
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

APPLYING PARALLEL AND DISTRIBUTED SIMULATION TO REMOTE NETWORK EMULATION

Yan Gu Richard Fujimoto

College of Computing College of Computing
266 Ferst Drive, Georgia Institute of Technology 266 Ferst Drive, Georgia Institute of Technology

Atlanta, G.A. 30332-0765, U.S.A. Atlanta, G.A. 30332-0765, U.S.A.
ABSTRACT

Many of today’s military services and applications run on
geographically distributed sites and need to be tested and
evaluated under realistic scenarios with many unpredict-
able factors. A remote network emulation framework
called ROSENET is proposed that can meet this require-
ment by using a remote parallel simulation server to model
the wide area network and a local network emulator to
provide timely QoS predictions for real world applications.
This paper discusses problems faced in applying parallel
and distributed simulation technique for the remote net-
work emulation. The experimental results show that time-
liness and remote accessibility are main concerns in apply-
ing parallel simulation to remote network emulation.

1 INTRODUCTION

As modern military operations are becoming increasingly
reliant on network communication and connectivity, the
importance of network centric warfare continues to grow in
today’s modern warfare. A typical military communication
scenario involves heterogeneously interconnected networks
in a possibly hostile setting that supports a large number of
users and multimedia traffic that are severe, critical, and
real-time. The network design, configuration, and deploy-
ment problems in such a domain are extremely challenging
since military networks are usually large in scale, the net-
work scenarios are often complex, the information needs to
be exchanged and processed timely, and the military appli-
cations are geographically distributed over a wide area net-
work.
 Although network centric warfare has provided infor-
mation superiority for modern war which translates into
warfighting advantage over adversaries, information tech-
nology may fail to work as expected. In one Navy SEALs
mission in 1983, a soldier in Grenada had to call air sup-
port from the base using commercial landlines because of
failures in military communication. More recently, in the
Iraq War in April 2003 (Talbot 2004), ground forces suf-
fered from out of bandwidth range and software lockup
131-4244-1306-0/07/$25.00 ©2007 IEEE
problems that rendered the computer system useless. Sol-
diers had to stop their vehicle to receive data on enemy po-
sitions which made them easy target for enemy fire. There-
fore, before deployment in an actual network environment,
it is extremely important to test and evaluate these military
services and applications under a wide variety of network
scenarios to determine possible unexpected system behav-
iors.
 ROSENET (Gu and Fujimoto 2004) is a remote net-
work emulation system intended to test and evaluate dis-
tributed services and applications, including modern mili-
tary applications, by integrating remote parallel simulation
servers with local network emulators. It is designed to pro-
vide scale, accuracy, timeliness, flexibility, and remote ac-
cessibility. Sample military applications where ROSENET
may be applied include:

Information Assurance in Global Information Grid.
The Global Information Grid aims at integrating all of
DoD’s information systems, services, and applications
into a seamless, secure, and reliable information envi-
ronment to achieve information superiority over ad-
versaries and form the basis of network centric warfare
doctrine. Tools are needed to ensure reliable delivery
of critical messages, e.g., Call-for-fire messages, or
medical evacuation orders.
QoS in wireless networks in urban environments.
Mobile applications operating in urban environments
are becoming increasingly more important in military
operations. People and vehicle movements, weather,
terrain (e.g., high-rise buildings), are important and of-
ten unpredictable factors that have strong impacts on
Quality of Service (QoS) for wireless communications.
ROSENET’s ability to integrate different simulators
into one framework and make them accessible to re-
mote users are useful features for this type of applica-
tions, e.g., to provide real time analysis and control of
networks.
Realistic communication in military training.
The need for collective and joint training is increasing
as a result of the transformation to network centric
28

Gu and Fujimoto
warfare (Mevassvik et al. 2006). A testing framework
such as ROSENET capable of providing realistic
communication scenarios over a secure wide area net-
work at geographically distributed training sites will
provide greater realism for joint tactical training.

