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ABSTRACT

This paper introduces an application and a methodology to
predict future states of a process under real-time require-
ments. The real-time functionality is achieved by creating a
Bayesian tree via data-mining on agent-based simulations.
The computationally expensive parts are handled in an of-
fline phase, while the online phase is computationally cheap.
In the offline phase the simulations are run and meaningful
clusters of states are identified by use of virtual attributes.
Then the transition probabilities between states of different
clusters are organized in a Bayesian tree. Finally, in the
online phase similarity measures are used again in order
to classify query states into the clusters and to infer the
probability of future states. The application domain is the
support of military units during missions and maneuvers.

1 INTRODUCTION

In this paper we present an application for decision support
in military missions and maneuvers. As research in oppo-
nent modelling has shown (Riley and Veloso 2002, Steffens
2005, Steffens 2006), anticipating future situations is helpful
in order to counteract the enemy’s actions. We describe a
system for generating predictions that uses data mining and
other artificial intelligence methods on data from simulation
results. It is integrated in the LampSys simulation envi-
ronment (Huegelmeyer, Steffens, and Zoeller 2006) which
offers an intuitive graphical interface.

Decision Support Systems are intended to help a com-
mander of a unit to decrease his cognitive load in situations
that are difficult to assess due to dynamically changing
information, complex interdependencies and time pressure.
The system described in this paper aims at reducing the
cognitive load by providing predictions of possible future
situations at an appropriate level of abstraction. These pre-
dictions are clearly on a tactical rather than strategical level.
While simulation is often used for stratecic decision making
in a military context, it is far more seldom used for tactical
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simulation (Bosch and Rajab 2004), because the costs of
collecting the neccessary data, model creation and valida-
tion, running the simulation and interpretation of the results
can outbalance the benefit of the tactical question. In order
to remedy this, LampSys comes with a set of pre-bundled
szenario-kits, that make it easy to describe a simulation,
run it and evaluate the results.

Conceptually, a digital double of the unit in the field is
created via aerial reconnaissance and other data that the unit
sends to the system. This way, the system keeps a world
state which reflects the situation in the field. For this world
state predictions about the probability of future situations
are generated. In future work, these predictions will be sent
to a personal digital assistant (PDA) of the unit.

In order to generate predictions on an abstract level
that can be grasped intuitively, the prediction is based on
meaningful clusters of states instead of single states. These
clusters are obtained by simulation runs and are described
using abstract virtual attributes (Richter 2003). The state
of the digital double is mapped onto a cluster using a
similarity-measure. The transition probabilities between
this cluster and other clusters are represented by a Markov
chain (Bremaud 1999). The complete process is depicted
in figure 1.

The remainder of this paper is organized as follows. In
the next section our approach is motivated by the demands
of real-time prediction. Then our simulation environment
LampSys is outlined shortly. In section 4 our approach
to clustering is described. The computation of transition
probabilities between clusters is covered in section 5. The
generation and presentation of predictions is explained in
section 6. Finally, the last section concludes and outlines
future work.

2 OFFLINE ANALYSIS AND REAL-TIME
PREDICTION

The traditional approach for using simulation for prediction
is not adequate for the requirements of prediction in military
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Figure 1: The complete process is divided into a computa-
tionally expensive offline phase and a computationally cheap
online phase. The flow of data (circles) between actions
(squares) is denoted by the arrows.

missions. Often, predictions are generated by simulating
the current state into a defined number of time steps into
the future. Since processes in the real world are usually
non-deterministic, a single simulation run does not provide
reliable predictions. Thus, many simulation runs are ex-
ecuted and their results are aggregated, for example via
a Monte Carlo analysis (Bosch and Rajab 2004). Such
approaches and the general class of Model Predictive Con-
trol approaches (Garcia, Prett, and Morari 1989) execute
all of their computation in the time-critical online phase,
that is, after the prediction task was issued. However, for
real-time predictions during military missions, much of the
computation should be done offline, before the request for
predictions is issued. The approach presented in this paper
aggregates the results of simulation runs beforehand.

Our work is more similar to the approach introduced
in Sheikh-Bahaei and Hunt (2006) where simulation results
are clustered and the prediction is achieved via assignment
of a new compound to a cluster. We extend the approach
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from static classifications to a probabilistic process-oriented
approach.

