
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

USING A LOW-RESOLUTION ENTITY MODEL FOR SHAPING INITIAL CONDITIONS FOR HIGH-
RESOLUTION COMBAT MODELS

Darryl Ahner Arnold Buss John Ruck

U.S. Army TRADOC Analysis Center MOVES Institute Rolands & Associates Corp.
Naval Postgraduate School Naval Postgraduate School 500 Sloat Ave

Monterey, CA 93943, U.S.A. Monterey, CA 93943, U.S.A. Monterey, CA 93940, U.S.A.

ABSTRACT

Determining the initial conditions for high-resolution
combat models presents a challenging modeling problem.
These initial conditions can have a major impact on the
outcome of the analysis, and yet there is a significant dif-
ficulty setting those conditions in a manner that spans the
important areas of the input factor space. This paper pre-
sents a method for setting those initial conditions using a
low-resolution, entity-level combat model, Joint Dynamic
Allocation of Fires and Sensors (JDAFS). Like its prede-
cessor DAFS, JDAFS models entities on the battlefield,
but to a lower degree of detail than most high-resolution
combat models. This allows substantial exploration of the
input factor space, and can help make the eventual high-
resolution simulation runs more effective.

1 JOINT STARTING CONDITION
REQUIREMENTS

When using high resolution ground combat simulations,
scenarios often do not start running in these high resolu-
tion simulations on D-day. For instance, if the high reso-
lution starts on D+10, then initial conditions for the high
resolution simulations must be developed. The process for
setting these initial conditions often has relied on a single
Intelligence, Reconnaissance, and Surveillance expert to
determine detection and identification percentages. Then,
an air campaign expert determines the destruction per-
centage and dispersion of remaining enemy assets
throughout the area of operation. This overall process is
difficult to defend to an analysis review board which
brings into question the results of the high resolution runs
due to the lack of traceability to certifiable algorithms and
experimental performance data when setting these initial
conditions. A process that is approved by the scenario, in-
telligence, threats, and Joint community is desired.

The starting condition input parameters that the high
resolution simulations require fall into three categories:
unit, geographical, and operating environment parameters.
13441-4244-1306-0/07/$25.00 ©2007 IEEE
Unit starting conditions consist of location, orienta-
tion, and velocity information for each entity in the high
resolution model. In addition, the disposition to include
current morale, strength, and training may be required.
For each unit its current information state or situational
understanding must be available for the high resolution
model. This understanding may consist of a representation
of the ambiguities present in actual conflicts. Each units
status of supplies, especially fuel and ammunition, is re-
quired to include status until next re-supply. Finally, each
units location and disposition of intelligence assets must
be provided as starting condition input.

Geographical information that is required as starting
condition input is the status of dams, weather, trafficabil-
ity of terrain, minefields, and contaminated areas.

Operational environment information that is required
as starting condition input is civilian distribution, alle-
giances and attitudes of civilians, economic conditions,
religious attitudes, and others.

Within the high resolution simulation these informa-
tion requirements are critical in the representation of the
intelligence preparation of the battlefield that all military
units perform prior to major operations. By providing a
traceable methodology of determining these initial start-
ing conditions, the high resolution simulations, which are
already traceable and whose results are well accepted by
senior military leaders, can provide defendable results to
analysis review board and senior military leaders that un-
derpin key decisions.

The Joint Dynamic Allocation of Fires and Sensors
(JDAFS) simulation helps set the unit and geographical
starting conditions for high resolution simulations by us-
ing validated algorithms and data. JDAF provides a trace-
able methodology to justify these initial Joint starting
conditions.

Ahner, Buss, and Ruck

2 JOINT DYNAMIC ALLOCATION OF FIRES
AND SENSORS (JDAFS)

Current high resolution entity level simulations are be-
coming increasingly complex. The rate at which simula-
tion complexity grows often outpaces increases in com-
puting power. While this level of complexity is necessary
for certain applications, a lower resolution approach to
entity-level simulation may also be necessary. A lower
resolution approach can complement existing high resolu-
tion simulations creating a more robust modeling, simula-
tion and analysis toolkit. Analysis for concept exploration
and studies often involves examining a very large parame-
ter space. Time constraints frequently limit the number of
high resolution simulation runs that can be completed re-
sulting in only a limited number of parameters being in-
vestigated and limiting the settings of the investigated pa-
rameters.

The use of low resolution models for military analy-
sis has been previously discussed in Ahner, Jackson, and
Phillips (2006). Low resolution screening tools can help
identify parameters and parameter settings of interest.
Havens (2002) began development on one such tool,
DAFS, a low-resolution, constructive entity-level simula-
tion framework designed for combat. Jackson and Phillips
(2005) lays out this compelling argument for a need for
low resolution simulation tools to fill these capability
gaps in military simulations.