The performance of the remote network emulation
model on a single node simulation is evaluated in (Gu and
Fujimoto 2007). This paper focuses on addressing the chal-
lenges faced in applying parallel and distributed simulation
techniques in the ROSENET remote network emulation,
specifically for military applications. The remainder of this
paper is organized as follows. Section 2 provides back-
ground information and discusses related work. Section 3
describes the design of a parallel and distributed version of
the ROSENET architecture. Preliminary experimental re-
sults are presented in Section 4. Section 5 gives conclu-
sions.

2 BACKGROUND AND RELATED WORK

Three techniques are commonly used in testing network
protocols and applications. Live network testing (Bavier et
al. 2004) experiments with new services directly in the real
network such as the Internet. However, the underline net-
work status is not controllable, the experiments are not re-
peatable, and the testing environment is not secure for mili-
tary applications. Network simulation can model different
types of networks independent of the underlying platforms,
but the difficulty in modeling real world applications has
limited the use of network simulation as a tool to test new
applications and services. Network emulation (Ingham and
Parrington 1994; Allman et al. 1997; Rizzo 1997; Yeom
and Reddy 2001; Vahdat et al. 2002; Carson and Santay
2003; Zheng and Ni 2004) integrates real world physical
applications with a virtual target network. Existing simula-
tion tools can be used for emulation (Black and Harris
1999) if they can interact with real world applications. An
emulator in this sense is also referred to as “real time simu-
lator”. The real-time constraints, also referred to as timeli-
ness, require that network emulators process events and
deliver the results to applications within certain deadlines.
 High fidelity simulations at large scale are always de-
sirable for network researchers and general users, but the
limited availability of physical resources may force users
to trade accuracy over time. A single node emulator may
not be able to simulate the network with much detail.
Trace-based methods (Noble and Satyanarayanan 1997) try
to make up for this inaccuracy by using real world data.
However this method is only limited to specific network
scenarios, and the trace data cannot be adaptable to specific
application traffic. Clustered network emulators can im-
prove the scale of network topology, but clustered ma-
chines may not be readily available and typically are not
easily configured.
13
 Parallel Discrete Event Simulation (PDES)(Fujimoto
1990) (Ferenci et al. 2002) partitions a target network and
simulates it concurrently on multiple machines, thus offer-
ing the potential to simulate large scale network topologies
at a detailed packet level. A number of tools have been de-
veloped utilizing parallel computing facilities to improve
the scalability and performance of network simulation. Ex-
ample systems include PDNS (Riley et al. 1999), GTNetS
(Riley 2003) (Fujimoto et al. 2003), DaSSF (Liu and Nicol
2001) (Cowie et al. 1999), GloMoSim (Bagrodia et al.
1998) and its commercial successor QualNet , and Genesis
(Liu et al. 2006). These efforts have studied large scale
network simulation on a variety of platforms ranging from
workstations to cluster computers to supercomputer and
have demonstrated the ability to simulate a million web
traffic flows with over a million network nodes in near real
time.
 One of the main challenges in applying parallel and
distributed simulation for network emulation is to meet the
timeliness requirement. Existing parallel simulation tools
are designed to improve scale and accuracy, and achieving
good performance is desired but not required to meet cer-
tain deadlines. In order to meet the timeliness requirements,
different approaches are used when developing simulation-
based emulators based on parallel simulation techniques.
IP-TNE (Simmonds and Unger 2003) is a network emula-
tor using the parallel discrete event simulation IP-TN that
runs on shared memory multiprocessors. IP-TNE synchro-
nizes only the edge of the simulated network that interacts
with real traffic with wall clock time. Maya (Zhou et al.
2004) is a hybrid software emulator which uses a fluid
model for TCP and ties the fluid model with the physical
network interface and network statistics over a time inter-
val calculated periodically. RINSE (Liljenstam et al. 2006)
uses a priority-based schedule to prioritize emulation
events in scheduling and sending the emulation packet
ahead of its scheduled time from one router to another in
the simulation, based on the assumption that without the
physical connection latency the event would have entered
the queue much earlier. Communication Effects Server
(CES) (Bagrodia et al. 2006) is a wireless network simula-
tor which adapts the concept of transactional real-time
which is defined as one where the wall-clock time to exe-
cute an average transaction is less than its simulation time.
In (Xu et al. 2001) real time lookahead is exploited from
the interactions between wireless applications and the
simulated wireless network in the parallel simulator Glo-
MoSim since the maximum throughput of a traffic flow is
limited by the link capacity. This way simulators can ad-
vance its simulation time ahead of real time to improve
performance.

