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ABSTRACT

Primary care providers (PCPs) provide the majority of care
patients receive during their lifetime. We consider the prob-
lem of determining the size and composition of physician
panels in primary care. A physician’s panel consists of
a set of patients and each patient belongs to one of many
different health-related categories. Using real data collected
at the Mayo Clinic at Rochester, we propose a multi-period
metaheuristic simulation optimization model for determin-
ing the panel design of a set of physicians working in a
primary care environment. The model seeks to maximize
patient visits to their own providers, reduce waiting times,
and minimize overage.

1 INTRODUCTION

Primary care providers (PCPs) are typically the first point
of contact between patients and health systems. From a
patient’s perspective, PCPs provide the majority of care they
receive during their lifetime and are responsible for a variety
of health services including preventive medicine, patient
education, routine physical exams, and the coordination of
complex episodes in which patients are referred to medical
specialties for secondary and tertiary care. Despite primary
care’s crucial role, the Institute for Healthcare Improvement
(www.ihi.org) reports that 40% of emergency department
visits are not urgent, rather, they take place because patients
cannot see their PCP. In addition, from 1997 to 2001 the
percentage of people reporting an inablity to obtain a timely
appointment rose from 23% to 33% and in 2001, 43% of
adults reporting an urgent condition were unable to receive
care when they wanted.

There are many benefits to regularly seeing one primary
care provider, most of which are associated with improved
long term quality of care. Gill, Mainous, and Nsereko
(2000) point to several studies which show that patients
who regularly see their own providers are
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1. more satisfied with their care,
2. more likely to take medications correctly,
3. more likely to have problems correctly identified

by their physician, and
4. less likely to be hospitalized (for other studies see,

Christakis et al. (2000), Becker, Drachman, and
Kirscht (1974) and Gill and Mainous (2000)).

We are therefore faced with two competing objectives when
thinking about questions of primary care access: should we
minimize waiting times at the cost of continuity of care or
ensure continuity but make patients wait?

The access measures of patient waiting times and con-
tinuity of care are linked with in the concept of a physician
panel. A panel is a set of patients assigned to a physician.
Green, Savin, and Murray (2007) investigate under the par-
adigm of open or advanced access, the right panel size
for a physician. In advanced access (proposed by Murray
and Berwick (2003) and Murray et al. (2003)), patients
are allowed to book same-day appointments. The under-
lying assumption is that if capacity is well matched with
demand, patients can be served the same day they request
an appointment. Green, Savin, and Murray (2007) state that
the size of a physician’s panel “is the major determinant
and the prime lever for achieving the balance between sup-
ply and demand.” They propose a six step process using a
probability model that calculates the amount of overflow (or
overtime) for the physician in a given week. They include
a brief discussion of how this research applies to a group
practice.

Advanced access is likely to work well in situations
where the variance of demand for appointments is low or
easily predictable. When demand is stochastic, an important
open question exists about the design of an access system
that balances the competing dual objectives of quick access
and continuity. Our focus in this study is to approach this
question by investigating optimal panel design, by which
we mean choosing the “best” combination of composition
and size of a set of physician panels in a group practice. In
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other words, what should be the number of patients and set
of patient characteristics in each physician’s panel? Some
patients tend to have a higher need to see their provider.
For instance, elderly male patients will have a different
request rate than female patients in the 20-30 age range.
Panel design thus affects the volume and variation in patient
appointment requests and in turn provider availability.

We propose a simulation-optimization approach to op-
timize panel design in a group practice to improve patient
access to primary care. We use data collected from the
Mayo Clinic Primary Care Practice to populate our model.
Our model is a weekly aggregation of appointment requests
and physician capacities. It is based on the traditional ap-
pointment scheduling model where some patient requests
are placed on a waiting list until an appointment becomes
available, and others are seen in the same period. Our
model seeks to optimize panel design to meet the following
objectives:

1. minimize average time a patient waits to see a
provider,

2. maximize a patient’s visits to his/her PCP, or min-
imize the average number of redirections to other
providers, and

3. minimize the amount of additional capacity (over-
age) added in every period.

2 THE PANEL DESIGN PROBLEM

Patients fall into one of many health-related categories. Fac-
tors such as age, health status, geographic location, patterns
of historical appointments (appointment types, urgent vs.
non-urgent requests, etc.) can be used to define a classifi-
cation of patient types. The purpose of such a classification
is to reflect the reality that patient request rates from the
different categories may vary significantly. We use twenty
eight categories based on age and gender starting with sep-
arate groups for males and females aged 18-23,and with the
rest of the categories being in five-year increments. The last
two groups are patients aged over 83. While other elaborate
categorizations are possible, the age-gender categorization
gives a simple, intuitive classification that can be tested in
our preliminary model.

