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ABSTRACT

Surgical services require the coordination of many activ-
ities, including patient check-in and surgical preparation,
surgery, and recovery after surgery. Each of these activ-
ities requires the availability of resources including staff,
operating rooms, and intake and recovery beds. Further-
more, each of these activities has substantial uncertainty
in their duration. The combination of a complex resource
constrained environment, and uncertainty in the duration of
activities, creates challenging scheduling problems. In this
study we report on a discrete event simulation model of
an outpatient surgical suite, and investigate the impact of
several sequencing and scheduling heuristics on competing
performance criteria.

1 INTRODUCTION

Surgical services require the coordination of many activities.
Typically the demand for surgery occurs at the end of a stream
of referrals, beginning with a patient’s primary care provider,
and possibly including visits to several specialists before
the need for surgery is identified. Therefore, there can be
considerable uncertainty in the type and number of surgeries
to be scheduled on a particular day. Furthermore, recent
trends in surgery indicate a rising proportion of surgeries
are performed on an outpatient basis. Such surgeries tend
to be shorter in duration than inpatient surgeries, and also
have shorter intake and recovery times. Combining the high
volume of activities in an outpatient surgical suite each day
with uncertainty in the durations of such activities presents
challenging scheduling problems for surgical suite directors.
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Outpatient surgical suites have multiple operating
rooms, with a variety of supporting resources, such as
nurses, nurse anesthetists, surgeons, intake rooms, recov-
ery rooms, and various kinds of diagnostic equipment and
surgical instrument kits. Surgical procedures occur in three
major stages. Intake begins when the patient arrives on the
day of surgery to initiate the check-in process and ends
with the patient being taken to an Operating Room (OR).
Intra-operative care is defined as the time between when
the patient reaches the OR bed and the time they are ad-
mitted to the recovery area. Recovery is the time between
admission to the recovery area and the time that the patient
is discharged from the recovery area. Even for very rou-
tine surgery (e.g. endoscopy) the time for intake, surgery,
and recovery exhibits considerable uncertainty in duration
(Denton, Rahman, Nelson, and Bailey 2006).

It is common for some ORs to be specialized for cer-
tain types of surgery. In such cases, specialized equipment
is dedicated to the OR. In contrast, when ORs are not
specialized, mobile equipment may be moved from one
OR to another. Some examples of specialized equipment
include diagnostic imaging equipment for gastrointestinal
endoscopy, specialized surgical instruments, and cardiopul-
monary bypass equipment for coronary interventions. A
parallel also exists with respect to the nursing staff, who
often have specialized training. The level of cross-training
of staff has a significant effect on the ability to generate fea-
sible OR schedules. The specialized environment, staff, and
equipment resources increase the challenge of scheduling
surgery.

There are a number of performance measures that surgi-
cal suite directors may consider in relation to the efficiency
of a surgical suite including: OR and recovery room utiliza-
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tion, surgeon and nurse idle time, patient waiting time, and
late closure of the surgical suite. These measures are not
independent of each other and often are in conflict with each
other. For example, patient waiting time is generally nega-
tively correlated with surgeon idle time. Thus, the operation
of a surgical suite is a multi-criteria problem. Furthermore,
high fixed costs and the above mentioned factors combine
to make for a highly constrained scheduling environment.

In this paper we describe a discrete event simulation
model for a newly designed surgical suite at Mayo Clinic
in Rochester, MN. We discuss the unique design aspects of
the suite, describe the development and validation of the
simulation model, and present numerical results illustrating
daily operational aspects of the surgical suite. With regard to
the numerical results, we investigate the impact of scheduling
heuristics and daily surgical mix on performance measures.
The remainder of the article is organized as follows. In the
next section, we present a brief literature review of relevant
simulation studies. In Section 3 provide background on
the surgical scheduling process. In Section 4 we describe
the simulation model and in Section 5 we discuss several
sequencing and scheduling heuristics that we evaluate. In
section 6 we present numerical results illustrating the effects
of sequencing and scheduling heuristics and surgical mix
on multiple criteria. Finally, in section 7 we summarize the
key findings and resulting managerial insights.