3 SIMULATION ARCHITECTURE

3.1 Scenario-based Approach

The utility of modeling and simulation tools for military
applications highly depends on the quality of the utilized sce-
narios. Therefore, the careful design and precise description
of scenarios as well as the ability to reliably communicate
these assets is of prime importance. Moreover, considering
non-deterministic wargaming, one must be able to specify
and document alternative courses of action in order to enable
a comprehensive analysis as well as comparisons with the
optimal procedure. Therefore, a precise formal specifica-
tion of complete scenarios constitutes an essential part of
modern simulation environments. A complete description
of a scenario has to include the environment (landscape,
terrain, weather), forces, enemies, and non-combatants. The
simulation language LAMPS (Huegelmeyer, Steffens, and
Zoeller 2006) supports both the description of scenarios and
the executable specification of agent behavior for compound
agent groups down to individual agents. Like other modern
simulation languages (L’Ecuyer and Buist 2005), LAMPS
can be displayed both graphically and as a rule-set. We
use it to specify the scenarios and situations in the military
domain.

3.2 Simulation Environment

The language LAMPS can be executed by the LampSys sim-
ulation system. LampSys extends the Flip-Tick-Architecture
(FTA) (Richter 1999), which has its roots in the JANUS
project developed at the Gesellschaft für Mathematik und
Datenverarbeitung (GMD) (Beyer and Smieja 1994). At its
core, FTA is a design paradigm for scalable distributed sys-
tems that exhibit a priorily unknown dynamic characteristics
as well as disturbances and inaccuracies which are difficult,
if not impossible, to model in a closed-form mathematical
approach.

LampSys is based on the concept of clans, which are
groups of agents. It comprises three classes of entities:
agents, clans, and tags. A clan A is formed by a set of
individual agents a j.

A = {a1, . . . ,ai, . . . ,ak}

Each actor a j is composed of a set of typed attributes U j,
whose value assignment determines the agent’s state, to-
gether with an action function f j, which entails all operations
that can be performed by the agent.

a j = (U j = (u1, j, . . . ,um, j), f j)
1
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Structural information concerning agents, i.e. names and
types of attributes, is described via agent types. Formally,
we have type(a j) = t, if and only if agent a j is of type t.
The system supports agent templates that can be used to
store prototypical value assignments. Thus, an individual
agent can be created either by instantiation of its type, or
by copying from a pre-defined template.

The principle of autonomy of agents forbids the direct
manipulation of internal data structures and behaviors of
other agents. Consequently, all interactions between agents
are handled via messages. Upon receiving a request, the
agent is able to analyze its content and to decide whether
it wants to comply. The basic unit of execution is called
a cycle. During one cycle, the agent reads its messages
and triggers the appropriate actions, which might consist of
writing messages to other agent.

A scheduling clan is a set of agents sharing a common
pace, i.e. all elements of a clan have the same time resolution
dt. This in turn implies that their cycles are synchronized
and that the clan switches from cycle to cycle as regularly
as the tick of a clock. It is important to note that different
agents do not necessarily share the same time resolution.
Instead, the architecture supports individual running speeds
for every agents. Moreover, time steps can vary from cycle
to cycle. Thus, adaptive control of time increments can
be realized. This is particularly valuable for increasing the
time resolution in the computation of dynamics equations
for fast moving objects.

The messages used for inter-agent communication are
called tags. Instead of setting up a direct communica-
tion with other agents, agents register with one ore more
interaction-clan. They send their messages to a designated
clan-chief of that clan. While clan-chiefs can in prin-
ciple implement other communication protocols such as
publish-and-subscribe or blackboard, LampSys most often
uses so-called tag-boards for discrete-time simulation. For
event-based simulation other communication protocols are
used. Tag-boards serve as the functional units for handling
messages. In formal terms, a tag-board forms a medium Mn
for message exchange, while a LampSys system is capable
of supporting multiple media:

M = {M1, . . . ,Mm}

A tag-board consists of two sides. One is write-only and
contains all tags sent to the board in time step t, whereas
the other side is read-only and encompasses all tags written
in time-step t− 1. Analogously to agents, each tag-board
has its own time resolution and thus its own cycle time.
During a board cycle, the write-only side is flipped over.
Thereby, the read-only part mirrors the tag content of the
write part from the previous time-step. The write-only side
is deleted after flipping. In this way, the lifetime of tags
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is effectively controlled by the time-scale of the pertaining
board.

