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ABSTRACT 

A complex, stochastic simulation model of Colorectal 
Cancer (CRC) is examined through factor screening to de-
termine which factors in the model are important.  The 
factor screening employs a Resolution IV 2k Fractional 
Factorial experimental design. The factors are examined 
in terms of their impact on cost, quality-adjusted life-
years (QALY), and cost per QALYs.  Out of 72 factors, 
eight factors were determined to be most important and 
observed as “driving factors” in the CRC model. Surpris-
ingly these factors were consistently important for all out-
comes. However the limitations of the experimental de-
sign may have constrained the important factors to factors 
related only to the natural history of the disease and there-
fore subject to minimal control. 

1 INTRODUCTION

A medical simulation model called the Vanderbilt/NC 
State model is a stochastic, discrete-event simulation 
model of the natural history of Colorectal Cancer (CRC) 
(Roberts et al. 2008).   This model simulates a population 
over time which may include a mixture of patients with 
different birth years, races, genders, and family histories 
of colorectal neoplasia.  The model has been developed 
using an object-oriented simulation platform driven by an 
independent database to provide a complete representa-
tion of the potential stochastic impact of CRC.  The dis-
crete-event representation of the natural history models 
changes in the CRC state of an individual throughout 
his/her natural lifetime.  Screening can intervene in the 
CRC process by detecting adenomas and early cancers.  
Removing these neoplasia changes the future outcomes, 
thus potentially extending life. This model produces dis-
counted costs and quality-adjusted life-years (QALYs) for 
screening decisions as the primary outcomes although 
various natural history data may also be collected and re-
ported.  The model has been carefully verified, calibrated, 
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and validated and used to determine the cost-effectiveness 
of CRC screening alternatives (Tafazzoli et al. 2005). 
 Complex medical decision-making simulation mod-
els such as the CRC model often consist of a large num-
ber of inputs which are usually referred to as factors in
Design of Experiments (DOE). The output (response) of a 
simulation model can be explored by using designed ex-
periments. It is, however, very common that due to their 
complexity, studying the behavior of the large-scale med-
ical simulation models become prohibitively costly and 
requiring time-consuming experimental design analyses. 
Screening experiments, which assume that only a few fac-
tors are really important (parsimony principle), examine 
many factors with the objective being to identify those 
factors (if any) that have significant (important) effects on 
a selected response.  

Screening is generally employed in the pilot phase of
complex simulation studies (Bettonvil et al. 1996). The 
factors identified as being important can be further ex-
plored in later phases; e.g. the important factors might be 
cast as a metamodel and used in optimization. Moreover, 
the results of factor screening can be used not only for 
confirming prior expectations (which is as an important 
step in validating the simulation model), but they are also 
informative when the simulation provides insights that do 
not match expectations; for example, it is possible that a 
factor believed to be important by the content experts 
turns out to be statistically insignificant or unimportant. 

 This paper presents the results of applying factor 
screening methods to the Colorectal Cancer (CRC) Simu-
lation model. Many of the input variables for this model 
are uncertain and modeled with random variables. Most 
of the input factors correspond to distribution-based vari-
ables and the rest are constant factors. Distribution-based 
variables are those whose values are determined accord-
ing to a distribution function whose parameters are re-
ferred to as factors. For example, in the CRC Model vari-
able-1 follows a Johnson SB distribution with factors 1-4 
as distribution parameters: delta, gamma, minimum, and 
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maximum, respectively. In almost all cases, the factors 
associated with a common distribution variable should be 
confounded, i.e. their values cannot change independ-
ently. After confounding the necessary factors, the factor 
screening experiment is performed on 72 factors. 

2 LITERATURE REVIEW 

Among the most widely used factor screening methods 
are 2k Fractional Factorial (2k FF) designs (Montgomery 
2001). These designs assume that certain higher-order in-
teractions are negligible so they can be confounded with 
main or second-order interaction effects. Also, it is as-
sumed that errors are approximately normally distributed 
with mean zero and a homogenous variance 2. One of the 
advantages of 2k FF designs is that they are very easy to 
construct and already available in almost all statistical 
software. Factorial designs have several attractive proper-
ties. Since more than one factor can be examined at a 
time, these designs can identify important interaction ef-
fects. They are also orthogonal designs, i.e. the pair-wise 
correlation between any two columns (factors) in the de-
sign matrix is equal to zero. This simplifies the analysis of 
the fitted model, because estimates of the factors’ effects 
( i’s) and their contribution to the explanatory power of 
the regression metamodel will not depend on what other 
regressors are included in the regression model. Although 
ordinary least squares regression assumes that the error 
term is identically distributed but the regression coeffi-
cients are still unbiased estimators even if the underlying 
variance is not constant.  

