 

One direct observation from Table 1 is that the average ob-
served lead-time at scenario 1 (2.99) is higher than the one 
calculated from equation (3) (2.81) to meet mean/expected 
demand. 

As it can be noticed from Figure 3 as the safety stock 
increases (scenarios in the order of increasing safety stock: 
2b, 2a an 2c) the customer service level improves. While 
scenario 1 performs worst (no safety stock), except for 2c 
none of the scenarios guarantee 95% customer service 
level. 

Figure 4 further depicts the standard deviation of cus-
tomer service level which follows similar trend to the aver-
age service level: The variation in customer service level is 
higher for poor customer service level. 
1695
Figure 3: Average backlog fraction at the supplier 

Figure 4: Standard deviation of backlog fraction at the sup-
plier 

Figures 5 and 6 point out that the higher customer ser-
vice level comes with a high cost of finished goods inven-
tory. No safety stock scenario (scenarios 1) have lowest 
finished goods inventory which is arising from backlog-
ging without partial order fulfillment. The rising finished 
goods inventory (FGI) of scenario 2c reflects the extra 
WIP in the system (which was set using linear relationship 
equation 2 and using the expected lead-time at desired 
utilization) being transformed to FGI with time. 

Figure 5: Average finished goods inventory cost at the sup-
plier 



Orcun, Çetink

Figure 6: Standard deviation of finished goods inventory 
cost at the supplier 

Figure 7: Average work-in-progress cost at the supplier 

Figure 8: Standard deviation of work-in-progress cost at 
the supplier 

Figure 9: Average production cost at the supplier 
16
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Figure 10: Standard deviation of production cost at the 
supplier 

An interesting observation from Figure 6 is the in-
crease in the variability of finished goods inventory as 
safety stock increases. 

Figures 7 and 8 suggest that scenarios 1, 2a, 2b and 2c 
follow a stable work in progress profile which is not sur-
prising since releases follow the demand profile.  

Figures 9 and 10 follow the throughput pattern which 
is smooth for all of the scenarios which is a classic charac-
teristic of congestions. 

Table 3: Total costs of scenarios. 
Total Cost Incremental Cost  

(relative to Base Case) 
Scenario 1 1,083,152 - 

Scenario 2a 1,107,031 23,879 
Scenario 2b 1,094,479 11,327 
Scenario 2c 1,264,430 181,278 

Table 4: Average backlog fractions of scenarios. 
Average 
Backlog 
Fraction 

Incremental
Improvement  

(relative to Base Case) 
Scenario 1 0.6219 - 

Scenario 2a 0.0415 0.5804 
Scenario 2b 0.1267 0.4952 
Scenario 2c 0.0000 0.6219 

Table 5: Costs of unit improvement of customer service 
level relative to base case (incremental cost divided by in-
cremental improvement). 

Cost 
Scenario 1 -

Scenario 2a 41,143 
Scenario 2b 22,874 
Scenario 2c 291,480 

Tables 3-5 summarize the total cost, average customer 
service level and cost of unit improvement from base case 
(scenario 1) of each scenario compared to base case, re-
spectively.  As expected the total cost increases as base 
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stock increases. Scenario 2c depicts the consequence of 
over loading the system especially when lead-time depends 
on utilization. 

5 CONCLUSIONS 

In this work we presented how the commonly used ap-
proaches to set safety stocks behave when the production is 
governed by load dependent lead time, represented by 
clearing function. The main conclusion we can drive from 
the results is that due to non-linear dependence of lead-
time to utilization, throughput no longer follows the de-
mand stream’s independently identically distributed char-
acteristic and hence the safety stock does not guarantee the 
customer satisfaction level set in the equation (4). Another 
interesting conclusion is that though Scenario 2b does not 
perform as well as scenario 2a the cost of unit improve-
ment in customer satisfaction is lower than scenario 2a 
which indicates diminishing rate of return. Scenario 2c 
highlights the fact that it is not cheap to hedge the demand 
variability with work-in-progress inventory.  

One natural extension of this work is exploring how to 
set-up optimal base stock policy when the production is 
governed by non-linear operating curve, e.g. clearing func-
tion. More interestingly, this study suggests that effect of 
planning models, which account for non-linear dependence 
between lead-time and utilization, on optimal base stock 
policy might be more pronounced as they distort the re-
lease pattern away from the demand stream by smoothing 
the production under high utilization.
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