With this approach, fully synchronized (all agents and
tag-boards share the same time resolution) as well as com-
pletely asynchronous systems (every agent and every board
has its own time-scale) can be modeled in terms of the FTA.

The mathematical model of this agent architecture is a
system of flexibly coupled inhomogeneous difference equa-
tions.

4 CLUSTERING OF STATES

The system introduced in this paper is required to present
the user with explicit probabilities of future situations. The
state space in complex situations is very large, thus the
probability of single states becomes arbitrarily small. To
address this issue, our prediction system predicts clusters of
states instead of single states. However, this introduces the
problem of acquiring meaningful clusters and to label them
with human understandable names. This section describes
how simulation states are clustered and labelled. First, we
outline how simulation states are represented in LampSys.
Then, the similarity measures and clustering techniques are
described.

4.1 Simulation States in LampSys

LampSys is based on the concepts of ITSimBw
(Huegelmeyer, Steffens, and Zoeller 2006). This means
that all entities in the simulation is modelled as an agent.
The behavior and the state of an agent is modelled as a set
of attributes. Thus, the state of the simulation is specified
by the values of all attributes of all agents.

Formally, an agent ai has a type type(ai) = t p which
specifies the set of attributes. That is, the agent is specified by
the set of attributes Ui = {u1,i, . . . ,unt p,i}. An example for an
agent type in the given domain would be infantry, which
might have the attributes position, physicalState,
ammunition.

According to the aforementioned FTA-paradigm, a real
system is simulated by iterating the system states over the
time t. Thus, the agents’ attributes are variables of time.
With dt → 0 this iteration system is a system of v coupled
differential equations

D = (D1, . . . ,Dv)

where the action function f j of an agent a j can be seen as
the equation D j ∈D. The agent’s attribute set is the variable
vector of the equation. Thus

U t+dt
i = fi

(
U t

i
)
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for dt → 0 with

U t+dt
i = U t

i +dt ∗ fi
(
U t

i
)
.

In an implementation the condition dt → 0 cannot be sat-
isfied. Thus, the FTA-paradigm uses a set of difference
equations. For each agent Ai an individual dti can be cho-
sen for computing the steps of Di.

While the simulation progresses, it steps through a series
of states At . The simulation state at time t is given by the set
of all attribute values of all agents: At = (U t

1,U
t
2, . . . ,U

t
v).

Thus, while the simulation progresses, there develops a
series of simulation states A = A0, . . . ,Ap,Aq, . . . ,Al with
tq − tp = Minv

h=1dtv. As mentioned earlier, the intervals
between time steps in A are not necessarily equally long,
since the interval is chosen at each time step as the minimum
of the intervals that each agent proposes for its own action.

4.2 Clustering

Clusters are sets of states that are similar to states in the
same cluster, and unsimilar to other states. Which states
are similar is defined by a similarity measure. That is, a
similarity measure maps a pair of simulation states into the
interval [0..1] by averaging the similarity of the agents:

sim(Ap,Aq) =
∑

v
i=1 sim(ap

i ,aq
i )

v

Agents that are compared to each other are always of the
same type. The similarity of two agents is computed as the
average of their attribute similarities.

sim(ap,aq) =

√√√√∑
ntype(ap)
i=1 sim(ui,p,ui,q)

ntype(ap)

Since the agents’ attributes can have non-numerical or nu-
merical values, we use different similarity measures de-
pending on the attribute types. For numerical attributes, the
standard Euclidean similarity measure is used:

sim(x,y) = 1−
(

x− y
r

)2

where r is the range of the attribute. For non-numerical
attributes, the identity comparison is used: sim(x,y) = 1 iff
x = y, 0 else.

Attributes are not weighted differently. Instead, at-
tributes that are not relevant for the task are not included at
all. Additionally to the agents’ attributes, it is possible to
define virtual attributes (Richter 1999) if domain knowledge
is available. Such virtual attributes are not explicitly repre-
sented in the simulation, but can be inferred or aggregated
14
Figure 2: Example for ambiguous clustering. Solid circles
depict simulation states, crosses depict center of the clusters.
The clusters M2 and M3 overlap so that some simulation
states cannot be mapped to a cluster in a non-ambiguous
way.

from the other attributes. A virtual attribute Mi is defined
formally as

U ×U × . . .×U → Mi,

where U = ∪v
i=1Ui.

