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ABSTRACT 

Agent-based models (ABMs) are powerful in describing 
structured epidemiological processes involving human 
behavior and local interaction. The joint behavior of the 
agents can be very complex and tracking the behavior re-
quires a disciplined approach. At the same time, equation-
based models (EBMs) can be more tractable and allow for 
at least partial analytical insight. However, inadequate 
representation of the detailed population structure can 
lead to spurious results, especially when the epidemic 
process is beginning and individual variation is critical. In 
this paper, we demonstrate an approach that combines the 
two modeling paradigms and introduces a hybrid model 
that starts as agent-based and switches to equation-based 
after the number of infected individuals is large enough to 
support a population-averaged approach. This hybrid 
model can dramatically save computational times and, 
more fundamentally, allows for the mathematical analysis 
of emerging structures generated by the ABM. 

1 INTRODUCTION

Choosing an appropriate formalism for an epidemiologi-
cal model can pose a challenge. The type of description 
can range from a compartmental model to very detailed 
ABMs defined by contact networks (Riley, 2007). Some 
back-to-back comparison of equation-based and agent-
based models of dynamics of contagion was done in 
Rahmandad and Sterman (2007). Equation-based ap-
proaches, such as compartmental models, operate on 
global laws defined by the equations and apply to all 
members of the compartment. Adding stochasticity does 
not change the description in principle, but rather utilizes 
the concept of independent and identically distributed 
(iid) objects. In a number of situations such as the spread 
of infectious diseases, especially sexually transmitted dis-
eases, it is important to describe more detailed micro-
level transmission processes.  
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When describing a number of interacting and struc-
tured populations, EBMs become more complex and in-
clude a large number of equations, which makes them less 
tractable. Furthermore, in this situation, EBMs require 
that specific parameters be estimated for each category.  

Alternatively, in individual-based models, the rules 
are defined at the individual level, which allows one to 
capture local interactions and adaptive behavior (e.g., 
prevalence elastic behavior). The conclusions about ag-
gregate dynamics are made by integrating the behavior 
over the ensemble of interacting agents. These models are 
sometimes called “individual-based models” in epidemi-
ology because the term “agent” has a different meaning 
(e.g, contagious pathogens).  

ABMs thus have the advantage that they explicitly 
represent epidemic processes at the local level, permitting 
one to generate macroscopic structures that can then be 
compared to data.. If one’s focus is epidemic behavior at 
the local level (i.e., small town or village) then aggregated 
equation-based representations may be too general and 
hence misleading. 

This advantage in capturing local interactions, how-
ever, is not without cost: ABMs may impose a heavy 
computational and parametric burden. Tracking and 
scheduling a large number of interacting agents leads to 
serious computational requirements and analytical chal-
lenges. 

All of this raises a central methodological question: 
“Do we really need to keep track of local interaction all 
the way through to the end of the simulations, or is there a 
natural way to switch to aggregated dynamics after the 
global structures have emerged?” For example, when 
more global behavior is of interest, such as country-level 
disease incidence or prevalence, can the emergent behav-
ior be captured at a higher level of aggregation? Perhaps, 
after the emergent patterns have been established, they 
can be summarized in a set of global, equation-based rules 
such that the population-level outcomes could be ade-
quate to the ones of the ABMs?  
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In this paper, we present a virtual laboratory to study 
these questions and provide an example of a mathematical 
model of pandemic influenza. In Section 2, we briefly in-
troduce past work on the development of mathematical 
models of influenza. Then, in Section 3, we introduce a 
concept of a hybrid threshold model. We present demon-
stration results in Section 4. Finally, conclusions and fu-
ture work are summarized in Section 5. 

2 PAST DEVELOPMENTS IN MATHEMATICAL 
MODELS OF GLOBAL INFLUENZA 

Some of the first models describing the global spread of 
influenza were developed by Baroyan et al. and then fur-
ther elaborated by Rvachev and Longini in 1985. The 
models were based on a system of coupled difference 
equations. More recent models have expanded the to in-
clude more cities around the world and added intervention 
details (Epstein et al. 2007, Collizza et al. 2006ab, 2007, 
Cooper et al., 2006). Country-wide models developed by 
Longini et al. (2005) provide an intermediate step be-
tween pure agent-based and patch models. Ferguson et al. 
(2006) and Parker et al. (2007) have developed pure 
ABMs for the United States; however, the models incor-
porate little details about the community structure within 
the cities. Longini et al, (2004) have developed an ABM 
for community-based disease transmission where agents 
travel between community components ( school, work, 
home) according to their age. More detailed models that 
include community structure were developed by Eubank 
et al. (2004) under Episims project. Episims has the most 
detail and describes human activities within a city using 
respondents’ blogs. It includes detailed city structure; traf-
fic patterns; and contact patterns at work, in schools, at 
homes, at public places, etc. 