The framework of DAFS consists of a Discrete Event
Simulation Model with embedded optimization, Extensi-
ble Mark-up Language (XML) input and output modules,
and an output analysis package. The simulation model re-
ceives scenario inputs from XML files. DAFS uses a
model predictive control approach for making decisions
by calling an optimization routine to allocate assets based
upon current conditions. Data is collected during simula-
tion execution and once the simulation is complete, the
XML output is available to be processed by an analysis
package. The DAFS framework is designed to provide
maximum flexibility. Through the use of an interchange-
able component-based architecture, the simulation pro-
vides the user extensive ability to modify entities, con-
figurations, simulation parameters and data output. DAFS
is an open source simulation that is made widely available
for user customization.

DAFS is a combat simulation that models BLUE,
friendly forces against RED, enemy forces. Because it
uses a low resolution approach, DAFS runs fast and is
relatively easy to set up. In addition, DAFS’ low resolu-
tion models use data derived from high-resolution models
enabling analysts to trace DAFS inputs back to accepted
models and data. In the following sections, we will de-
scribe the major components of DAFS, the structure of
DAFS input, the embedded optimization in DAFS, DAFS
unique low resolution approach derived from a high reso-
134
lution algorithm to construct representative probability
distributions, and finally, describe a DAFS run through
event graphs.

3 HIGH RESOLUTION VS LOW RESOLUTION
APPROACHES

For purposes of this discussion, resolution will mean the
level of detail at which the various elements in a model
are modeled as well as the level of detail of algorithms
used to drive the model (movement, sensing, line-of-sight,
etc.). “High resolution” means that these elements are
modeled at a very fine level of detail, whereas “low reso-
lution” means that there is considerably less detail. For
example, a high-resolution model that included tanks
might include attributes such as its weight and its three-
dimensional geometry, and might also explicitly represent
the individual members of the tank crew as well as very
detailed sensing algorithms to represent the tank’s various
sensor packages. A low-resolution model, on the other
hand, might represent the same tank as a point on a two-
dimensional map with attributes for its maximum speed,
loaded munitions, and a rough representation of its sensor
capabilities. Similarly, a high-resolution line-of-sight al-
gorithm might frequently compute the direct line-of-sight
between all pairs of entities, whereas a low-resolution al-
gorithm might only consider the events that line-of-sight
was gained or lost, with the times between modeled prob-
abilistically.

Often it is asserted, explicitly or implicitly, that the
level of resolution a simulation model must have is an ab-
solute quantity. The “high-resolution” approach typically
attempts to model every element and entity with many at-
tributes and to model the dynamics and interactions to a
very fine degree. The consequences can have significant
impact on the ability to conduct analysis to produce
meaningful recommendations in a timely manner.

The high level of fidelity in representing entities im-
poses a significant data burden on the analyst. Not only
do data have to be produced to fill in each attribute, but
the resulting memory footprint when running the model
can be substantial. The high-resolution algorithms im-
plemented often are very time-consuming, thereby sub-
stantially increasing the length of simulation runs, often to
the point where no more than a few “production” runs can
feasibly be performed for a study.

DAFS is an example of a low-resolution model, and
henceforth in this paper we will only consider the low-
resolution approach to modeling entities as it applies to
DAFS. Before discussion that approach, it is first neces-
sary to cover Event Graph Methodology, upon which the
DAFS entities and algorithms are based.
5

Ahner, Buss, and Ruck

4 LOW RESOLUTION MODELING

We will now discuss three of the primary elements of a
low resolution, entity level combat model: movement,
sensing, and weapons effects.

Intuition may suggest that these must be implemented
in a time-step manner. Indeed, an entity in motion, for
example, cannot have its position be modeled as a DES
state, because its value is continuously changing. Since
DES state must have piecewise constant trajectories, loca-
tion therefore cannot be a DES state. However, it turns
out there is an alternate approach that not only is more
computationally efficient than time-step, but more accu-
rate in its representation of the precise location of the
moving entity. This approach, using an equation of mo-
tion with dead reckoning, is discussed in the following
section.

4.1 Movement

The simplest possible movement is uniform, linear mo-
tion. A moving entity starts its move at some initial posi-
tion x at time t0 and begins moving with velocity v. Thus,
the location of the entity at time t is

!

x+ (t " t
0
)v . Equiva-

lently, the location of the entity s time units after it began
its movement is svx + .