The panel design problem is an allocation or assignment
problem. Given a set of health-related categories, and a set
of physician panels in a group practice, how many patients
from each category should be assigned to each panel?

Consider a 1-period example with 3 patient categories
and 3 physician panels as shown in Figure 1. The three
patient categories have sizes of 22, 37 and 45 patients.
Assume that all of these patients request for an appointment
in the period. Each physician can see a maximum of 35
patients the period. The number of patients assigned from a
category to a panel are indicated on the arrows in the figure.
1

These values (later called xi j) determine the panel design for
this example. These values are also the decision variables in
our study: our simulation-optimization approach will seek
to optimize these values.

The dashed lines indicate redirection of flow for the
single-period model. Redirections mean that patients have
to see another provider since their PCP is unavailable.
Clearly, for the 1-period deterministic problem, the panel
design is not optimal. If the number of patients assigned
from category 3 to panels 1, 2 and 3 is changed to 20, 12
and 13, all patients will see their own PCP and there will
no redirections.

If we add another period, redirections may either be
to the same provider in the next period or to a different
provider in the same period. These are shown using solid
arrows in the figure. Redirections in this situation depend
on whether patients are willing to see a different provider in
the same period or are willing to wait for their own provider
in the next period.

The complexity of the model increases significantly
when we assume a multi-period model (multiple days or
weeks) where in every period, the number of appointment
requests for each panel is a random variable and inter-period
variability is significant due to seasonality and temporal
effects. Depending on the panel design, physicians could
end up having excess capacity in one period and having
an over-full calendar in another, affecting access metrics.
Optimizing the composition and size of panels thus becomes
important.

2.1 Simulation Model and Notation

We now describe our simulation model and the performance
measures by which a panel design solution is evaluated. We
consider our model as a first step in the development of
a more realistic representation of primary care access. We
make the following key assumptions that we plan to relax
in our future research efforts:

1. The patients who are redirected can be seen by any
of the physicians, irrespective of their ailments. In
practice, certain sets of patients are better suited
to certain physicians. Physicians may also have
certain preferences in this regard.

2. While we consider FTE (Full Time Equivalent)
information of the physicians to determine capaci-
ties, we assume that these capacities do not change
from week to week. In practice, capacities are set
in anticipation of how the time of the year might
affect patient request rates.

3. The categorization used for patients in our model
is based on age and gender. The categories are
important in that they determine the request rates
of their patients: we assume that patients within a
category behave in fairly similar fashion.
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Figure 1: Simple single and two-period panel design example
We now proceed with describing our model. Let m be the
total number of patient categories and n be the total number
of physician panels in a primary care environment. Let xi j
represent the number of patients assigned from category i to
panel j. The vector X = xi j values thus describes the panel
design. Note that this is treated as a one time decision in
our model.

Let Si represent the total number of patients in category
i. Thus ∑

n
j=1 xi j = Si∀i. Let T be the total number of periods

in the model, and dik(ω) be the number of appointments
requested from category i in period k under scenario ω . The
number of requests to a particular physician’s panel from a
given category is given by fik(ω)xi j, where fik = dik(ω)/Si.
In other words, fik is the fraction of patients in category i
who request an appointment in period k under scenario ω .
We also assume that each of the m physicians can see at
most C j appointments in every period.

For a given set of xi j values, our simulation model
works as follows: physician calenders start empty (no ap-
pointments) in the first period and move from period to
period. In each period, patients request appointments from
14
their PCPs. Patient requests in each period are satisfied
on a first-come-first-served basis: requests originating in
earlier periods are filled first. Ties between requests arising
in the same period to a given physician panel j are broken
arbitrarily. If the capacity C j for a particular panel is ex-
hausted, patients have one of two options: to see another
provider within the same period or to wait for a future
period to see their PCP. We assume that a fixed proportion
of patients are willing to see other providers in the same
period. These requests are filled by physicians who have
available capacity. Let Lk(ω) be the sum of unused capacity
over all physicians in period k under each scenario.