In 2k FF designs factors are examined at only two le-
vels; examining each factor at only two levels (the low 
and high values) does not reveal how the simulation out-
put behaves for the factor combinations in the interior of 
the experimental region. Moreover, it is possible that the 
choice of low and high level for factors cancels the inter-
action (Trocine et al. 2000). One of the other major con-
cerns about the fractional factorial design is that this de-
sign may confound the interaction of significant 
importance with other effects; thus the result is combined 
with other main effects or interactions and nothing can be 
determined about the individual interactions within this 
confounded structure.  Another potential concern with the 
use of two-level factorial designs is the assumption of li-
nearity in the factor effects. A simple and highly effective 
solution to this problem is to augment the 2k design with 
axial runs. The resulting design, called a Central Com-
posite Design (Montgomery 2001), can now be used to fit 
the second-order metamodel. When the number of factors 
is fairly large (e.g. more than 10), Central Composite De-
signs require a large number of design points which dete-
riorate the efficiency of the design. 

Sequential Bifurcation, introduced by Bettonvil 
(1996), was mainly designed for deterministic simulation 
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models and was developed based the Group Screening de-
signs: (Johnson et al. 1999), (Kleijnen 1987), (Li 1962), 
(Ottieno et al. 1984), (Patal et al. 1984), (Patel 1962). SB, 
like all other group screening techniques, assumes a low-
order polynomial metamodel for the response function of 
the simulation model, and known signs for the main ef-
fects in order to assure that individual effects do not com-
pensate for the effects of each other within a group. The 
criterion that SB uses for declaring a factor as important is 
the absolute value of the factor's main effect.  
 Cheng (1997) extended the SB to handle stochastic 
simulations where the response is stochastic and subject 
to significant error. First-order polynomial (main effect 
only) for the response function and a homogenous vari-
ance over the entire experimental region are assumed. 
Cheng’s method also assumes known signs of main ef-
fects. The method requires two parameters from user: del-
ta limit ( ), which is the value that the main effect of a 
factor should reach to be considered important, and alpha 
( ), which is the probability of declaring an important fac-
tor unimportant. 

Cheng’s method does not provide performance guar-
antee in terms of probability of classifying the factors cor-
rectly. Controlled Sequential Bifurcation (CSB), proposed 
by Wan et al. (2003) is a procedure that incorporates a 
two-stage hypothesis-testing approach into SB to control 
the power (i.e., the probability that an important effect is 
correctly classified) at each bifurcation step and Type I 
Error (i.e., the probability an effect is classified as impor-
tant when it is not) for each factor under heterogeneous
variance conditions. Similar to basic SB, CSB assumes a 
first-order polynomial function for the response and 
known direction for main effects. For CSB, the analyst 
must specify two thresholds: 0 and 1. The lower thresh-
old ( 0) indicates the level that the main effect of a factor 
must reach to be considered important; and if the main 
effect of a factor is larger than the higher threshold ( 1), 
the factor is considered critical; and otherwise if 0 < j < 

1, it is classified as being important. More specifically, 
for those factors with effects 0, CSB controls the Type 
I Error by declaring them important to be less than ; and 
for those factors with effects 1, CSB provides power 
for identifying them as important to be greater than .
Those factors whose effects fall between 0 and 1 are 
considered important and the CSB procedure has reason-
able, though not guaranteed, power to identify them (Wan 
et al. 2003). One of the key advantages of CSB is that the 
assumption of variance homogeneity and error independ-
ency is relaxed. Therefore the dependence of outputs 
across different factor settings due to common random 
numbers is permitted by CSB. For the special case, where 

= 1 -  (Type I error is equal to one minus power), Wan 
et al. (2005) implemented a fully sequential test in CSB 
that has the same error control as the two-stage testing 
procedure. 
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Wan et al. (2004) improved the CSB procedure by 
incorporating a fold-over design in the hypothesis test to 
identify important main effects even when two-factor in-
teractions and quadratic terms are present. The new pro-
cedure, called CSB-X, still has the same error control for 
screening main effects. CSB-X is, however, not able to 
estimate interaction and quadratic effects.  