In a DES model the location of moving entities is
modeled using implicit state, rather than explicit state, as
mentioned above. Rather than storing the current location
of the entity at all times, enough information is stored so
that the current position can be computed easily whenever
desired using “dead reckoning.” For uniform linear mo-
tion, it is enough to store: (1) the initial position x (i.e. the
location of the entity just prior to when it started moving);
(2) the velocity vector v; and (3) the time it started mov-
ing t0. The equations of motion of the previous paragraph
are then applied whenever the position is needed within
the model. Note that since there is no explicit location
state, state updates are only required when the velocity
vector changes.

The coordinates and velocities of the entities are all
in some common base coordinate system, so the motion
represented above can be considered absolute motion in
the base coordinates. Often it is desirable to consider loca-
tion and motion relative to some particular entity’s coor-
dinates. In that case, the locations and velocities can be
represented relative to that entity’s coordinates. For most
purposes the entities’ coordinate systems may be consid-
ered to be simply a translation of the base coordinate sys-
tem. Thus, an entity at position y in base coordinates is at
position y −x in the coordinates of an entity located at po-
sition x in the base coordinate system. Relative velocity is
equally simple for uniform linear motion. Suppose the
equations of motion for two entities are given by

)2,1(, =+ iitvix . Then in the coordinate system of entity

!
134
1, the motion of entity 2 is given by
(x
2
" x

1
)+ t(v

2
" v

1
). Thus, relative to the first entity,

the motion of the second is uniform and linear with start-
ing position x2 − x1 and velocity v2 −v1.

Start

Move

End

Move

t

Figure 1: Mover event graph.

Although it may not be immediately evident, repre-

senting movement in a pure DES manner such as this ac-
tually can provide a superior model to the traditional
time-step approach for entities that move around in a
simulation model (Buss and Sanchez 2005). A discussion
about the relative merits of the two world views are be-
yond the scope of this paper. We will therefore confine
the claim to the relatively modest one that the DES way
of modeling movement is a reasonable one for low-
resolution modeling described in this paper. It should
also be evident that, barring pathological situations, the
DES approach is generally faster than the time-step ap-
proach.

Finally, we note that the approach itself is not limited
to linear equations of motion. Indeed, any equation of
motion in a closed-form can be used in place of the linear
equations described above. It has been our experience,
however, that linear motion is more than adequate for
low-resolution modeling.

4.2 Sensing

A pure Discrete Event Simulation approach to modeling
sensing starts by changing the fundamental question being
asked of the sensor-target interaction. Rather than focus-
ing on the probability of detection as the primary meas-
ure, DES sensing is concerned with when a sensor ac-
quires a target, and also when a given sensor loses contact
with a given target following acquisition.

It is easiest to start with the simplest situation in
which the sensor is motionless and the target initiates a
maneuver that will bring it within the sensor’s range. The
target’s motion is initiated by the StartMove event and
concludes with the EndMove event

The key events are summarized in Figure 2. The tar-
get entity’s StartMove event is “heard” by a Referee en-
tity using the SimEventListener pattern (Buss 2002),
whereupon the time of the EnterRange event is calculated
and the EnterRange event scheduled by the Referee.
When the Referee’s EnterRange event occurs, the time to
Detection is calculated by a Mediator entity. Since differ-
ent Mediators can exist even for the same Referee in-
stance, there is considerable flexibility in implementing
6

Ahner, Buss, and Ruck

detection algorithms. In principle the Undetection and
ExitRange events are distinct, but in practice there exists
little data or models on which to make that distinction.
Regardless, when the ExitRange event occurs, the sensor
cannot possibly detect the target. It is important to recog-
nize that the scheduling of these events does not rely on
polling or time-stepping. Rather, each scheduled event is
based on a single computation and a single scheduled
event for that sensor-target pair.

StartMove

EndMove

EnterRange

ExitRange

Detection

Sensor

Target

Undetection

Figure 2: Canonical event sequence (after Buss and San-
chez 2005).

The simplest example of a Mediator is the
CookieCutterMediator, in which the delay between En-
terRange and Detection events is 0.0. Another simple
Mediator is based on an exponentially distributed time be-
tween EnterRange and Detection. This is roughly equiva-
lent to a sensor that detects the target at a constant rate,
and can be used in place of a time-step model in which
the probability of detection at each time step is a constant.
Finally, a methodology has been developed in which the
delay time can be statistically calibrated to the Acquire
algorithm (Buss and Sanchez 2005).

4.3 Weapons Effects

Representing weapons effects using a pure Discrete Event
approach is similar to representing sensing. The primary
focus is actually less on the weapon but rather on the mu-
nition, since a given weapon is generally capable of using
different types of munitions depending on the circum-
stances.