2 LITERATURE REVIEW

Simulation models of operating rooms can serve several
purposes, including the analysis of surgical suite design,
evaluation of resource utilization, and the analysis and com-
parison of scheduling methods. Following is a brief review
that covers several examples from the literature of previous
simulation studies of surgical suites.

Dexter and Marcon (2006) studied the impact of several
different surgery sequencing heuristics on workload of a post
anesthesia care unit (PACU) including: Random Sequence,
Longest Cases First (LCF), Shortest Cases First (SCF),
Johnson’s rule, and several others. The authors analyzed how
sequencing affects OR over-utilization, PACU completion
time, delays in discharging from the OR into PACU, and
the maximum number of patients in PACU throughout the
day. The simulation model in their study consists of three
stages. In the first stage, cases are generated and assigned to
ORs based on a utilization threshold of 70 %. In the second
stage, case durations are simulated using their scheduled
OR time multiplied by a random variable. In the third and
final stage, cases are rebalanced among ORs as they are
completed. Thus, if an OR completes all of its cases for
the day, the cases on the waiting list of utilized ORs are
transferred to idle ORs.

Denton, Rahman, Nelson, and Bailey (2006) used a
discrete event simulation model for the analysis and design
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of an endoscopy suite to investigate different surgeon-to-
OR allocation scenarios. Competing performance measures
such as overtime for the endoscopy suite and patient waiting
time were analyzed in the model and a simple simulated
annealing heuristic was used to improve the scheduled start
time of cases with respect to expected overtime and patient
waiting time. The endoscopy suite is a simplification of
a general outpatient surgical suite since the case mix is
simple (e.g. upper or lower endoscopies only) and patients
see surgeons on a first-come-first-serve basis, i.e., patients
are not typically assigned a specific endoscopist in advance.

In the general surgery scheduling context, Dexter,
Macario, Traub, Hopwood, and Lubarsky (1999) used sim-
ulation to find an appropriate way of allocating block time to
surgeons and scheduling elective cases in order to increase
OR utilization. They evaluated four on-line bin packing al-
gorithms to schedule elective cases: next fit, first fit, best fit,
and worst fit. Everett (2002) described a simulation model
constructed for scheduling patients waiting for surgery into
the surgical suites in 4 public hospitals. Dexter, Macario,
and Traub (1999) evaluated 10 different algorithms (on-
line, off-line, and hybrid algorithms) for scheduling add-on
cases into the open OR time available to evaluate their
effectiveness in increasing operating room suite utilization.

Marcon, Kharraja, Smolski, Luquet, and Viale (2003)
simulated a surgical suite to estimate the number of PACU
beds required. They also investigated the effect of a decrease
in the number of porters (patient escorts) in the OR on the
number of PACU beds needed. Lowery (1992) used a
simulation tool to study the effect of decreasing the number
of ORs in a hospital. They analyzed the effects of changes
in the surgical schedule and in case times on the number
of rooms required. Tyler, Pasquariello, and Chen (2003)
simulated an operating room to determine the optimum
operating room utilization and analyzed the important factors
such as average patient waiting time and variability of case
durations which impact OR utilization. Lowery and Davis
(1999) used a simulation model to simulate the patient flow
through the critical care units to determine the number of
beds required.

3 SURGERY SCHEDULING BACKGROUND

The Mayo Clinic outpatient procedure center (OPC) is a
complex system with several surgical departments sharing
resources. The layout of the suite is illustrated in Figure
2. It is best described as having two independent sections.
There is the pre/post room area, and the operating room
(OR) area. The pre/post room area consists of 20 small
rooms which function as the pre procedure area and the post
recovery area before and after surgery, respectively. Each
room contains a small closet on wheels for the patient’s
personal items. During the patient’s procedure, this closet
can be moved out of the room so that another patient may
11
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Figure 1: Illustration of the layout and patient flow through an outpatient procedure center including intake and recovery
rooms, and operating rooms.
use that room if there is a shortage of rooms available. Upon
completion of their procedure, the patient usually returns
to their original pre/post room, or to some other open room
for recovery. The flexible nature of these rooms is a recent
design innovation compared to traditional surgical suites.