The difference in model complexity is reflected in the 
computational resources to run the simulations. For ex-
ample, an EBM of the Rvachev or Longini type can be 
easily run on a laptop with 512M of RAM. The same is 
true for a small ABM with less than 1M agents. However, 
when the number of agents is large and is on the scale of 
U.S. size (300M), such as in the models by Parker et al. or 
Ferguson et al., more computational power is needed, 
such as a 64-node double processor Linux cluster. Proba-
bly the most complexity is involved in the Episims model 
which requires detailed event scheduling, and thus, has 
been ran on similar clusters even for an 8M agent city. 
We are considering a model that would combine the de-
tailed description of the epidemic up to a certain point, 
and then we would switch to an EBM with much less 
computational demands. 
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3 HYBRID THRESHOLD MODELS 

3.1 General Concept 

The concept of the hybrid threshold model originates 
from the premise that when the number of active agents is 
large, the law of large numbers and central limit theorem 
could be applicable to iid observations. Thus, it should be 
possible to aggregate the behavior of similar agents and to 
model their behavior through mean-field approximations. 

3.2 Homogeneously Mixed Paradigm in a 
Single City 

We start illustrating our approach with a simple homoge-
neously mixed epidemic model with no adaptive behavior 
and no community structure. Although such a simplistic 
description does not allow ABMs to produce emerging 
structures, it illustrates the mechanics of switching be-
tween agent-based and equation-based formalisms. Each 
infected agent thus has a chance to meet any other agent 
and pass an infection to him or her. The rate of disease 
transmission ( ) is dependent on how many susceptible 
agents an infected agent meets per unit time ( ) and the 
probability of disease transmission per contact ( ). Know-
ing this rate, a deterministic version could be built as it 
was done in Epstein et al. 

3.2.1 Agent-based Model 

An individual is considered to be in one of the following 
four states: (1) Susceptible (can contract the disease given 
the contact with an infected individual), (2) Exposed 
(contracted the diseases, but is in a latent state without 
showing symptoms), (3) Infectious (showing symptoms 
and capable of infecting others), and (4) Recovered (ob-
tained permanent immunity and cannot infect others). We 
denote the number of Susceptible, Exposed, Infectious, 
Recovered, and Total individuals as S,E,I,R,T, respec-
tively. 

Because the interaction between Susceptible agents is 
irrelevant to the epidemic process in the ABM, we track 
only the contacts of the Exposed and Infectious agents, 
keeping Susceptible agents inactive. When an infected in-
dividual passes infection to a Susceptible individual, a 
corresponding Susceptible agent is activated. This algo-
rithm allows one to keep the number of active (Exposed 
and Infectious) agents low at the beginning of the epi-
demic process and thus decreases the computational bur-
den. As the number of activated agents increases, the 
amount of required computational resources (e.g., RAM) 
increases as well. 
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3.2.2 Equation-based Description 

The Equation-based model is based on a compartmental 
approach where individuals travel between S,E,I,R com-
partments with rates defined by transition equations. De-
noting the time since becoming Infectious as , the total 
number of newly Exposed persons in a city at the start of 
day  is 1t

max

1
),(

)(
)()1,0( tI

tT
tStE  (1) 

where index  corresponds to  days of being infectious. 
Because of the stochastic nature of the Infectious 

process the number of new Exposed individuals will be a 
random number following some distribution. Many ap-
proaches were taken to estimate this distribution. For the 
equation-based case, we included two potential sources of 
stochasticity in the model: (1) random contact between 
individuals, and (2) random travel from city to city. Ran-
domness is applied to each of these processes in a way 
that accounts for the underlying nature of the process in-
volved. We assume that random contacts between pairs of 
individuals are independent of each other and that the 
number of new contacts that occur between two times, t
and , does not depend on either the number of pre-
vious contacts or the time t . Under these assumptions, 
the number of random contacts between individuals fol-
lows a Poisson distribution, where the mean number of 
Infectious contacts in the case of random contact is equal 
to the number of Infectious contacts in the deterministic 
case. At the beginning of an epidemic when say a single 
individual brings the disease to the city, the epidemic may 
start or may fade out if the infected individual does not 
pass the disease to the others. This stochastic effect is es-
pecially important at the early stages of an epidemic and 
can depend on the local contact network of the infected 
individual. When the number of Infectious individuals is 
large, the individual effects cancel out and the new num-
bers of infected can be approximated by the averaged 
value in (1). 