All of the above approaches attempt to apply parallel
simulation for network emulation in order to meet the real
time requirement. But they all fail to meet another re-
quirement: accessibility. Parallel computing facilities re-
29

Gu and F
quired in these network emulators may not be locally
available, and co-locating application code with a remote
high performance computing facility may be cumbersome
and inconvenient. If a user attempts to use high perform-
ance computing facilities remotely, the real time con-
straints for emulation may not be met since latency be-
tween the application and remote simulation servers may
exceed predicted delay. Although many research efforts
have been designed to realize an emulation framework that
is remotely accessible, they require participants to upload
models to the test bed remotely and observe the system
performance without interactions.
 In addition to the previously mentioned systems tar-
geting at applying parallel simulation in network emulation,
PRIME (Liu et al. 2007) is a system most similar to
ROSENET. PRIME aims to implement an open and scal-
able network emulation infrastructure to allow a large
number of real time applications to dynamically interface
with network simulators running on supercomputers. It
uses a Virtual Private Network (VPN) to bridge traffic be-
tween physical entities and network simulators. Real ap-
plications run as VPN clients which automatically forward
network packets to the VPN servers. VPN is used to cir-
cumvent the firewall of the supercomputing center and also
serves as a network interface on the client machine.
 Sharing a common goal of providing an open network
emulation infrastructures to test real time applications us-
ing network simulators running on supercomputers,
ROSENET differs from PRIME with its support for remote
access capability. ROSENET allows users to access the
high fidelity simulation remotely. The experimental results
in PRIME show that with a simple dumbbell topology,
losses and delays experienced by the packets as they travel
through the simulation gateway and the client machines
can have a profound impact on the emulation accuracy.
Good results are achieved when the simulation and appli-
cations are in a local area network and results become very
bad when they go through a wide area network, which is
susceptible to loss and delay between them. Also the simu-
lation gateway’s bandwidth and latency could affect the
quality of service on the applications. These two problems
have been predicted in ROSENET design in (Gu and Fuji-
moto 2004). The results in PRIME further confirms that
network emulation with remote accessibility is required. In
this sense, ROSENET and PRIMSE are not direct competi-
tors. ROSENET can complement PRIME by integrating
PRIME into its client/server framework and using it as the
high fidelity simulation server to provide remote users ac-
cess.
 ROSENET and PRIME also address the same problem
in large scale network emulation using different ap-
proaches. In order to achieve results within emulation’s
real time constraints, PRIME integrates fluid model with
packets to improve parallel simulation performance, while
ROSENET uses network models describing network status
133
ujimoto

within one time interval, instead of sending single packets
as in PRIME, to trade time for accuracy. Using fluid model
to improve simulation performance has been studied previ-
ously in various simulation tools and is not the focus of the
ROSENET emulation system, but more of interests for a
particular network simulation tool to be integrated into the
ROSENET framework (such as how GTNetS uses fluid
model to improve simulation performance). Its effects on
network emulation performance is worth studying as future
work.

3 SYSTEM ARCHITECTURE

This section describes the high level design for the
ROSENET framework. The implementation of a parallel
and distributed version of ROSENET using the GTNetS
simulator is then described, and the time management issue
is discussed as well.