The OR area consists of 11 ORs with varying functions
and fixed equipment, along with the core area and autoclave
cleaning area where sterile instruments and supplies are
stored. For the most part ORs are allocated to certain
surgical areas, and therefore fixed in their utility; however,
equipment used by the ORs is often standard. Prior to
each days scheduled surgery, a cart with all the instruments
required for the specific surgery is prepared and placed in
the core area. This ensures that each procedure begins with
a fully prepared set of instruments; however, the unit also
15
retains the ability to autoclave instruments during the day,
should it be necessary.

Typical patient movement through the area is to move
from the patient waiting area into a pre/post room, from
pre/post into a specific OR, back into pre/post for recovery,
and then finally exiting from the area. For some surgical
procedures, such as oral maxillofacial surgery, patients do
not require a pre/post room and will enter and exit directly
to/from the OR.

The outpatient procedure center has four primary depart-
ments with dedicated use of eight ORs allocated to surgical
areas as follows: Pain Clinic with one, Urology and Oph-
thalmology with two each, and Oral Maxillofacial (OMS)
with three ORs. In addition, the primary departments, with
the exception of Ophthalmology, have two additional ORs
which can be used during periods of high demand. There
12
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Figure 2: Probability density functions for intake, surgery, and recovery times, for two different types of surgery.
is also one additional OR which is used primarily by other
departments as over-flow capacity (e.g. Dermatology). In
the case of Urology and Ophthalmology, one surgeon gen-
erally uses both ORs, moving between them when needed.
Having multiple ORs available allows surgeons to avoid
waiting for an OR to be turned over.

Because of the mix of surgical areas, scheduling within
the OPC can be a difficult process, and is subject to several
factors which influence efficiency of the area. Although
the departments using the OPC do not compete for OR
resources, they do compete for the pre/post rooms. Thus, it
may not be possible for a department to maximize its OR
utilization due to constrained pre/post room capacity. This is
somewhat mitigated in that pre/post rooms can be allocated
to a second patient during long procedures (particularly
Urology which occasionally performs cases exceeding 3
hours in length). The departments also compete for staffing
resources; however, these resources are more flexible, and
the layout of the area allows most staff to be used in any
area. One exception is the surgeons, which are unique to
the specific department they serve.

There are a number of factors that influence scheduling
decisions in the OPC. For instance, due to the nature of
15
some of the procedures, some patients are older and have
underlying complications, such as diabetes. Since patients
must fast prior to surgery to avoid problems with anes-
thesiology, those patients with diabetes are at higher risk
of blood sugar problems, and are given a higher priority
for early morning procedures. Additionally, older patients
have a higher probability of complications, and therefore are
given a higher priority. A consequence of this scheduling
is that longer, more varied surgeries tend to be scheduled
earlier in the morning. The OPC opens at 8am, which is
the scheduled time of patient arrival for the first surgeries
of the day. The planned closure time for the OPC is 5pm
and limiting overtime (the time beyond 5pm at which the
last patient exits the OPC) is an important consideration
in determining the number of type of surgeries that are
scheduled on a given day.

4 SIMULATION MODEL

A discrete event simulation model of the OPC was created
using Arena version 10.0. Using existing data compiled
over the period of one year, probability distributions were
estimated for all processes of a patient’s movement through
13
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Figure 3: The efficient frontier for all combinations of sequencing and arrival time scheduling heuristics.
the OPC. These included pre-procedure, procedure, and
recovery, as well as movement from one area to another.
Distributions were fit with respect to procedure type, which
allowed for a meaningful distribution to be estimated for
most surgeries scheduled in the OPC. Primary resources
for the simulation were the 11 operating rooms and 20
pre-procedure/recovery rooms. Staffing concerns, while
important resources, were not considered during the valida-
tion period of the model, but may be considered in future
simulations. The entities of the simulation were the patients.

