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ABSTRACT 

We describe a distributed agent based epidemic model that 
is capable of easily simulating several hundred million 
agents.  The model is adaptable to shared-memory and dis-
tributed-memory architectures.  Several problems are ad-
dressed to enable the distributed simulation: allocation of 
agents to available compute nodes, periodic synchroniza-
tion of compute nodes, and efficient communication be-
tween compute nodes.  We assert that our modeling 
scheme is easily adaptable to different hardware environ-
ments and does not require large investments in perform-
ance tuning or special case coding.

1 INTRODUCTION 

We set out to create an agent based model (ABM) of dis-
ease transmission.  We designed our model to suit multiple 
research projects, collaborators, and computing facilities.  
Consequently, our model had to satisfy many different re-
quirements.  The model had to be capable of supporting 
different diseases.  It also had to support two different 
computing environments.  One environment was a 64 bit 
Linux-based distributed-memory cluster with low latency 
interconnects.  The other environment was a pair of Win-
dows-based quad processor servers each with 32 GB of 
shared-memory.  Our last major requirement was to be able 
to support populations from several hundred million to 6 
billion agents. 

In this paper we will discuss the overall design of the 
model.  We will also explicitly cover three topics.  We will 
detail the synchronization of multiple computers, and the 
allocation of agents to those computers.  We also dedicate 
a section to the implementation of the communication pro-
tocol.  This last section is the only language specific sec-
tion in the paper. 

2 OVERALL DESIGN 

First of all, the entire model was written in JAVA, however 
only a small fraction of this paper is JAVA specific.  Im-
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plementing the model in JAVA allows us to quickly and 
easily step away from the problems supporting different 
operating systems might pose.  JAVA will also allow de-
velopment to proceed swiftly due to the language’s built in 
features such as extensive libraries, automated serialization, 
and Remote Method Invocation (RMI).  

The most immediate problem to address when design-
ing a large scale ABM is that the entire population of 
agents will not fit onto one node of a distributed-memory 
cluster.  Therefore, a scheme to distribute the agents across 
available computing resources must be devised.  Our 
scheme distributes the agents across the computing re-
sources in two phases.  First, the agents are distributed 
amongst the computers that will be running the model.  
Then agents are distributed between the threads on each 
computer.  Each computer will host one processing thread 
for each CPU it has (2 or more threads per multi-core 
CPU).

Communication between threads and nodes only oc-
curs at prearranged times.  When a thread reaches a com-
munication time it is paused.  The thread will then send 
messages to other threads via the “node” program de-
scribed below.  After the outgoing messages are sent in-
coming messages are received.  All messages that need to 
be sent are stored in a queue until a prescheduled commu-
nication time is reached, then all messages are sent as a 
single unit.  Queuing the communication in this way re-
moves the communication bottleneck derived from RMI’s 
high latency. 

The final two pieces of the model are small programs 
that oversee the model as a whole.  An instance of a 
“node” program is run on each computer that runs a frac-
tion of the model.  The node program manages the threads 
of a single computer.  The second program is the “man-
ager” program.  The manager program ensures that all 
communication has finished before it allows each node to 
resume independent processing.  The manager also func-
tions as the hub of all communication.  There is only one 
instance of the manager program. 
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3 SYNCHRONIZATION DETAILS 

In this section, we discuss precisely how threads navigate a 
loop from processing, to waiting, to communicating, and 
back to processing again.  To start we will describe the 
threads themselves.  At the heart of each processing thread 
is a single special purpose Priority Queue (PQ).  This PQ 
must support efficient removal of a random entry.  This is 
often an O(n) operation because most PQs are imple-
mented with a heap or an array.  To create our special pur-
pose PQ we added a method named “removeFirst(key)” to 
the java.util.TreeMap class which is implemented using a 
Red-Black tree.  Combining the remove(key) and firstKey() 
into one method significantly improves performance. 

Priority Queues contain events that are tagged with a 
time.  Normal processing proceeds when a thread polls the 
event with minimum time off of the PQ, executes it, and 
repeats.  Eventually a processing thread will poll an event 
that denotes the scheduled communication time has been 
reached.  The thread is then paused until all communica-
tion is complete. 