3.1 Overall Architecture

Figure 1: Overall architecture

Figure 1 shows the overall architecture of ROSENET. The
client and server are the principle components of
ROSENET. The low fidelity emulator provides rapid QoS
estimation as well as application traffic monitoring by in-
teracting with the local distributed applications. The re-
mote server controls the high fidelity simulation by inject-
ing traffic and extracting measurements such as end-to-end
delay from the simulation. The simulation time is parti-
tioned into time intervals with the assumption that the traf-
fic characteristics change little within each time interval.
Clients and servers exchange their status through periodic
updates of network models at the end of each interval. The
update frequency can be dynamically adjusted according to
the required accuracy and capacity of the simulation as
well as the available bandwidth between client and server.
More detailed information about how the system works can
be found in (Gu and Fujimoto 2007).
 This design allows ROSENET to achieve timeliness
through the low fidelity network emulation, scale and accu-
racy through the high fidelity network simulation, flexibil-
ity in integrating different simulator/emulators through
0

Gu and Fujimoto
High Level Architecture (HLA) (Kuhl et al. 1999) and
standard interface definitions to hide internal details of
simulation and emulation. Finally periodic network model
exchanges between simulators and emulators trade simula-
tion accuracy for time and achieve accessibility for remote
network emulation users by avoiding sending packets to
remote high fidelity simulation facility to simulate, which
will cause large bandwidth consumption and a wide area
round-trip delay for each emulated packet.

3.2 Support for Parallel Discrete Event Simulation

In extending ROSENET’s architecture depicted in Figure 1
to support for parallel discrete simulation, an intuitive ap-
proach will be to allow the emulator to directly interact
with each simulator in the distributed simulation. However,
this approach will cause several problems.

Time management
The emulator executes in real time while the distrib-
uted simulators execute in simulation time. In a paral-
lel discrete event simulation, simulation time is main-
tained locally on each simulator and specific
algorithms are used to manage time advance on each
simulator. Thus it is rather difficult for the emulator to
interact with distributed simulators with different
simulation time clocks.
Communication latency
In ROSENET the simulators and the emulator are dis-
tributed over a wide area network. If the emulator
joins the federation of the simulators, the synchroniza-
tion among these federates may not be very efficient
since they have to wait for the slowest federate before
they can advance.
Security
Distributed simulators running on high performance
computing facilities are usually protected by firewalls
and only provide limited access to users. Allowing the
remote emulator to frequently access each node in the
parallel and distributed machines behind a firewall
over a wide area network may be difficult to control
and manage if security of these machines is not to be
compromised.
Locality
Since the target network is partitioned and modeled by
different simulators, the source and destination appli-
cations for the network emulation may be mapped as
virtual nodes modeled by different simulators. The in-
formation about the locality of these mapped nodes in
the distributed machines should not have to be main-
tained by the emulator. A thin client is desirable to re-
duce the computing resources needed at client ma-
chines.
1331
Figure 2: Parallel and distributed version

 An extension of the ROSENET approach with support
for parallel and distributed simulation has been developed.
The parallel and distributed version of ROSENET is com-
posed of two federations: the emulation federation and the
distributed federation as shown in Figure 2. The server is
involved in both federations and acts as a proxy to provide
the following services:

Network model exchange
Two types of network models are exchanged in the
distributed federation: TrafficSummaryModel and
LowFidelityModel. The distributed simulation event
scheduler on each simulation node receives Traf-
ficSummaryModel generated by the remote emulation
client and forwarded by the ROSENET Server, up-
dates the corresponding virtual node’s traffic patterns
in its simulation, and executes the simulation till the
end time of all the current TrafficSummaryModels in
this federate. Compared with the previous version of
ROSENET system with a sequential event simulation
on a single node, this parallel and distributed version
allows the source and destination applications to be
modeled on different physical nodes which execute at
their own pace. This requires that the traffic models be
applied at the nodes at the same simulation time,
which means they execute the simulation in the same
time interval in ROSENET.
Time management
In ROSENET, the emulator and the applications exe-
cute at real time (or wall clock time) while the simula-
tor executes at simulation time. Since the execution of

Gu and Fujimoto
the emulation cannot be reversed as in optimistic in-
teractive simulations, the high fidelity simulation has
to follow the low fidelity emulation to avoid a causal-
ity error that occurs when traffic times-tamped behind
the current simulation time is injected into the simula-
tion. This is achieved by piggybacking time informa-
tion on network models exchanged between simulator
and emulator. When forwarding network models be-
tween the simulation federation and emulation federa-
tion, the proxy server also translates the timestamp on
network models between real time and simulation time.