A munition is represented as a fast-moving Mover
whose EndMove event triggers an Impact event. Both di-
rect and indirect fire munitions are modeled using the
same approach. A MunitionTargetReferee first deter-
mines the targets that are impacted by the munition. This
is determined by the shape of the impact and which enti-
ties are within that shape. For each target within the blast
area, the actual effect is determined by a MunitionTarget-
1347
Adjudicator. Like the Referee for sensors, for each target
the MunitionTargetReferee chooses the appropriate Muni-
tionTargetAdjudicator, thus enabling differential effects
of even the same shot.

Currently, DAFS does not model damage to plat-
forms; rather, they are either dead or alive, so the Muni-
tionTargetAdjudicator’s job is simply to determine
whether the shot did or did not kill the target. As with
sensor Mediators, different algorithms are possible with
MunitionTargetAdjudicators. Thus, the probability of
killing the target can be a function of the munition type,
the target type, as well as the distance of the weapon and
the distance of the target from the center of impact.

Joint starting conditions requires that JDAFS meth-
odologies are traceable back to approved algorithms and
data. JDAFS data and methodologies account for delivery
accuracy, target location error, and mean point of impact
error for indirect fire weapons and biases, dispersion from
movement, and random error for direct fire. These meth-
odologies are derived from U.S. Army Material Systems
Analysis Activity approved algorithms to ensure trace-
ability.

4.4 Discussion

The pure DES way of modeling these elements enables
significant possibilities for improved computational effi-
ciency over traditional time-step approaches.

It should be apparent that the DES approach to mod-
eling movement is much more efficient than the time-step
approach under most circumstances. A time-step ap-
proach typically must poll each entity regardless of
whether it is moving or not. In the DEA approach, a sta-
tionary entity requires no computational effort for the
movement part of its state, since there are no events on
the Event List, as long as the entity remains stationary.
Indeed, even for an entity in motion, there is a single
EndMove event on the event list. There is no need for
polling the entity’s state, since it remains fixed until the
EndMove event occurs. Generally, the rate at which
moving entities change their movement state is orders of
magnitude less than a typical time step duration. Only
when entities are changing direction or speed every time
step will the corresponding DES model be less efficient,
and this is a highly unusual situation. Moving entities
tend to keep moving according to the same equations of
motion for extended periods of time relative to typical
time steps.

In modeling sensing there is even more potential im-
provements of DES to time-step. In a scenario with
s sensors and t potential targets, every time step there
must be ts! determinations of detection. In the DES
approach, only when a target or a sensor changes move-
ment state does there have to be any computation of En-
terRange events or Detections. Furthermore, consider an

Ahner, Buss, and Ruck

event for a potential target that changes its movement
state. In that case, only the sensors need to be polled
about the new detection status; the other targets are irrele-
vant. Similarly, if a sensor changes its movement state,
then all the potential targets must be polled, but the other
sensors are not relevant and can be ignored at that event.
Thus, for movement state changing events, which are
relatively much more rare than time steps, there is essen-
tially an amount of computation that is linear in the num-
ber of sensors or number of targets, rather than the prod-
uct of the two.

We have labeled the way of modeling these three im-
portant elements of combat “low-resolution” because of
the fact that some elements are not captured in as much
detail as in traditional “high-resolution” combat models.
If indeed a fine-grained capturing of movement subtleties,
such as increased or decreased speed along undulating ter-
rain, is required for the performance measures of the
model, then a time-step approach may be the only way to
represent it. However, in many cases it turns out that the
measures are relatively insensitive to the precise fluctua-
tions in movement, and are relatively unaffected by the
somewhat grosser representation of a DES model.

We now turn to some details of the implementation
of these concepts in the DAFS (Dynamic Allocation of
Fires and Sensors) model.

5 DAFS IMPLEMENTATION

Dynamic Allocation of Fires and Sensors (DAFS) had its
origins in a Masters thesis at the Naval Postgraduate
School under the sponsorship of the U.S. Army TRADOC
Command, TRAC-Monterey (Havens 2002). The initial
motivation was to model optimization-based decision
rules for allocation weapon platforms to targets and sen-
sors to sensor assignments and evaluate the rules in a
combat scenario. The primary focus was on the optimiza-
tion rules, and the simulation portion was used to adjudi-
cate the outcomes in using a simple combat scenario. In
other words, the efficacy of the optimization was deter-
mined not by its objective function value but by tradi-
tional combat measures, such as probability of achieving
objective and loss-exchange rates. Some details of the
optimization are presented in the following section.

DAFS is an Open Source model, copyright under the
GNU Lesser Public License (Free Software Foundation
2006). The philosophy of the DAFS development team
has been to make it freely available, including source
codes, with the objective of creating closer ties between
developers and potential users. Furthermore, allowing
any user access to the source code enables the possibility
of users making modifications to suit the needs of a par-
ticular study without having necessarily involve the de-
velopers. The modular design of DAFS enables rapid
modifications to be made and additional features added
134
according to the needs of the study. This is in contrast to
proprietary models for which desired modifications re-
quire a lengthy and expensive process of negotiations.