Once every thread on a node is paused that node is 
ready to communicate with the manager.  But what exactly 
is communicated?  Well, when the processing thread was 
polling events occasionally it would encounter an event 
that required communication with an agent that resides on 
another thread or node.  Since the required communication 
won’t occur until later that event could not have been fully 
executed immediately.  A record of this unexecuted event 
was placed in a queue for later execution.  These records 
are coined OffNodeContactEvents (ONCE).  These ON-
CEs are the bulk of the inter-node and inter-thread com-
munication. 

At first glance the process of saving some events to be 
executed later appears severely flawed.  Here is an exam-
ple of the obviously problem.  Let ONCE alpha represent a 
contact between two agents that should have occurred at 
time 172.  Yet, alpha gets transmitted and executed at time 
200.  How has this not corrupted the timeline of the model? 

The answer can be found in the incubation period of 
the disease we are simulating.  If an agent is exposed and 
infected with a disease at time period x but does not start 
changing behavior or infecting others for y time periods 
then the record of that agent’s infection doesn’t need to be 
sent until a time period just before (x + y).  The maximum 
time between communication periods is dictated by the in-
cubation period of the disease being simulated.  When 
communication does occur there are only two pieces of 
bookkeeping that must occur.  First, ensure that any newly 
infected agent was infected at the time the ONCE was cre-
ated and not when the ONCE was sent or executed.  Sec-
ond, occasionally one must alter an agent’s “infection 
time”.  For Instance, push back an agent’s “infection time” 
if that agent was infected at time 188 but should have been 
infected by a ONCE at time 172.  Making this correction 
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requires searching the Priority Queue for the specific event 
that marks the beginning of an agent’s infectious period.  If 
the PQ was implemented with a heap or an array this op-
eration’s inefficiency would noticeable impact perform-
ance.

When all nodes are ready to communicate the manager 
program retrieves the queue of OffNodeContactEvents 
from each node.  The manager will then distribute these 
ONCEs to the appropriate node.  Next, the manager will 
confirm that all nodes have finished incorporating the new 
OffNodeContactEvents into the appropriate thread’s Prior-
ity Queue.  At this point the manager prompts each node to 
notify its threads to begin processing again. 

4 DETAILS OF COMMUNICATION 
IMPLEMENTATION 

Of course the communication is implemented using JAVA 
RMI.  We know that RMI employs other built-in JAVA 
features to work its magic so we must be careful.  In par-
ticular, we are trying to avoid nesting too many “general 
purpose” built-in capabilities so that performance doesn’t 
degrade.  

JAVA RMI converts objects it sends over the network 
to binary data.  RMI then sends the binary data over the 
network.  Upon receiving the binary data it reconstructs 
those objects from the binary data.  Converting an object to 
binary data is called serialization.  Reconstructing the ob-
ject is called deserialization.  These two processes are 
automated by the JAVA language.  However, this automa-
tion is very expensive time-wise. 

There are two ways to reduce the cost of serialization 
calls.  One, we can bucket many OffNodeContactEvents 
into one object.  This saves an enormous amount of time 
because now we only call the built-in serialization scheme 
once per bucket.  Two, rather than rely on JAVA to gener-
ate serialization and deserialization methods we can explic-
itly code them.  To do this implement the Externalizable 
interface in the java.io package.  Be aware that implement-
ing Externalizable will not yield a large performance im-
provement if a bucketing scheme is in place. 

Lastly when running the model with many node pro-
grams it is very important to communicate in parallel.  Re-
trieving ONCEs from the nodes is a quick process because 
those objects have already been created and bucketing is 
swift just like communication.  When retrieving, it barely 
matters if retrieval occurs in serial or in parallel.  However, 
sending ONCEs back to the nodes appears much slower.  
But, very little time is spent on the actual communication.  
The majority of the time is spent incorporating the new 
OffNodeContactEvents into Priority Queues.  Since the 
node programs and their Priority Queues are all independ-
ent that work should be done in parallel to save time. 
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5 DISTRIBUTION OF AGENTS BETWEEN 
COMPUTING RESOURCES 

We want to distribute the agents across our computing re-
sources such that the model runs as fast as possible in real 
time.  There are two important facts to remember when de-
signing a distribution scheme: a node’s runtime will be 
closely associated with the number of infected agents re-
siding on that node; contacts that require communication 
are dramatically more expensive then contacts that require 
only local information.  These two competing forces sug-
gest dramatically different distributions of agents.  On one 
hand, assigning each node a 1/n share of each geographic 
region would suggest that all nodes equally share the work-
load.  Thus promoting load-balancing and reducing the 
amount of time nodes sit idle waiting for other nodes to 
finish.  On the other hand, we could assign an entire geo-
graphic region to each node.  This would minimize expen-
sive contacts that require communication.  The first way 
increases the total amount of work to be done by maximiz-
ing communication.  The second way maximizes the like-
lihood that some of our computing resources will be sitting 
idle due to a geographic specific disease outbreak. 