3.3 Time Management Protocols

ROSENET
Server

emulator

Source
application

Destination
application

Packets
(milliseconds)

simulator1

simulator2 simulator3

Events
(milliseconds)

Models
(seconds or minutes)

Figure 3: Time management in ROSENET

In a distributed version of ROSENET, the time manage-
ment is two fold: time management among the distributed
simulators and time management between the emulator and
simulators. In a distributed simulation, the simulator ad-
vances its simulation time through time management ser-
vice in the HLA RTI. They process events and make time
advance requests to the RTI which grants time requests to
make sure no causality error occurs within the distributed
simulation. In this sense, time advance within simulators is
fine-grain as the time advance is event-drive which is usu-
ally in the order of milliseconds. On the other hand, the
time management between emulator and simulators is more
coarse-grain, meaning that time advance for emulator and
simulators is by time intervals which is usually in the order
of seconds or minutes. The two-level time management in
ROSENET is illustrated in Figure 3.

4 EXPERIMENTS

The objective of the experimental studies is to evaluate
how the ROSENET system meets the timeliness require-
ment with support for parallel and distributed simulation.
The baseline performance of the ROSENET measuring the
emulation accuracy of end-to-end delay and loss has been
evaluated and validated in (Gu and Fujimoto 2007) through
a sequential simulation version of ROSENET.
133
4.1 Measurement Metrics

Network simulators are usually designed to achieve scale
and accuracy. Although efficient execution of simulation
models is required, no strict real-time requirements are im-
posed on the execution of the simulation. However in net-
work emulation, it is required that simulation process
events and deliver results to applications within certain
deadlines. When measuring network emulation perform-
ance, one of the main concerns is whether the emulation
results can be delivered within the real-time deadlines. This
is often referred to as timeliness requirement. Timeliness
can be measured using timeliness ratio which is the per-
centage of packets that meet the real time deadlines, or
their estimated end-to-end delay. In the ROSENET system,
the network emulation client can use network models to
quickly generate packet QoS predictions and is unlikely to
miss the timeliness requirement given that only some sim-
ple mathematical calculations with network models are
needed.
 Although using network models can achieve timeli-
ness, the network models uses a network model from his-
tory data to predict QoS in the future. Hence we need an-
other metric to measure the network emulation
performance in the ROSENET system context. We call it
obsoleteness or lateness, meaning how obsolete/late the
network model is when generating predictions for a packet
in emulation. The correctness of the emulation is directly
related to lateness and an upper bound on the lateness in
ROSENET emulation is particularly important to the users.

4.2 Experiment Settings

Figure 4: Basic DARPA NMS campus network

The ROSENET system is implemented using distributed
GTNetS simulator and NIST Net emulator. The simulated
network is a modified version from DARPA’s NMS pro-
gram’s baseline network model (2003). The network to-
pology is a ring of NMS campus networks. As shown in
2

Gu and F
Figure 4, each NMS campus network consists of four sub-
nets, several routers, and a number of servers/clients gen-
erating background traffic. The hardware configuration to
run the simulation experiment is a 40-node HP Integrity (2
x 900 MHz Itanium 2 IA-64) running Red Hat Enterprise
Linux 4.

In this experiment, two machines in a cluster are used
to execute the NMS campus network simulation, each of
which models one or more of the NMS network. The
source/destination nodes tested through the emulator are
separately mapped to a leaf node in one NMS network on
one processor and a leaf node in another NMS network on
another processor. Each NMS network models 550 nodes.
The background traffic is modeled as OnOff applications
generating flows to neighboring NMS networks. The two
mapped nodes send constant bit rate UDP packets and their
end-to-end delay and loss is modeled by the distributed
simulation.