The simulation elements of DAFS are implemented
in JavaTM using the Simkit DES engine (Buss 2001; Buss
2002). Simkit is itself an Open Source simulation engine
designed to enable the ease of building DES models based
on Event Graph Methodology. Simkit adds support for
the two listener patterns that enable construction of mod-
els based on a loosely-coupled component architecture
(Buss 2002, Buss and Sanchez 2002). Support for Event
Graph methodology and for the Listener Patterns is cru-
cial to implementing the essential elements of moving,
sensing, and weapons effects described in the preceding
sections.

5.1 Movement in DAFS

Movement in DAFS is accomplished through the interac-
tion of three kinds of objects: a Mover object, responsible
for maintaining the movement state, an instance of a
MoverManager, which is responsible for elementary ma-
neuver types, and an instance of a PlatformCommander,
that provides rudimentary decision logic. Together in-
stantces of these three classes comprise a basic platform
that can move and plan its motion based on simple rules
of engagement.

The Mover instance in DAFS models the constant ve-
locity movement described previously. In addition to the
StartMove and EndMove events there are methods to stop
and to pause the Mover instance. These commands are
invoked by the MoverManager instance that is in control
of the Mover.

A MoverManager is an implementation of a particu-
lar type of rule for maneuver. The overall movement is
comprised of a sequence of elementary maneuvers, each
executed by the Mover. Each Mover has a single
MoverManager that controls its movement at any time,
but MoverManager instances may be changed during a
simulation run depending on the situation. Each Mover-
Manager however is responsible for only a single Mover
instance. A MoverManager listens to its Mover for an
EndMove event and then chooses what action to take
based on the type of MoverManager it, its parameters, and
possibly its own state. DAFS uses three kinds of
MoverManagers: PathMoverManager, InterceptMover-
Manager, and RandomLocationMoverManager.

The PathMoverManager causes its Mover to move
sequentially along a predetermined list of waypoints.
When each waypoint is reached by the Mover (signaled
by its EndMoveEvent), the PathMoverManager sends the
Mover to the next waypoint, if there is at least one re-
maining. If the last waypoint has been reached, the
Mover stops. This is the default MoverManager for most
DAFS platforms.
8

Ahner, Buss, and Ruck

The InterceptMoverManager becomes the active

MoverManager when there is a desire for the platform to
intercept another platform. When active, the Inter-
ceptMoverManager computes the intercept point based on
the velocities of its Mover and of the target, as well as the
desired range of intercept. When the intercept point has
been calculated, the InterceptMoverManager instructs the
Mover to move to that point. When the intercept point is
reached, control is returned to the default MoverManager
for that Mover. One use of the InterceptMoverManager
in DAFS is when a weapons platform is instructed to en-
gage a target that is currently outside its range. The Inter-
ceptMoverManager computes the point for the platform to
engage the target and moves it there. Once the point of
engagement is reached, what happens next is determined
by other factors, depending on what type of platform the
Mover is on.

The RandomLocationMoverManager has the follow-
ing logic. A destination is randomly generated and the
Mover is sent to that destination. When the destination is
reached, another one is generated according to the same
distribution, and the process continues until the platform
is instructed to stop or another MoverManager becomes
active. A common use in DAFS for the RandomLoca-
tionMoverManager is for UAV platforms responsible for
patrolling Named Areas of Interest (NAI).

5.2 Sensors

Several types of sensors are implemented in DAFS, and
the flexibility of the sensor framework allows new types
of sensors and sensing algorithms to be easily deployed in
DAFS. The three main ones used in DAFS are the
CookieCutter, the ConstantRate, and the LowResAcquire
sensors. All three utilize the same event-driven frame-
work described in Buss and Sanchez (2005).

The CookieCutter sensor is the simplest, for which
the delay between EnterRange and Detection is 0.0. The
ConstantRate sensor has a delay between EnterRange and
Detection that is exponentially distributed. The LowRe-
sAcquire sensor is based on a meta-modeling of the Ac-
quire algorithm and has two levels to its logic. First, the
probability that there will be a detection at all in the inter-
action is computed. A uniform random number is gener-
ated to determine whether or not a detection would occur.
If not, then nothing further is done for that interaction. If
a detection will occur, then the time to detection is gener-
ated as a single random variable with a distribution that
has been fitted to the parameters of the sensor and the tar-
get. That time is used to schedule the Detection event fol-
lowing the EnterRange event. For all sensors the Exi-
tRange and Undetection events coincide.