Figure 2 illustrates the probability density function (pdf)
for intake, procedure, and recovery time, for two different
surgeries occurring in the OPC. The general form of the pdf
is typical of most surgeries, in which there is a pronounced
peak around the mean, and then a long tail which can be
attributed to unexpected complications encountered during
surgery. The intake time pdfs for the two surgeries are
different, reflecting the different preparation required for
different types of surgery. For instance, oral maxillofacial
surgery (such as wisdom teeth extraction) requires little or
no preparation prior to surgery. On the other hand, some
151
cases require a more detailed preparation by a nurse or
nurse anesthetist. Recovery time pdfs, on the other hand,
are similar for most surgeries done in the OPC, since they
use similar levels of anesthetic.

Distributions were fit using Arenas Input Analyzer. A
total of 84 probability distributions were fit for the six de-
partments and five processes, with most departments having
multiple procedure groups. When possible, continuous dis-
tributions were estimated using actual data and consisted of
Erlang, Gamma, Beta, Log Normal, Weibull, and Exponen-
tial distributions. Some processes within departments had
insufficient data to accurately fit a probability distribution
and Triangular distributions based on subjective estimates
of minimum, mean, and maximum time were used. For
instance, processes involving room turnover were modeled
using Triangular distributions based off the expertise of staff
working in the area.

The model is a terminating simulation, in the sense that
a finite number of surgeries are scheduled each day within
a pre-determined time in which the OPC is open each day.
Patients that have not completed recovery by the time of
4
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planned closure of the OPC contribute to the accumulation of
overtime. Patients arrive into the check-in area according to
a deterministic schedule. We assume arrivals are on-time and
all patients show-up for their scheduled procedure. Based
on interviewing schedulers of the OPC this is a reasonable
assumption.

5 SCHEDULING HEURISTICS

We test several combinations of sequencing, scheduling, and
procedure start time heuristics for defining patient arrival
times to the OPC. The scheduling heuristics define the
allocation of surgical cases to ORs as follows. Each surgical
specialty is considered separately in assigning surgeries to
ORs. We sequence the surgeries according to increasing
mean (SPT), decreasing mean (LPT), increasing variance
(VAR), and increasing coefficient of variation (COV). For
each heuristic we sequentially allocate surgeries to ORs
such that each procedure is placed in the least utilized OR.

For each scheduling heuristic we evaluate two different
sequences of surgeries in each OR. The first, is the natural
sequence generated by the scheduling heuristic. Thus, for
example, in the case of the LPT scheduling heuristic the
sequence generated is one of decreasing mean duration of
cases in the OR. The second sequence we investigate is
in order of increasing variance. We elected to investigate
this re-sequencing heuristic because there is evidence in
the literature that such sequencing may reduce waiting time
by placing highly variable surgeries at the end of the day
where they can have limited impact on future patients in the
schedule (Denton, Viapiano, and Vogl 2007). We evaluate
the variance re-sequencing for SPT, LPT, and COV only,
since the natural sequencing of VAR is in order of increasing
variance.

After allocating surgeries to ORs, and sequencing the
surgeries in each OR, we set patient arrival times to the
OPC. The first patient is assumed to arrive at the beginning
of the day, and subsequent arrivals occur at the previous
patient’s arrival time plus the estimated time for the previous
patients procedure (since ORs tend to be the bottleneck). We
determine the time allocation for procedures in four ways.
The first is based on the mean duration of procedures.
The remaining three alternatives use the 65th, 75th, and
85th percentiles of procedure duration assuming a normal
distribution while calculating percentile values. The purpose
of the latter methods, known in the scheduling literature as
job hedging, is to provide additional buffer time to reduce
the impact on patient waiting time for surgeries running
longer than the mean.
15
6 EXPERIMENTATION AND
PRELIMINARY RESULTS

Validation of the discrete event simulation model was per-
formed using actual patient arrivals into the OPC. Twenty-
five replications of five months (107 days) of patient arrivals
were simulated. The results were then used to validate the
simulation model according to known operating room uti-
lization rates and patient throughput. After validation, model
experimentation was performed to test alternative schedul-
ing protocols. Experimentation was done on randomly
generated patient arrivals based off historical frequencies
of patient types. Schedules were generated for 100 days
using various scheduling techniques.