4.3 Experimental Results

Two groups of experiments are performed measuring the
lateness value under different scenarios. The lateness value
is computed as the difference of the time when the Traf-
ficSummaryModel’s is generated and the time when the
corresponding LowFidelityModel is received from the re-
mote simulation server. The model update interval de-
scribes how often the TrafficSummaryModel and LowFi-
delityModel are updated, which is also the length of time
of the traffic described by the models. Therefore a Traf-
ficSummaryModel updated in one time interval needs to be
generated using traffic data collected for one time interval
in real time, and a LowFidelityModel for one time interval
needs to be simulated in the simulator for one time interval
in simulation time. The lateness value actually describes
the time for the emulation client to collect the data from
applications in one time interval to generate a Traf-
ficSummaryModel, send it over a LAN or WAN to the
simulator to simulate for one time interval in simulation
time, and generate the LowFidelityModel to send it back to
the emulation client to generate QoS predictions. Since this
process is repeated and is executed in parallel by the dis-
tributed simulators and emulator, the actual lateness value
is less than the sum of all the time consumed in this proc-
ess due to time overlap.

4.3.1 Baseline Lateness

We first evaluate the basic lateness of the ROSENET sys-
tem using a model update interval of 1 second. The emula-
tor and simulator are placed within the Georgia Tech cam-
pus and there is an end-to-end delay within 2 milliseconds
between them. Figure 5 shows the lateness value under
normal execution conditions and the average lateness per
model update is 1.264 seconds. Since the data collection
133
ujimoto

takes at least 1 second to generate a model for 1 second
traffic which is much larger than the cost in the other
stages of the model update process, we perform another
group of experiments using previously collected data for
model generation to avoid the data collection cost, and the
results are shown in Figure 6. The average lateness in this
case is 0.521 seconds, which is only 40% of the lateness
when data collection is involved.

0 10 20 30 40
0

0.5

1

1.5

2

2.5

3

3.5

Model Index
La

te
ne

ss
 (

se
c)

Lateness

Lateness

Figure 5: Lateness in normal execution

0 10 20 30 40
0

0.5

1

1.5

2

2.5

Model Index

La
te

ne
ss

 (
se

co
nd

s)

Lateness

Lateness

Figure 6: Lateness with pre-stored data

 From both figures we can see that when the execution
starts, the lateness value is varied dramatically due to the
simulation/emulation warm-up period. After that the late-
ness value varies between 2.25 and 0.2 seconds for normal
execution and remains constant at 0.2 second for execution
with pre-stored data. This illustrates that the variance and
extra overhead is caused by the data collection and model
generation. For example, when no data is available, the
models can not be generated and the system has to wait for
enough data to accumulate. During this waiting and model
generation period, more data is collected so that the next
one or two models can be generated with much less late-
ness as shown in Figure 5. If all the data has been previous
collected, the lateness is composed of transmission delay,
3

Gu and Fujimoto
simulation cost, and model generation cost, which is of
constant values. The fact that the smaller lateness in Figure
5 is around the same (around 0.2 second) as the lateness
value in Figure 6 also confirms that the data collection is
the main cost in lateness. This experiment shows that the
data collection time, which is of one update interval time
usually in the order of seconds or minutes is the bottleneck
in the lateness value in ROSENET.

4.3.2 Lateness for Remote Access

In this experiment, an end-to-end delay is introduced to
model the remote access to the simulation cluster by a net-
work emulation client/user over a wide area network. Ac-
cording to (Floyd 2002), most (85%) of the round-trip de-
lay in the Internet varies from 15 to 500 milliseconds.
Therefore we introduce end-to-end delay in this range and
observe the lateness value changes over the end-to-end de-
lay. The update interval is 1 second and it is expected that
this is the lower bound of update intervals in a remote ac-
cess scenario.