DAFS uses the Referee/Mediator pattern to imple-
ment sensing. The Referee listens for all changes in
movement for potential targets and sensors and then
13
schedules (or cancels) EnterRange and ExitRange events
as necessary. When EnterRange events occur, the Refe-
ree delegates scheduling the Detection events to the ap-
propriate Mediator, based on the type of sensor and type
of target. Similarly, ExitRange events are delegated to
the appropriate Mediator to schedule Undetection events.

5.3 Weapons

JDAFS uses the Referee/Adjudicator approach with trace-
able data and methodologies discussed in Section 4.3 pre-
viously. The WeaponsTargetAdjudicator utilizes a Lin-
earKillProbability instance whose parameters are
specified in the data input file. This object gives a mini-
mum range, a maximum range, and the probabilities of a
munition killing the target at each range. If a weapon’s
range is between the minimum and maximum ranges, the
actual probability of kill for that round is computed by
linearly interpolating between the two extreme ranges. If
the weapon is outside the range interval, the probability of
kill is 0.0. Each munition/target pair can have a different
KillProbability, thus giving great flexibility in how muni-
tions affect targets.

Each weapon has a set of potential munitions that can
be used. Which munition is chosen for a particular shot is
determined by availability and by which is more effective
(i.e. has a better probability of kill) against that target.

When a round is fired, DAFS dynamically creates a
Munition object, which is actually an extremely fast-
moving Mover instance. The time to reach the target is
thus explicitly modeled. When the munition impacts, the
MunitionReferee determines which platforms are within
the effects radius, then delegates the actual outcomes to
the appropriate MuntionTargetAdjudicator. This in turn
uses the appropriate KillProbability for each muni-
tion/target pair to determine the actual outcome of the
round.

6 NETWORK ENABLED DECISION-MAKING
IN JDAFS

Periodically in JDAFS the fires and sensors assignments
are updated using a simple optimization. This optimiza-
tion problem is formulated and solved in an entity called
the Constrained Value Optimizer (CVO). When applied,
the CVO solution enables the forces in the simulation to
revise their collective engagement tactics to increase the
near term probability of success.

In the current implementation ,the CVO solves a
simple assignment problem:

!
"" JjIi

ijij XCMaximize

,

Subject to:

49

Ahner, Buss, and Ruck

 !

"

#
Jj

ij MaxAssignX

!
"

#
Ii

ij MaxCoverX

 !
"

#
Ii

ij MinCoverX
 }1,0{!ijX ,

where I is the set of available weapons or sensor plat-
forms and J is the set of available potential targets at the
time the optimization is run, and Xij is 1 if weapon/sensor
platform i is assigned to potential target j, 0 otherwise.

The values of the objective function coefficients is
determined by another entity called the Value of Potential
Assignments (VPA). Different instances of a VPA can be
used to produce different objective values to be opti-
mized.

Currently the CVO re-optimizes periodically accord-
ing to an input parameter. After the optimization is run,
the CVS gives each weapon/sensor platform its assigned
targets.

The CVO and VPA allow considerable flexibility in
implementing different optimization possibilities in
DAFS. The formulation itself can be changed by writing
a different CVO class, and the existing VPA can be left
as-is. Alternatively, a different scheme for determining
the objective function coefficients can easily be imple-
mented by developing a new VPA, without having to nec-
essarily change the CVO formulation. Of course, new
versions of both classes could be created if there were a
desire to implement an entirely different optimization
problem to allocate the weapons/sensors platforms.

The optimization is solved in DAFS using the
LpSolve library (LpSolve 2006). LpSolve is Open Source
software that supports formulation and solution of linear
and mixed integer programming problems. Although
LpSolve is written in C, it comes with a wrapper that uses
the JavaTM Native Interface (JNI) to connect with the
LpSolve library.

6.1 Weapons Allocation

The fires formulation adds flexibility for the user to de-
termine how fires are allocated. The VPA computes coef-
ficient Cij taking into account the expected value of the
outcome of the engagement, communication time, and
munition travel time:

()()[] () () 21
,

minmin*
cttctt

friendlyenemykenemyk
fficci eearVPVP

!"!"
!!!!"! ,

where r is a binary factor equal to 0 if friendly is already
in range of enemy, 1 otherwise, and a is a binary factor
equal to 0 if munition Pk is not acceptable or effects are
not acceptable, 1 otherwise. The first exponential dis-
135
counts for additional time to send a request to a higher C2
node. The second exponential discounts for choosing a
munition that takes longer to put steel on target. Some
easy options are c1=0, which does not consider communi-
cation time or c2=0 which does not consider munition
time. Additionally, r can be set constantly equal to 0 or 1

Value of Potential

Assignment Generator

Fires Scheduler

Optimization

Dynamic Simulation

State Transitions

Periodic or event triggered

reoptimization

The value of each fire assignment is determined BEFORE the optim ization

taking into the user defined parameters set for the objective fu nction.