tt

3.2.3 Threshold Switch 

When the number of infected individuals reaches certain 
value we stop the model and evaluate the states in which 
the agents are found. These values are then used as initial 
conditions for the EBM and an initial time point is con-
sidered the same as the time at which the ABM was 
stopped.  

It is important to understand when to switch from 
agent-based to equation-based formalism. In our initial 
experimentation we have explored a number of switching 
thresholds corresponding to 50, 100, and 200 individuals. 
Conversely, when the number of infected individuals be-
1

comes small we switch back to an agent-based formula-
tion to avoid artifacts that can be caused by an EBM. 

We consider the ABM to be a “gold standard” be-
cause it has the most micro details. We thus compare av-
erage epidemic trajectories produced by stochastic equa-
tion-based and an ABMs and determine which threshold 
value ,if any, makes two average trajectories equivalent. 

3.3 Global Epidemic Model (GEM) 
with Multiple Cities 

The GEM considers a network of cities around the world 
connected by air travel. Population sizes and travel data 
are obtained from a number of publicly available sources 
(e.g., Population Division, U.S. Census Bureau 2004 
Brinkhoff 2005, Helders 2005). In this model, individuals 
travel between the cities according to probabilistic rules 
based on population size and the number of available air-
line seats. Assuming symmetry in travel, the number of 
individuals entering and leaving a city is equal on a daily 
basis. When an individual becomes infected (i.e., shows 
symptoms) that person is banned from travel with certain 
probability. Because of the latent period, Exposed indi-
viduals are the ones who transmit most of the disease. 

3.3.1 Agent-based Description 

When no epidemic is present in a city, the city population 
is in a “dormant” stage with no active agents. When an 
Exposed or Infectious individual travels to a city, the 
agent can start an epidemic (i.e., activate new Exposed 
and Infectious individuals). 

3.3.2 Equation-based Description 

Our EBM consists of a number (155) of coupled systems 
of difference equations. Travel is defined as travel flows. 
Let  represent the number of individuals in city i
on day  in any of the groups allowed to travel, and let 

)(tAi

t
ij  be the average daily number of travelers from city i

to city . The net change in  due to travel to and 
from city  can be included in a transportation operator 
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The first term in the summation refers to individuals 
traveling to city  from city . The second term in the 
summation refers to individuals traveling from city  to 
city . Note that when , the terms in the summation 

i j
i
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cancel and the net number of travelers from city  to it-
self is zero. 

i

To prevent the early occurrence of new epidemics in 
cities due to small fractions of Exposed individuals mov-
ing through the transportation network, the definition of 

 is modified slightly for Exposed travelers: 
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This modification ensures that Exposed individuals 
are allowed to travel to an unexposed city i only if the ap-
proximate expected total of these individuals is at least 
one. 

3.3.3 Threshold Switch 

Because an epidemic in different cities has different dy-
namics some cities can be at the agent-based state with all 
agents inactive, other cities can have active agents below 
the switching threshold, and some cities can have a large 
epidemic beyond the threshold value and thus follow the 
equation-based description. For a fixed (and city-
dependent) threshold we have developed a set of rules 
that account for removing a number of traveling Exposed 
individuals from an equation-based city and placing them 
in an agent-based city. Similarly, we have addressed the 
reverse issue when the agents from an agent-based city 
move to an equation-based city. When both travel and 
destination cities are of the same type we do not have 
special means for accounting for the right number of trav-
elers and for keeping the total population constant. 

Introduction of quarantine, travel restrictions, and 
vaccination is adjusted accordingly in each city to match 
an agent-based or equation-based description. 