The assumption of known direction for the main ef-
fects is not always realistic, especially when the simula-
tion model is complex and includes many factors. (San-
chez et al. 2005) proposed a hybrid two-phase approach, 
FF-CSB, to relax this assumption. Phase 1 uses saturated 
or nearly-saturated fractional factorial experiment to esti-
mate the signs and magnitudes of the effects. All the fac-
tors are then divided into positive and negative groups 
and sorted within each group factors. Next in Phase 2, 
original CSB is applied on the “positive” and “negative” 
groups separately. Sanchez et al. (2005) showed via nu-
merical results that even with the extra effort in pre-
screening, FF-CSB is generally more effective and effi-
cient than CSB. 

Another method which was proposed by Shen et al. 
(2005) to overcome the limitations of CSB is Controlled 
Sequential Factorial Design (CSFD). CSFD uses qualified 
hypothesis testing procedure with a sequential traditional 
factorial design to provide simultaneous Type I Error and 
power control for each interested effect. The first step of 
CSFD is to select a factorial design which will be sequen-
tially implemented. For each effect, CSFD first computes 
an estimate of the effect coefficient from the available 
replications. Then, the estimate of the effect coefficient 
and its sample variance are computed; and finally, a hy-
pothesis testing procedure will be used to classify the ef-
fect as important or unimportant, and determine if more 
replications are necessary. CSFD can work under hetero-
geneous variance conditions; also, this method can screen 
any main effects and interactions without assuming the 
directions of effects to be known. In addition, unlike CSB, 
in CSFC the generated observations in early screening 
processes can be utilized later to estimate the effects of 
interest.  

Shen et al. (2006) proposed a hybrid method that 
combines CSB and CSFD to achieve better efficiency. 
The basic idea is to apply CSFD to screen those likely 
important effects (which is assumed to be small percent-
age of all effects) and CSB (or CSB-X) to screen those 
likely unimportant effects. The proposed hybrid method 
consists of two phases. In Phase 1, all the factors’ main 
effects are estimated by using a fractional factorial design 
and each factor is explicitly assigned into one of the three 
groups as following: assign factors with potential impor-
tant effects to group IMP; assign other factors to either 
group POS or NEG based on the directions of their esti-
mated main effects. As pointed out by Shen et al. (2006), 
on of the drawbacks of this method is that if a factor asso-
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ciated with a significant interaction effect is assigned to 
an unimportant group in Phase 1, there is no chance that 
this interaction could be classified as important in Phase 2 
since CSB-X cannot screen interactions. In an empirical 
evaluation, Shen et al. (2006) showed that the proposed 
hybrid method is the most efficient one among CSFD and 
FF-CSB; however, like CSB, CSB-X, and FF-CSB, the 
efficiency of this method deteriorated significantly as the 
response variance increases. 

3 FACTOR SCREENING THE CRC MODEL 

3.1 The CRC Simulations 

The CRC simulation modeled white males with no family 
history who began colonoscopy screening at age 50.  The 
colonoscopy screening followed standard medical proto-
col with 10 year follow-up for negative findings. Positive 
screening results may be limited to removing the ade-
nomous polyp during screening with a three year follow-
up.  If the screening reveals colorectal cancer, then sur-
gery is performed to remove the cancer.  The extent of the 
surgery is determined by the state of the cancer and fol-
low-up is appropriate to that state.   

Compliance with screening is based on a general 
compliance that causes the individual to be never-
compliant, one-time, or probabilistic compliant.  The 
compliance affect first time screening as well as compli-
ance to surveillance.  The compliance variable specifica-
tions were part of the calibration used in validation. 

In general, input variables for the CRC model were 
estimated through calibration from clinical trials and na-
tional data sources.  Some of the data had to be inter-
preted by the physicians associated with the CRC model 
development and with a panel of selected medical experts.  
The final model was extensively tested and validated. 