After running many different empirical experiments 
we found that our model runs overwhelmingly faster when 
inter-node communication is minimized.  Nodes must be 
significantly (perhaps unrealistically) unbalanced for a 
large fraction of the model run before it pays to split geo-
graphic regions between nodes and bloat the amount of in-
ter-node communication. 

Using the results of our empirical experiments as a 
guide, we can now start to formulate a strategy to optimize 
the distribution of our agents.  The computing environment 
will dictate how many ways we must divide our population.  
For instance, if we intend to run our model on 2 quad proc-
essor servers then we need to divide our population into 8 
groups.  To be more precise, we need to first divide the 
population into 2 groups, one group for each node.  Then 
we further divide each of those 2 groups into 4 subgroups. 

Before we can discuss the details of our distribution 
optimization approach we should discuss the basic building 
block of our model.  The basic building block represent a 
group of agents that all reside close to one another in geo-
graphic space.  The building block could represent all the 
agents who live in a city block, a zip code, a census tract, 
or perhaps a square kilometer.  We only require that we are 
able to measure the distance between each pair of building 
blocks.  For the purposes of this paper let us refer to these 
building blocks as pixels.  Now when we visualize this 
problem, we can think about it as coloring a map made up 
of n pixels. 

To begin, we need to calculate some data.  We assem-
ble a list of each pixel’s population.  Then, we calculate an 
n by n matrix A where matrix entry Aij is an estimation of 
the total amount of interaction between agents that live in 
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pixel i and agents that live in pixel j.  Armed with this data 
we can begin distributing our agents. 

First randomly assign each pixel one of g possible col-
ors, where g is the number of groups the population will be 
split into.  After each pixel has been assigned a color we 
then create a small 2-dimensional array.  This array has 
dimensions “number of pixels” by “number of groups”.  
The entry array[i][j] is a measure of how much pixel i in-
teracts with all pixels of group (color) j.  This array can be 
directly calculated from matrix A once each pixel has been 
assigned a color.  Maintaining this helper array throughout 
optimization will drastically improve performance.  This is 
akin to storing the sum of a set of numbers to avoid recal-
culating the sum from scratch after one number is added or 
removed from the set. 

Now we enter the core optimization loop.  We pick a 
random group.  That group absorbs pixels from other 
groups until it reaches a certain population.  Then this 
group starts to shrink, giving pixels to other groups. When 
the shrinking group’s population is about “total population 
/ g” it stops donating pixels to other groups.  Then pick an-
other random group and repeat. 

Each time the loop runs the selected group grows a lit-
tle less.  Eventually no pixels will be exchanged and the 
loop will exit leaving behind groups that do little inter-
group interaction.  This approach was loosely inspired by 
simulated annealing. 

When a group is growing it must select which pixel it 
wants to steal.  It will select the out-of-group pixel that it 
interacts with most.  It does not matter if per capita interac-
tion or total interaction is selected as the metric.  Both 
ranking schemes will provide good results. 

However, a shrinking group must be more careful 
when it decides which pixel to expel.  A shrinking group 
should expel the pixel that does the smallest share of its in-
teraction within the group.  Expelling the pixel that does 
the smallest absolute amount of intra-group interaction al-
most always expels a small population pixel regardless of 
whether that pixel should rightfully be a member of the 
group.   

A shrinking group must also decide which group re-
ceives expelled pixels.  An expelled pixel’s new owner 
should be the group that it interacts with most (that isn’t 
the expelling group).  Other methods of assigning new 
owners create noticeable problems.  For instance, assigning 
pixels to a random group slows optimization, and leaving 
pixels as a member of no group leaves many pixels ne-
glected because they never get absorbed by a growing 
group. 

An obvious approach would be to run the above algo-
rithm once to split n pixels into 8 groups.  But it is a much 
better idea to run that algorithm multiple times to split 
those n pixels into 8 groups.  Each time we run the algo-
rithm we should split the starting population into as few 
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groups as possible (in this case 2).  Nesting the optimiza-
tion calls is better for two reasons.   