3.4 Structured Cities 

For structured cities we follow Longini (2004) and con-
struct five homogeneously mixed groups in the model: 

Households 
Play groups 
Schools 
Work/office 
Social groups. 

Implicitly, age structure is built into the model so that 
children do not go to work and adults do not go to school. 
We generated a synthetic population with household, play 
group, school, and social group compositions. With this 
city structure, an individual will still go through the four 
disease states (Susceptible, Exposed, Infectious, and Re-
covered); however, the degree of contact between differ-
1

ent mixing groups will be different, and therefore, affect 
the disease transmission. We do not consider local trans-
portation and detailed social network. Model performance 
is similar to the GEM, with individuals traveling between 
the social groups with the exception that the individuals 
all move back to their households at night. An additional 
issue in such a structured model is that the households are 
fairly small in size and have to be activated together with 
an Infectious individual. This way, the number of agents 
is not larger than the number of infected individuals and 
also includes the members of the households. Neverthe-
less, the number of active agents is still smaller than the 
number of agents in the fully ABM where all agents are 
active.

When an initial infected individual is introduced, we 
can keep track of an average disease transmission matrix 
(i.e., track the probabilities of who has infected whom). In 
the simplest structured city we thus have two age groups 
(adults and children) and a 2 X 2 matrix of infection rates 
as in Table 1. 

Table 1: Infection Rates 
From/To Adults Children
Adults Paa Pac
Children Pca Pcc

Here the infection rates Paa, Pac, Pca, and Pcc correspond 
to disease transmission probabilities from adult to adult, 
adult to child, child to adult, and child to child, respec-
tively. When the epidemic process is at its beginning, the 
estimates in the matrix will be unstable due to the random 
effects. When the inputs in the matrix are stabilized, we 
switch to an age structured EBM that uses this transition 
matrix. 

4 EXAMPLES 

In Figure 1 we present examples of stochastic trajectories 
averaged over 50 replications with different switch values 
for a global epidemic model. Although both equation-
based and agent-based models start at the same time, an 
agent-based epidemic is developing slower perhaps due to 
initial stochasticity. When threshold is low, around 100 
new infected agents, the model switches to the equation-
based setting early and follows the pure equation based 
trajectory very closely. Switching to equation-based 
model at a later stage such as the threshold value of 200 
makes the model runs closer to the model with the switch 
at 1000 cases which makes us believe that lifting the 
threshold further will not lead to principally different re-
sults. 

Because the threshold value could be different for cit-
ies of different sizes and the same switch value doesn’t fit 
all scenarios, we need to develop a rule for dynamic 
threshold setting. In particular, we monitor a simulation-
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based estimator of disease transmission rate (Figure 2). 
When the number of infected individuals is large enough, 
the estimator stabilizes around the theoretical value corre-
sponding to an equation-based model. When such stabili-
zation occurs, we consider that time point appropriate for 
the threshold switch. 

Figure 1. Epidemic curves for Cairo with epidemic start in 
Hong Kong at day one. The solid line corresponds to the 
equation-based model, while other lines correspond to 
threshold model trajectories with threshold switch values 
corresponding to 100, 200 and 1000 infected individuals. 
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Figure 2. Stabilization of the disease transmission pa-
rameter as the number of infected agents is getting larger. 

5 DISCUSSION 

We have presented a conceptual model and initial exam-
ples of a threshold hybrid model that switches between 
agent-based and equation-based descriptions. The switch 
allows one to describe the initiation of the epidemic proc-
ess when the level of uncertainty is high, and allows one 
to describe efficiently the process of an ongoing epidemic 
when the level of uncertainty is relatively low. Although 
153
the presented examples use a somewhat simplified ABM 
and do not account for behavior change during an epi-
demic, the same approach can also be used for a model 
where all agents are initially active and have adaptive be-
havior patterns. What is paramount is the definition of the 
most important transmission subgroups and definition of 
the transmission matrix. As shown in Heckathorn et al. 
(1997) for respondent driven sampling, when membership 
in a group is defined by the contact network, the transmis-
sion pattern follows the Markov process. Under the as-
sumption of stationary process, the transmission matrix 
(i.e., who recruited whom or who infected whom) asymp-
totically converges to a steady state matrix. Therefore, 
this matrix can become the basis for a stochastic Markov 
process operating on the compartmental rather than indi-
vidual terms. The validity of this approach will be shown 
in future work. 
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