Let bk(ω) represent the total number of patients that
were unable to see their provider upto period k under sce-
nario ω . Let gk(ω),0 ≤ gk(ω) ≤ 1 be the proportion of
these patients who are willing to see other providers in the
same period. Then Gk(ω) = gkbk requests have to be ac-
commodated in the same period, while the rest are assigned
to a future period. We repeat this procedure for every period
k = 1, . . . ,T .
96



Balasubramanian, Banerjee, Gregg, Denton
We now give expressions for two of our performance
measures:

1. Rk(ω) which denotes the number of redirections
to other physicians in period k, and

2. Ak(ω), the additional capacity or overage for period
k.

If Gk <= Lk , then

Rk = gkbk (1)

Ak = 0. (2)

And if Gk > Lk,then

Rk = Lk. (3)

Ak = gkbk −Lk. (4)

We also give the expression for average waiting time of
patients. Let Nl(ω) be the number of appointment requests
that are filled l weeks in the future. Then the average waiting
time W (ω) of patients under scenario ω is given by:

∑
T
l=1 lNl

∑
T
l=1 Nl

(5)

Thus our optimization problem is to find an X that minimizes
the following expectation:

Eω

{
cA

T

∑
k=1

Ak(ω)+ cR
T

∑
k=1

Rk(ω)+ cWW (ω)

}
(6)

Where cA, cR and cW are costs for additional capacity
or overage, number of redirections and waiting time.

To summarize, our multi-period simulation model en-
ables us to determine measures such as average waiting time,
average number of redirections and average additional ca-
pacity for given panel design. In Section 3, we describe a
metaheuristic approach evaluate and optimize various panel
designs using the simulation model.

3 A GENETIC ALGORITHM FOR OPTIMIZING
PANEL DESIGN

We now propose a genetic algorithm designed to opti-
mize panel design. Genetic algorithms (GAs) have been
used extensively over the last two decades for deterministic
combinatorial optimization problems. With recent increases
in computing power they are becoming increasingly use-
ful in simulation optimization approaches. GAs allow for
evaluation of a large number of possibilities and also for
14
an intelligent search to determine the solution with the best
expected value of the objective under consideration.

Our panel design genetic algorithm (PDGA) searches to
panel design solution space and uses the simulation model
proposed in Section 2.1 to determine the quality of each
solution. The main steps of PDGA are listed below:

1. Encoding: The encoding of each solution in PDGA
is simply a vector of xi j values i.e the vector X .
Since there are m categories and n panels, the vector
is mn long and indicates the number of patients
assigned from each category to each panel.

2. Initial Population: The initial population of PDGA
is randomly generated. The portion of a certain
category that will assigned to a panel is randomly
determined, but meets the following feasibility con-
straint for each category: ∑

n
j=1 xi j = Si,∀i. We also

insert into the initial population the panel design
currently in use at the Mayo Clinic primary care
practice. The size of the population is NP, and is
kept constant for all generations of the PDGA.

3. Evaluation and Fitness: Each panel design solution
in the population is evaluated using the simulation
model proposed in Section 2.1. The fitness of each
solution is the objective function stated in 2.1. We
assume in this study that the costs for redirections,
overage and waiting time are the same. We use
50 replications of the simulation to determine ex-
pectations on our performance measures and to
compare solutions.

4. Crossover: The crossover operation exchanges
panel-category assignments across two parents to
produce two offspring. Figure 2 illustrates the
details of these exchanges using an example.
The number of such exchanges between parents is
set to a prefixed value. In total NP/2 crossovers
are carried out to produce NP offspring.

5. Mutation: The NP offspring undergo mutation
based on a pre-specified mutation probability. Fig-
ure 3 illustrates mutation with an example. Note
how panel assignments within a certain categories
are exchanged.

6. Selection to the next generation: At the end of
mutation, there are NP solutions in the original
population and NP offspring. Of these 2∗NP so-
lutions, NP/2 of the best solutions are chosen to
the next generation, while the remaining NP/2 are
chosen randomly among those not already picked.

4 EXPERIMENTAL RESULTS

Our scenarios for simulating and evaluating each panel
design solutions in PDGA are generated randomly using
sampling with replacement. Each period in our model
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Figure 2: Illustration of crossover. The rectangles represent
categories while the circles indicate panels. The number in
the circles indicate the number of patients assigned from
a category to a panel. Parents exchange several of their
assignments (randomly chosen) to produce new offspring.
Note that in order to maintain category sizes, other category-
panel assignments in the offspring (again randomly chosen)
are adjusted (in the offspring, the panels corresponding to
these changed numbers are shaded).

corresponds to a week, and T = 52 weeks. The request
rates from each category are sampled from weekly visit
data at the Mayo Clinic Primary Care practice. We use data
collected for weeks from 2004-2006, which gives 150 weeks
of information. Our sampling method is selective: for any T
we sample from weeks max(T −4,0),min(T +4,52) from
years 2004-2006. This allows us to express time-of-year
effects for patient appointment requests.