One, it provides a better final distribution.  The above 
algorithm works with many groups, but it does not work 
well with many groups. When there are too many groups 
(6+) there are opportunities for the core loop to start exhib-
iting cycle-like behavior.  This cycle-like behavior might 
leave 6 of 8 colors compact and well optimized but leave 
the other 2 colors very disjointed. 

Nesting optimization calls also reduces the total time 
required to calculate a good distribution.  The two major 
determinants of our algorithm’s runtime are “Matrix size” 
and “number of groups”.  Each time the algorithm runs it 
will be optimizing a quadratically shrinking matrix.  Since 
our algorithm converges quadratically faster as it splits the 
population fewer ways it is best to optimize as quickly as 
possible when operating on the full size matrix.  Any fur-
ther population splitting will proceed quite quickly.  

We do not claim that our distribution algorithm will 
minimize inter-group contacts.  We make the weaker claim 
that our algorithm quasi-minimizes inter-group interaction.   
We estimate that exactly minimizing inter-group interac-
tion could only further reduce inter-group interaction by at 
most 10 percent. 

Finally, we present the results of optimizing the distri-
bution of agents amongst two nodes where each node hosts 
eight threads.  Figure 1 shows the distribution between the 
two nodes.  Figure 2 shows how each node allocates its 
share of the model amongst its 8 threads.  The similarly 
colored regions on opposite sides of the red dividing line 
are not related. 

As you can see in Figure 1 the obtained distribution is 
almost certainly not the best possible result.  Our algorithm 
has trouble swapping a region that is made up of multiple 
pixels.  In this case the red Miami region did not swap to 
the green node.  This is likely to be a small inefficiency.  
The same forces that kept the Miami region from being 
transferred to the green node pixel by pixel also ensured 
that there is a small penalty for this failure.  The green 
node would have absorbed a pixel of the red Miami region 
if it interacted strongly with it.  Had a single pixel of the 
red Miami region become green it would have encouraged 
a cascade that eventually would have absorbed every pixel 
of the red Miami region.  Since this cascade did not occur 
we can conclude that the red Miami region does a very 
large share of its interaction within the local red region 
(hence not the surround green).  If this is indeed true it is 
only important that the Miami region is not split.  It is not 
important if the region is green or red, because it “only” 
interacts within itself. 
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Figure 1: The quasi-optimal distribution of agents between 
two nodes.  

Figure 2: This figure shows the same distribution as in 
Figure 1 except the colors represent the distribution be-
tween the thread of each node. 

Table 1: This table shows proof of performance numbers. 
Each simulation had a population of 300 million agents.  

Total
Time
(min)

Percent time 
communicating 

Communication
Frequency 

Run A 131.68 14% every 12 hours 
Run B 119.32 15% every 48 hours 
Unoptimized 161.91 24% every 12 hours 

6 BENCHMARKS  

In this section we show the results from three different 
simulations.  The simulations were of a stylized disease 
spreading across the continental United States.  The styl-
ized disease had a 96 hour incubation period and a 48 hour 
contagious period.  The model population reaches herd 
immunity when roughly 65% of the community has recov-
ered from the disease.  At this point the epidemic dies out 
due to a lack of susceptible agents.  Each simulation lasts 
about 300 days and has a population of 300 million agents 
living in 4000 pixels using about 38 GB of memory.  The 
numbers presented here are put forward as a proof of con-
cept and performance. 

One of the three runs did not have the allocation of 
agents to nodes and threads optimized.  This run is in-
cluded here to support our claim that reducing inter-node 
and inter-thread communication at the expense of load bal-
ancing is beneficial. 
6



Parker
The other two simulations are better representations of 
achievable performance.  Two observations are of particu-
lar importance.  First of all, a detailed simulation of a 300 
million agent population takes roughly 2 hours to complete 
and only uses 38 GB of memory.  This leaves plenty of 
room for expansion along practically any dimension de-
sired.   Second, notice that the time spent communicating 
between computing resources is not a dominant factor in 
model run-time. 

7 CONCLUSION 

We believe JAVA is an excellent language with which to 
develop large agent based models.  JAVA provides many 
built in features like RMI, serialization, and thread man-
agement tools that allow a distributed model to be easily 
developed.  While there are important pitfalls to watch out 
for when using JAVA these obstacles can be easily side-
stepped.  Any modeler is then left with a wonderful tool-
box to create a flexible portable, efficient, and clean epi-
demic model. 
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