Values of assignments are passed to Optimization.

Optimization provides “optimal ”

Fires assignment.

The Fires Scheduler updates dynamic target list for each platfor m.

Figure 3: Dynamic fires optimization.

The Dynamic Allocation of Fires and Sensors

(DAFS) simulation calculates the value of all potential
assignments BEFORE handing them to the optimization
to perform optimal matching as shown in Figure 3. This
allows the problem to be an integer linear programming
problem while maintaining maximum flexibility of the
factors that can be considered in the optimization.

The formulation above can bias fires toward using
indirect fires when possible since it discounts for moving
direct fire platforms within enemy weapon range. It also
accounts for time delays in requesting fires and time de-
lays once the weaponeering decision has been made. Ad-
ditional terms that can be addressed are:

• Collateral Effects Risk Reduction
• Controlled Supply Rate and Munition Resupply

Forecast
• Commander's Preference
• Designator Available
• Designator Accuracy
• Fratricide Risk Reduction (currently on or off;

potential for discount function)
• Mission Prioritization (i.e., time sensitive, High

Payoff Target)
• Target Posture

A key part of fires representation is the Attack Guid-

ance Matrix (AGM). The AGM will not be stove piped as
it is in our current models. All munitions/target pairing
that meet target location error considerations will be con-
sidered. If a tie exists, currently, the considerations for
deciding on a particular munition are: Munition availabil-
ity, unit activity, and range to target (closer the better).
0

Ahner, Buss

The AGM will be different at different echelons. The

AGM should also be phase-based (usually pre-planned) as
well as being able to quickly change on the fly based on
current battlefield conditions. JDAFS effectively captures
these relationship through its robust optimization of fires.

6.2 Dynamic Sensor Allocation

The sensor formulation takes into account the capabilities
of each sensor asset and enables them to be automatically
compared in order to maximize the total sensor coverage
given the simulations current state and near future sensor
requirements. The following optimization problem is
solved at each optimization event:

• Let A be the set of all mission areas with at least
one mission active within the global time hori-
zon.

• Let L be the set of all active LRS’s.
• Let G be the set of all GCS’s.
• Let GL the set of all GCS’s assigned to LRS L.
• Let Cg the number of UAV’s GCS g is capable

of controlling.
• Let Il be the subset of all UAV’s at LRS

Ll! determined as follows: For each LRS
Ll! , get n UAV’s where n is the min(# of

ready UAV’s, LRS launch limit - # UAV’s air-
borne, the sum over GL of Cg - # UAV’s assigned
to the GCS).

• Let Jl be the sub-set of all sensor packages cur-
rently located at LRS Ll! .

• Let Yga = 1 if mission area a is assigned to GCS
g, 0 otherwise (by a heuristic discussed below).

• Let cja = the reward for a UAV with sensor pack-
age j being assigned to mission area a from the
soonest possible arrival time of the UAV at the
area to the end of the time horizon, i

tt !+ , for
UAV i.

• Xja = 1 if a UAV with sensor package j is as-
signed to mission area a, 0 otherwise.

Then the formulation is:

!
ja

jaja Xcmax (1)

s.t.
 AaX

j

ja !"#$ 1 (2)

 ! "#$
a

ja IiX 1 (3)

! "#$
ja

gjaga GgCXY (4)
135
, and Ruck

!
"

"#$
aJj

lja

l

LlIX (5).

These equations are summarized as follows:

(1) Maximize the value of mission areas covered.
(2) Assign only 1 UAV per mission area.
(3) Assign only 1 mission area per UAV.
(4) Do not exceed the GCS control limit.
(5) The number of sensors assigned cannot exceed

the number of UAVs available to carry them.

The heuristic for determining Yga (assignment of mission
areas’ to GCS) is as follows:

• For each LRS and mission area a
• Let Na be the number of GCS’s g that

are in range of a UAV assigned to mis-
sion area a.

• For each mission area a, sorted by Na
• For each GCS g, sorted by !

a

gaY (so

far), if a is in range of g set Yga = 1.

The determination of cia is as follows:

• For each UAV i
• For each mission area a

• Let t0 = the first time after the
soonest arrival time that UAV i can
gain value by being assigned to
mission area a.

• Let t1 = the min(The latest UAV i
can remain at mission area a, the
end of the time horizon, i

tt !+ ,
for UAV i).

• Let Ka = the set of all missions lo-
cated at mission area a.