Our model also corresponds to size of the Mayo Clinic
Primary Care practice, which consists of 39 physician pan-
els. We consider 28 categories based on age and sex (14
age categories and 2 gender categories). To determine ca-
pacities, we use FTE (Full Time Equivalent) information
of the physicians i.e. the percentage of time spent by these
physicians in primary care. The capacity estimate for a
physician is his/her FTE value multiplied with the upper
bound on the number of patients that a physician can see
in a week (5 8-hour days).

As stated before each panel design solution in the
PDGA was evaluated using 50 replications of the simulation
described in 2.1. Data from the first 15 weeks was truncated
to remove the initial bias. PDGA had a population size of
25 and was terminated after 50 generations. The number
of exchanges for each crossover operation (the exchanges
are shown in Figure 2) are fixed at 10, while the number
of exchanges for a solution undergoing mutation is fixed
at 8. We arrived at these parameter settings using trial
and error, based on pilot runs and with computation time
considerations.
14
Figure 3: Illustration of the mutation. Panel assignments
within certain categories are exchanged.

We now compare the best solution obtained using PDGA
to the current panel design used at the Mayo Clinic primary
care practice (see Table 1). The wait time is in weeks and
is the average per patient; redirections indicate the average
number of patients sent to other providers on a weekly basis;
and overage indicates the average additional appointment
slots that had to be added on a weekly basis. See Section 2.1
for a detailed explanation of these performance measures.
It is clear that given the current assumptions, that PDGA
outperforms the current panel design. The differences were
statistically significant. This was verified by building a
95 percent confidence interval of the differences in the
performance measures; for all three of the objectives, the
CI contained 0.

Figure 4 shows graphically the differences in wait times
involved in the two solutions. The x axis indicates the the
number of weeks. The y axis indicates the average number
of patients who waited i weeks or more, where i is the
corresponding value on the x axis. The PDGA solution
performs significantly better but the differences taper off as
the number of weeks increases.

In summary it appears from the preliminary results that
the PDGA shows promise. But it needs to be noted that
the current panel design is based on various factors - such
patient and physician preferences - and that our model does
not consider. As noted before, several of the assumptions
of the model do reflect what happens in practice.

5 CONCLUSIONS AND FUTURE RESEARCH

We propose a multi-period simulation-optimization model
to optimize panel design and improve access to primary care.
The objectives of our model are to minimize the expected
number of redirections, waiting time and overage. Our
GA approach demonstrates that significant improvements
over the current panel design are possible. However, it is
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Table 1: Table listing the performance measures of the
currently used panel design and the PDGA model.

Wait Time Redirections Overage
Current Panel Design

Mean 6.82 531.10 31.48
Std.Dev 0.21 26.43 20.78

Upper 95% CI 6.87 538.43 37.24
Lower 95 % CI 6.76 523.78 25.72

PDGA Solution
Mean 4.50 230.13 0.09

Std.Dev 0.18 26.77 0.34
Upper 95% CI 4.55 237.55 0.18

Lower 95 % CI 4.44 222.71 0.00

Figure 4: Graphical comparison of current panel design
and PDGA panel design.

necessary to consider the practical implications of altering
the current panel design. Rather than suddenly change the
PCPs of many patients, the fact that patients leave the system
(owing to death and other causes) and new patients enter
the system on a regular basis can be leveraged to ensure
that changes in panel design smoothly implemented.

In addition several key assumptions in our approach
need to be relaxed to obtain a more realistic representation
of primary care access. This effort is part of our ongoing
research. Some of our main focus areas are:

1. Our model currently assumes that physicians have
fixed capacities. We plan in the future to use data
on weekly capacity.

2. Our patient categorization currently assumes that
the age and gender categories proposed are good
predictors of patient request rates, and that patients
within a given category have a degree of unifor-
14
mity with regard to request rates. However, an
interesting research area would be to determine a
categorization that better predicts patient request
behavior and hence improves the accuracy of the
model.

We also plan to investigate the concept of patient as-
signments to a small group of providers. This is similar to
the concept of “chaining” in manufacturing and represents
a balance between the ideal situation where each patient
sees his PCP every time she needs care with no waiting,
and the reality where often patients see providers other than
their own.
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