Using the OPC discrete event simulation model we have
tested seven combinations of OR allocation heuristics and
sequencing heuristics (LPT, SPT, VAR, COV, LPT-VAR,
SPT-VAR, COV-VAR) where the latter three correspond to
re-sequencing surgeries in each individual OR in order of
increasing variance. We also tested four different start time
heuristics: mean, 65th, 75th, and 85th percentiles. We tested
all combinations of allocation, sequencing and start time
heuristics for a representative sample of daily surgical mixes
for a 100 day period in 2006. As aggregate performance
measures, for each we computed the mean patient waiting
time for surgery (averaged across all patients scheduled
on a given day) and the mean overtime with respect to the
expected closure time (5pm) of the OPC. These performance
measures are in conflict since mean patient waiting times
are decreasing in patient inter-arrivals, while mean overtime
is increasing.

Figure 3 illustrates the relative values for each of
the 28 heuristics tested (L,V,C,S,LV,CV,SV are abbrevi-
ated acronyms for the sequencing heuristic and M,65,75,85
indicate the start time heuristics), including the baseline
schedule which is the actual schedule used in practice.
Based on Figure 3 we observe significant dispersion of
the heuristics in the criteria space. The baseline schedule
appears to provide some reasonable tradeoff between over-
time and waiting time. However, some heuristics, such as
L75 (LPT, 75th percentile), could be used to reduce mean
patient waiting time with no increase in mean overtime. In
general the L and LV heuristics tend to be on or very near
the efficient frontier.

In general from the results in Figure 3 we observe that the
start time heuristics have the most significant impact on the
performance measures. The OR allocation heuristics and the
resequencing heuristic have comparatively smaller effects,
with the latter having very little impact on performance
measures in general. The latter is counter intuitive since
resequencing has been observed to have a significant impact
on patient waiting time (Denton, Viapiano, and Vogl 2007).
An apparent explanation for this is that the pre-procedure
intake stage has substantial mean and variance of duration
15
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Figure 4: Comparision of 100 daily schedules for two heuristics and the baseline schedule.
relative to procedure time (e.g. see Figure 2). Thus, this high
variance may reduce the effects of surgery resequencing.

Figure 4 provides greater detail on the baseline schedule,
as well as two of the heuristics displayed in figure 3:
LPT-mean and LPT-75. Graphs of each of the 3 types of
schedules illustrate the mean waiting time and overtime
151
for each of the 100 schedules that were tested. There is
a different mix of surgeries each day and from Figure 4
it is clear that there is significant variation in performance
from day to day. Thus, we conclude that the relative mix of
surgeries on a given day significantly influences performance
measures, and controlling the mix among days may be an
6
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opportunity to improve efficiency of the OPC and increase
patient throughput.

7 CONCLUSIONS

Surgical services require the coordination of many activities,
including patient check-in and pre-procedure preparation,
the surgical procedure, and recovery. In this paper, we
discussed the development of a simulation model of an out-
patient procedure center. We also demonstrated that how
surgeries are scheduled has an impact on the competing
objectives of mean patient waiting time and the amount of
overtime of the OPC. In particular, we found that arrival
time schedules substantially influence expected overtime
and patient waiting time, while surgery allocation and se-
quencing heuristics have a smaller effect. Furthermore, we
find that surgery mix on a particular day is an important
factor affecting performance measures, indicating that the
optimization of daily surgical mix may be a promising op-
portunity for improving scheduling efficiency in an OPC.
We will continue to use the model to study how to improve
OPC operations. In addition, the model developed for the
OPC has become the starting point for a model that is being
used to help design a new outpatient procedure center.
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