0 0.2 0.4 0.6 0.8
0.5

1

1.5

2

2.5

3

End−to−end Delay (seconds)

La
te

ne
ss

 (
se

co
nd

s)

Lateness with End−to−End Delay

Lateness (normal)
Lateness (with pre−stored data)

Figure 7: Lateness with varying end-to-end delay between
emulation client and simulation server

Figure 7 shows the lateness value changes with the
end-to-end delay between the simulation cluster and the
emulation client. In comparison, we also collect the late-
ness value with pre-store data for model generation as in
previous experiments. As the figure shows, the lateness in-
creases with the end-to-end delay in both scenarios and the
increase is linear with pre-store data. Starting from 0.4 sec-
onds, lateness value is the same in both cases whether data
collection is included or not. This is because when the end-
to-end delay is 0.4 seconds, the round-trip delay (0.4 sec-
ond *2) plus the overhead (0.2 second) observed from
Figure 6 is around 1 second. The 1 second data collection
time is overlapped by the model transmission time and the
overhead cost in other components of the system. If the
model transmission is larger than 0.4 second, the model
transmission delay over the wide area network becomes the
13
bottleneck in the ROSENET system. Since the update in-
terval is likely to be much larger than 1 second and the
end-to-end delay over Internet is usually smaller than 0.4
second, this is the worst case scenario performance for
lateness with varying end-to-end delay.

5 CONCLUSION

This paper explains the challenges in applying parallel
simulation techniques in a remote network emulation ap-
proach to meet today’s new services and applications re-
quirements, especially for military applications under the
network centric warfare doctrine. This large scale network
emulation framework capable of integrating a remote high
fidelity simulation facility with a local network emulation
addresses requirements not met in existing emulation tools.
The experimental results show that timeliness and remote
accessibility are main concerns in applying parallel simula-
tion to remote network emulation, which are also desired
features in testing today’s military applications and ser-
vices. ROSENET approach is very promising in meeting
these requirements.

ACKNOWLEDGEMENT

This research was supported under DARPA contract
N66001-00-1-8934 and NSF grants CNS-0540160 and
ATM-0326431. The authors also thank Dr. George Riley
and his students for their help with GTNetS.

REFERENCES

Allman, M., A. Caldwell and S. Ostermann. 1997. One:
The Ohio Network Emulator. Technical Report TR-
19972, Computer Science Department, Ohio Univer-
sity Athens, Ohio.

Bagrodia, R., R. Meyer, M. Takai, Y. Chen, X. Zeng, J.
Martin, B. Park and H. Song 1998. Parsec: A Parallel
Simulation Environment for Complex Systems. IEEE
Computer 31(10): 77-85.

Bagrodia, R., K. Tang, S. Goldman and D. Kumar 2006.
An accurate, scalable communication effects server for
the FCS system of systems simulation environment. In
Proceedings of the 38th conference on Winter simula-
tion.

Bavier, A., M. Bowman, B. Chun, D. Culler, S. Karlin, S.
Muir, L. Peterson, T. Roscoe, T. Spalink and M.
Wawrzoniak 2004. Operating System Support for
Planetary-Scale Network Services. In Proceedings of
1st Symposium on Networked Systems Design and Im-
plementation.

Black, J. W. and D. L. Harris 1999. RTI Recommended
Practices. In Proceedings of the Fall Simulation Inter-
operability Workshop, paper 078.
34

Gu and Fujimoto
Carson, M. and D. Santay 2003. NIST Net: a Linux-based
network emulation tool. SIGCOMM Comput. Commun.
Rev. 33(3): 111-126.

Cowie, J. H., D. M. Nicol and A. T. Ogielski 1999. Model-
ing the Global Internet. Computing in Science and En-
gineering 1(1): 42-50.

Ferenci, S., R. Fujimoto, M. H. Ammar and K. Perumalla
2002. Updateable Simulation of Communication Net-
works. In Proceedings of the sixteenth workshop on
Parallel and distributed simulation, IEEE Computer
Society

Floyd, S. 2002. Building Models for Aggregate Traffic on
Congested Links. Available via <http://www.
icir.org/models/linkmodel.html> [ac-
cessed July 18, 2007].

Fujimoto, R. M. 1990. Parallel Discrete Event Simulation.
Communications of the ACM 33(10): 30-53.