3.2 Initial Step for Factor Screening: Testing the 
Equality of Variance 

Before performing factor screening on stochastic models, 
it is suggested that the experimental region be explored by 
using an inexpensive design such as small Latin Hyper-
cube (LH) design or a Plackett-Burnman (PB) design. 
Latin Hypercube Sampling (LHS) was proposed by 
McKay et al. (1979) for situations involving a relatively 
large number of factors. LH designs have good space-
filling properties; that is, the design points are scattered 
throughout the experimental region. Thus, the LH design 
provides some information about the interior of the ex-
perimental region. Ye (1998) described a procedure to 
construct an Orthogonal Latin Hypercube (OLH) when its 
number of rows n is a power of 2 or a power of 2 plus 1, 
i.e. for n = 2m or 2m + 1, an OLH with 2m - 2 columns can 
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be constructed. Later, Cioppa (2005) extended Ye’s pro-
cedure (Ye 1998) to incorporate more factors into the de-
sign matrix. They, however, noticed that the space-filling 
of these new designs is poor; therefore, they suggested 
sacrificing some of the orthogonality intentionally in or-
der to achieve better space-filling while incorporating a 
greater number of factors. These designs are called Nearly 
Orthogonal Latin Hypercubes (NOLH). Sanchez (2005) 
has implemented an Excel program which produces an 
NOLH for up to 29 factors. Since NOLH designs are not 
readily available for more than 29 factors, a PB design 
augmented with a center point was used for exploring the 
experimental region for the CRC Model.  

For 72 factors, PB requires 76 treatments (a combina-
tion of different levels of factors). This small experiment 
can be used to insure that the response function has equal 
variance over the experimental region. When the vari-
ances across treatments are not equal, the usual analysis 
of variance assumptions are not satisfied. Moreover, some 
of the factor screening methods designed for stochastic 
models assume homogeneous variance over the entire ex-
perimental region. If this assumption is not satisfied, a va-
riance-stabilizing transformation is recommended and the 
experiment is run on the transformed data (Montgomery 
2000).  

We chose Cost, QALY, and Cost over QALY 
(Cost/QALY) as the responses to be screened. Our previ-
ous experience with the model revealed that the response 
variance is dramatically high. One approach to reduce the 
variation among the observations is to put observations 
into a batch and treat the batch mean as one observation. 
For each treatment, a total of 100 observations were ob-
tained, grouped in 10 batches each containing 10 observa-
tions. Several statistical tests have also been proposed for 
testing the equality of variance. These tests can be viewed 
as formal tests of the hypotheses 
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where a is the number of treatments. Montgomery (2000) 
recommends using “Bartlett’s test” when the normality 
assumption holds and “Modified Levene test” when the 
normality assumption is violated. Since Bartlett’s test is 
sensitive to the normality assumption, there may be situa-
tions where the Modified Levene test is more appropriate. 
Bartlett’s test is usually conducted at the significance lev-
el 0.01 or 0.001. Anderson et al. (1974) suggests rejecting 
the variance homogeneity assumption if the test is re-
jected at the significant level 0.001 and if the homogene-
ity test is accepted at  = 0.01 level, no transformation is 
required. For all three responses, the p-values for both the 
Bartlett’s and Levene tests turned out to be less than 
0.0001 and therefore we reject the variance homogeneity 
assumption. 
1

3.3 Factor Screening Experiment 

Among the factor screening methods discussed in section 
2, CSB and its variants (CSB-X, CSFD, and Hybrid me-
thod) can operate when response variance is heterogene-
ous. However, due to the particular random  sampling 
structure of CRC Model that limits sequential observa-
tions, none of those methods can be applied. 2k Fractional 
Factorial designs assume that the response variance is 
homogeneous; however, with proper transformation we 
can stabilize the variance and obtain valid results. 

The values for the “high” and “low” values of the va-
riables used in the fractional factorial experiments for the 
factor screening were either upper and lower limits placed 
on the variables (most of these were Johnson SB distribu-
tions) or upper and lower bounds generally ± 3 standard 
deviations.  Negative lower bounds were truncated at ze-
ro.  