• Let Vi,k,t0,t1 = the value that UAV i
gains from mission k by being at
mission area a.

• Then, !
"

=
aKk

ttkiia
Vc

1,0,,
.

The optimization models described here are the ones

that have been implemented in the current version of
JDAFS. It should be noted that JDAFS has the capability
of using different formulations, albeit with a modest
amount of programming effort. For example, it is very
straightforward to keep the same optimization structure
while changing the exact formula used to compute the ob-
jective function coefficients. With slightly more effort, an
entirely different optimization model can be utilized. The
key feature is that very little of the other parts of JDAFS
need be affected by these changes.
1

Ahner, Buss, and Ruck

7 DISCUSSION

A number of characteristics of the JDAFS model make it
a particularly good candidate for use in setting joint start-
ing conditions for a high resolution simulation model.
Most significant is the rapidity with which JDAFS scenar-
ios can be created and the fast execution times relative to
high resolution models. This allows for considerable ex-
ploration and analysis of the starting conditions, espe-
cially in determining sensitivity to certain factors.

The ability of JDAFS to formulate and solve optimi-
zations problems on-the-fly ids particularly useful for de-
termining “best” (or “worst”) case scenarios, because the
allocations are likely to at least be very good ones due to
the optimizations performed during the runs. The devel-
opment of JDAFS for establishing joint starting condi-
tions is an ongoing effort.

8 CONCLUSIONS

The Joint Dynamic Allocation of Fires and Sensors
(JDAFS) simulation provides a traceable approach that
sets the unit and geographical starting conditions for high
resolution simulations by using validated algorithms and
data. JDAFS effectively uses an event graph approach and
a innovative optimization in the loop schema that results
in fast simulation runs that credibly represents all types of
warfare from legacy AirLand Battle doctrine to explora-
tory future network-enabled warfare. Through optimiza-
tion in the simulation loop, JDAF provides a traceable and
flexible methodology of network-enabled allocation of
fires and sensors to justify initial Joint starting conditions
for high resolution simulations.

ACKNOWLEDGMENTS

The work of the second author was supported by U.S.
Army TRADOC Analysis Center, TRAC-Monterey. This
support is gratefully acknowledged.

REFERENCES

Ahner, D., L. Jackson, and D. Phillips. 2005. DAFS: A
low resolution modeling approach: architecture and
implementation. Proceedings of The 10th Annual In-
ternational Conference on Industrial Engineering
Theory, Applications & Practice, December 2005.

Buss, A. H. 2001. Discrete Event Programming with
Simkit. Simulation News Europe. 32/33: 15-24.

Buss, A. H. 2002. Component based simulation modeling
with Simkit. Proceedings of the 2002 Winter Simula-
tion Conference, E. Yücesan, C.-H. Chen, J. L.
Snowdon, and J. M. Charnes, eds.

Buss A. H. and P. J. Sanchez. 2002. Building Complex
Models With LEGOs (Listener Event Graph Ob-
1352
jects). Proceedings of the 2002 Winter Simulation
Conference, E. Yücesan, C.-H. Chen, J. L. Snowdon,
and J. M. Charnes, eds.

Buss, A. H. and P. J. Sanchez. 2005. Simple movement
and sensing in discrete event simulation. Proceedings
of the 2005 Winter Simulation Conference, M. E.
Kuhl, N. M. Steiger, F. B. Armstrong, and J. A.
Joines, eds.

Free Software Foundation Web Site.
<http://www.fsf.org>. Accessed June 2006.

Havens, M.E. 2002. Dynamic allocation of fires and sen-
sors. Masters Thesis, Operations Research Depart-
ment, Naval Postgraduate School, Monterey, CA

Jackson, J. and D. Phillips. 2005. Using a low resolution
entity level modeling approach. The Bulletin of Mili-
tary Operations Research: Phalanx, 38-2: 15-26.

Lp_Solve Web Site.
<http://sourceforge.net/projects/lp
solve> Accesses June 2006.

OpenMap Web site <http://openmap.bbn.com/>
Accessed June 2006.

AUTHOR BIOGRAPHIES

ARNOLD BUSS is a Research Assistant Professor in the
MOVES Institute at the Naval Postgraduate School. His
e-mail address is <abuss@nps.edu>.

DARRYL AHNER is an analyst at TRAC-Monterey. A
Lieutenant Colonel in the United States Army, he re-
ceived his Ph.D. in Operations Research from Boston
University. His e-mail address is
<dkahner@nps.edu>.

JOHN RUCK is a senior software engineer for Rolands
and Associates. A retired Naval officer, he received his
BSE from Tulane University, and MS degrees from the
University of Central Michigan and the Naval Postgradu-
ate School. His e-mail address is <jlruck@nps.edu>