An example for a virtual attribute is the attribute
center of the infantry units’ positions
which can be inferred from the position-attribute of the
agents of type infantry that belong to the same unit.
Our previous work showed that such virtual attributes often
provide a good partitioning of the state space (Steffens
2006).

The LampSys environment provides an extentable set
of virtual attributes which can be selected by the user for
a clustering session. Thus, the user specifies a set M =
{M1,M2, . . . ,M3} of virtual attributes Mi. The state space
spanned by M is considerably smaller than the simulation
state space. Furthermore, its dimensions correspond to more
abstract and thus more intuitive concepts than the rather
technical original attributes.

Via the graphical interface of LampSys the user can
assign simulation states to clusters. Whenever he encounters
a state that does not fit into the existing clusters, he defines
a cluster with a new label. This way, a set of clusters
C = {C1,C2, . . . ,Cn} is generated, where for each Ci there
exists a manually defined label li = label(Ci).

Since C is created manually, a subsequent process au-
tomatically checks whether the clusters are non-ambiguous.
Furthermore, the center of the clusters is computed. This is
achieved using the k-means-algorithms (MacQueen 1967).
The center of each cluster is computed in an iteration of the
algorithm until the centers do not change anymore. If the
algorithm does not converge in a given amount of time, this
is an indicator that the clusters are ambiguous (see figure 2).
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In this case the user is asked to recheck his assignments of
states to clusters or to expand the set of virtual attributes.
Increasing M with an additional virtual attribute is necessary
if the given dimensions are not sufficient to partition the
clusters.

If a set of clusters is generated, each simulation state
can be assigned to its most similar cluster center via the
function c(Ai) = maxk

j=1(sim(A,mi) where mi is the center
of cluster Mi.

4.3 Score

In order to support the user in choosing from the alternative
states in a choice situation, we assign a score to each
individual state. The score is based on the distance to the
aquired goal, the time left to reach the goal, the own lost
resources to reach this state and the propability to reach
the goal at all. Additionaly individual other factors can be
added.

SC = SgdistC ∗StimeC ∗SresC ∗SpgoalC

A fitness value of 0 denotes that the mission goal is not
achieveable anymore (e. g. all units are lost). A value of
1000 means that the mission goal is optimally achieved with
the optimal use of ressources and in the minimal amount
of time.

5 TRANSITION PROBABILITIES

In this section we describe how we compute the probability
of future states.

A simulation steps through a series of states which
can be assigned to clusters. Thus, a series of clusters
can be generated. The transition between clusters is non-
deterministic and can even be cyclic, for example

C1 →C2 →C1 →C3 →C2 →C4 →C5 → . . .

The series of clusters can be viewed as a stochastic
process in discrete time. A time step in this series depends
solely on its predecessor. We use markov chains (Bremaud
1999) to model such processes. For a number of simulation
runs, the frequency of transitions between each pair of clus-
ters is computed. Based on these frequencies, the transition
probability between clusters is inferred. The result is a
directed graph (see figure 3) where clusters are nodes and
where the arcs are formed by the transition probabilities

P
(
Ct+1 = c

(
At+1) |Ct = c

(
At))
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Figure 3: A directed graph depicting the transition proba-
bilities (arcs) between clusters (nodes). The fitness value
of clusters is depicted as a rectangle in the nodes.

6 PREDICTION

In the application discussed in this paper, the system keeps
a state which reflects the situation in the field via aerial
reconnaissance and communication of data. For this current
state the system predicts possible future states.

Technically, using the function c(A) a state can be
mapped into a cluster Mi. If the similarity between the
state and the center of Mi is below a certain threshold, the
mapping is considered inappropriate. This can be the case
if the simulation runs did not cover this particular situation
or if the clusters do not cover the state space well.

In any case, the system tells the user a confidence factor
about the mapping of the state into a cluster.

Using the Markov graph, the system presents the proba-
bilities of future situations and graphically depicts the fitness
values of these situations.

The prediction phase is deliberately simple, since the
requirements of the whole system are that the computational
effort has been done beforehand.
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7 CONCLUSION

We presented an approach for supporting tactical decisions in
military situations. From a number of simulations, scenario-
specific predictions are generated for given situations in real-
time. This real-time functionality is achieved by partitioning
the process into a computationally expensive offline phase
and a computationally cheap online phase. By using virtual
attributes the predicted situations provide an appropriate
level of abstraction in order to support time-critical decisions.

Future work includes the automation of clustering by
means of associating states to behavior specifications of the
simulated agents.
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