A 2k Fractional Factorial design of Resolution IV re-
quires 256 treatments (design points) for screening 72 fac-
tors. This design can estimate the factors’ main effects 
clear of the second-order interaction effects. A total of 
100 observations were obtained for each design point and 
grouped into 10 batches. The adjusted R2 for the model 
fitted to Cost, QALY, and Cost/QALY are 0.8146, 
0.7530, 0.8184, respectively. The p-values show that the 
generated models have fitted the corresponding data fairly 
good. To test the variance homogeneity assumption, we 
used the plot of actual response and residual by predicted 
response. Figure 1 shows the corresponding plots for 
Cost/QALY as response. As Figure 1 shows, the variance 
heterogeneity is obvious and corrective transformation 
techniques should be used. Cost and QALY showed the 
same behavior and required data transformation. 

We used Cox-Box method (Montgomery 2001) to 
find an appropriate transformation for the responses. 
Figure 2 shows the plot of actual and residual by pre-
dicted response for Cost/QALY after applying the Cox-
Box transformation. Comparing Figure 1 and Figure 2 in-
dicates that transformation has truly stabilized the re-
sponse variance. Moreover, transforming data increased 
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the adjusted p-value from 0.8146 to 0.8504 for Cost, from 
0.7530 to 0.7537 for QALY, and from 0.8184 to 0.8545 
for Cost/QALY. 

 Figure 3, Figure 4, and Figure 5 show the seven most 
important factors with highest absolute value of main ef-
fects for Cost, QALY, and Cost/ QALY, when Cox-Box 
transformation is applied to the data.  
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Figure 3: Important factors for Cost 
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Figure 4: Important factors for QALY 
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Figure 5: Important factors for Cost/QALY 

 Table 1 lists the name of the important factors with 
their corresponding screening IDs. Table 2 summarizes 
the important factors with their estimated main effects for 
Cost, QALY, and Cost/QALY. It should be pointed out 
that the estimated main effects are for the transformed 
metamodel. Nevertheless, since the Cox-Box transforma-
tion is a monotonic function, the signs of estimated main 
effects after transformation are the same as the signs of 
main effects in the original metamodel. 

Table 1: The name of important factors 
Screening ID Factor Name

X1 RiskDistribution
X14 Time from Advanced adenoma to asymptomatic 

local CRC
X15 Time from Local to regional CRC
X16 Time from Regional to distant CRC
X17 Time from Asymptomatic to symptomatic CRC

X22 Probability of surgical (first month) mortality
X80 RiskAffects
X151 GeneralCompliance

Table 2: List of important factors with their estimated 
main effects 

Screening ID Cost QALY Cost/QALY

X1 2642.68 -0.226 132.12
X14 -644.45 0.069 -32.42
X15 -544.90 0.040 -27.76
X16 -702.61 0.065 -36.12
X17 949.55 -0.059 48.21
X22 -1041.54 UI -50.15
X80 1011.43 -0.064 50.56
X151 UI 0.041 UI

UI: Unimportant effect

4 VERIFIYING THE RESULT OF FACTOR 
SCREENING

To verify the results of factor screening for each method 
we performed the following steps: 
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1. A metamodel was generated for the factors de-
tected as important by using a 2k Fractional Facto-
rial of Resolution V. In order to have more accu-
rate estimates for the metamodel parameters, we 
applied “Rule of 2” (Wallace 1977), i.e. eliminat-
ing the effects with F-ratio less than 2 from the 
generated metamodel. The metamodels that are 
generated for only important factors will be called 
“restricted metamodels.” Also, in order to stabilize 
the response variance, we transformed the observed 
data according to the Cox-Box method.  

2. The experimental region was sampled according to 
a Latin Hypercube Design (LHD) with 40 rows and 
72 columns. To produce a LHD with good space-
filling property, we generated 10000 random LH 
designs and chose the one with the highest mini-
mum distance between the design rows. For each 
design point 100 observations were obtained and 
placed in batched of size 10. Then, to examine how 
well the generated metamodel can represent the re-
sponse function over the entire experimental re-
gion, the response value corresponding to each 
treatment in the LHD was predicted by the re-
stricted metamodel. Next, we used the coefficient 
of determination (Kleijnen et al. 2000) to quantify 
the goodness of fit of the metamodel. 

 The coefficient of determination is defined as 
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where, iŷ is predicted value for treatment i, yi,r is actual 
response for rth observation of treatment i, y is mean of 
all observations, mi is number of observations for treat-
ment i ,and  n is the total number of observations for all 
treatments. r2 equals one (perfect fit) if all n metamodel 
output equals their corresponding simulation outputs 
( rii yy ,ˆ , for all i and r). Because r2 always increases as 
more regression variables are added (higher q), the Ad-
justed r2 is introduced ))()1()(1(1 22 qNNrrAdj

where, N is the total number of obtained runs and q is the 
number of regression variables. 2

Adjr represent the amount 
of variation over the entire experimental region that has 
been accounted for by the generated metamodel. 

For the generated metamodels, 2
Adjr turned out to be 

0.6561 for Cost, 0.6342 for QALY, and 0.6552  for 
Cost/QALY. Thus, the result of factor screening can be 
considered valid. 
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5 CONCLUSION AND FUTURE RESEARCH 

Out of the 72 factors considered in the CRC model, only 
eight seemed to be consistently important in a factor anal-
ysis for cost, quality-adjusted life-years (QALY), and cost 
per QALYs.  The fact that the same factors were impor-
tant for both cost and QALY is surprising since each out-
come is a very different measure of effectiveness.  How-
ever, since both produce similar importance, it is then 
expected that cost per QALYs would have the same im-
portant factors. 

Closer examination of the important factors reveals 
that the simulation is fundamentally driven by a few very 
important factors, although clearly many other factors 
contribute.  These “driving factors” reveal some basic 
elements of the model that tend to be obscured by the 
many factors employed.   

The risk distribution is seen to be especially impor-
tant.  The role of “risk” throughout the model is what de-
termines not only the propensity to develop adenomas 
through incidence, but also influences the progression of 
adenomas to cancer.  Risk is a highly transparent variable 
and has direct clinical relevance to physicians who must 
assess “risk” relative to individual patients.  It is not sur-
prising that risk is so strongly important. 

The “time” distributions, namely time from advanced 
adenoma to asymptomatic local CRC, from local to re-
gional CRC, from regional to distant CRC, and from as-
ymptomatic to symptomatic all have similar importance 
with the later ones showing more impact.  These factors 
are critical in the time stream from adenoma to cancer and 
whether these intermediate events occur before natural 
death.  It is therefore easy to understand why these are 
important.  However it is surprising that the time from in-
visible adenoma to visible adenoma and the time from 
visible adenoma to advanced adenoma is also not equally 
important. 

The role of “RiskAffects” in the simulation model re-
lates to the incidence and progression of the adenomas 
within individuals.  Thus, like “risk” alone, these effects 
can greatly impact the activity of the disease and thus 
have important influence on the outcomes. 

The importance of the probability of surgical mortal-
ity seems to impact cost and cost/QALY more than 
QALY simply because a surgical mortality has such a 
high cost.  Likewise the variable “GeneralCompliance” 
appears to impact QALY while being relatively unimpor-
tant for cost and cost/QALY. 

The overall value of this factor screening applied to 
the CRC simulation model provides insight into the “driv-
ing factors” in the model.  Unfortunately the factors iden-
tified are factors associated with the natural history of 
disease and are not amenable to external control (such as 
screening age).  In this case the factor screening amplified 
the critical role of certain basic variables, which were (for 
80
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the most part) recognized as fundamental.  There are nu-
merous other variables that have a clear importance but 
were not identified by factor screening based on the FF-
IV.   

The fact that many seemingly important variables do 
not manifest themselves in factor screening using frac-
tional factorials suggests that there is some deficiency in 
the use of this approach for factor screening (at least for 
this case).  We suspect that much of this inadequacy to 
identify other factors is related to the basic limitations of 
the fractional factorial from which importance is deter-
mined.   

The factional factorial based on 2k determines its im-
portance over the range from “low” to “high” values of 
the factors.  Thus the range endpoints of these factors in-
fluence their chance of importance. Wan et al. (2004) 
show how the range endpoints can be determined if we 
can associate cost to each factor. However the factors in 
the CRC model do not lend themselves to this kind of es-
timation and the range endpoints had to be determined ar-
bitrarily.   

Also the CRC model appears to be highly non-linear 
with unknown higher-order interactions that compromise 
the FF-IV analysis.  Recall that FF-IV can only estimate 
main effects clear of first-order interactions, however the 
simulation may produce important interaction effects that 
are not clearly estimated.  Perhaps a means of analysis 
that can accommodate to these characteristics should be 
explored. 
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