Fujimoto, R. M., K. Perumalla, A. Park, H. Wu, M. H.
Ammar and G. F. Riley 2003. Large-Scale Network
Simulation: How Big? How Fast? In Proceedings of
the11th IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecom-
munications Systems (MASCOTS'03), IEEE Computer
Society.

Gu, Y. and R. Fujimoto 2004. A Flexible Architecture for
Remote Server-Based Emulation. In Proceedings of
the International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunications
Systems, IEEE Computer Society.

Gu, Y. and R. Fujimoto 2007. Performance Evaluation of
the ROSENET Network Emulation System. In Pro-
ceedings of The 11-th IEEE International Symposium
on Distributed Simulation and Real Time Applications,
IEEE Computer Society.

Ingham, D. B. and G. D. Parrington 1994. Delayline: A
Wide-Area Network Emulation Tool. Computing Sys-
tems 7(3): 313-332.

Kuhl, F., R. Weatherly and J. Dahmann 1999. Creating
Computer Simulation Systems: An Introduction to the
High Level Architecture for Simulation. Prentice Hall.

Liljenstam, M., J. Liu, D. M. Nicol, Y. Yuan, G. Yan and
C. Grier 2006. RINSE: The Real-Time Immersive
Network Simulation Environment for Network Secu-
rity Exercises (Extended Version). Simulation 82(1):
43-59.

Liu, J., S. Mann, N. Van Vorst and K. Hellman 2007. An
Open and Scalable Emulation Infrastructure for Large-
Scale Real-Time Network Simulations. In Proceedings
of the 26th IEEE International Conference on Com-
puter Communications, 2476-2480.

Liu, J. and D. M. Nicol. 2001. DaSSF 3.0 User's Manual.
Available via <http://www.cs.dartmouth.
edu/research/DaSSF/Papers/dassf-
manual.ps> [accessed July 18, 2007].
1

Liu, Y., B. K. Szymanski and A. Saifee 2006. Genesis: a
scalable distributed system for large-scale parallel
network simulation. Comput. Networks 50(12): 2028-
2053.

Mevassvik, O. M., K. Bråthen and R. M. Gustavsen 2006.
JADE – An Experiment in Distributed Simulation
Based Joint Tactical Training. In Transforming Train-
ing and Experimentation through Modelling and Simu-
lation.

Nicol, D. M. 2003. DARPA Network Modeling and Simu-
lation (NMS) baseline network topology. Available
via <http://www.ssfnet.org/Exchange/
gallery/index.html> [accessed July 18, 2007].

Noble, B. D. and M. Satyanarayanan 1997. Trace-based
Mobile Network Emulation. In Proceedings of the
ACM SIGCOMM '97 conference on Applications,
technologies, architectures, and protocols for com-
puter communication, ACM Press, New York, NY,
USA.

QualNet. QualNet User Manual Available via
<http://www.qualnet.com> [accessed July 18,
2007].

Riley, G., R. M. Fujimoto and M. Ammar 1999. A Generic
Framework for Parallelization of Network Simulations.
In Proceedings of the Seventh International Sympo-
sium on Modeling, Analysis, and Simulation of Com-
puter and Telecommunication Systems, 128-135.

Riley, G. F. 2003. The Georgia Tech Network Simulator.
In Proceedings of the ACM SIGCOMM workshop on
Models, methods and tools for reproducible network
research, ACM Press.

Rizzo, L. 1997. Dummynet: a simple approach to the
evaluation of network protocols. ACM Computer
Communication Review 27(1): 31-41.

Simmonds, R. and B. Unger 2003. Towards scalable net-
work emulation. Computer Communications 26(3):
264-277.

Talbot, D. 2004. How Technology Failed in Iraq. Technol-
ogy Review.

Vahdat, A., K. Yocum, K. Walsh, P. Mahadevan, D. Kosti,
J. Chase and D. Becker 2002. Scalability and accuracy
in a large-scale network emulator. SIGOPS Oper. Syst.
Rev. 36(SI): 271-284.

Xu, K., M. Takai, J. Martin and R. Bagrodia 2001. Look-
ing ahead of real time in Hybrid component networks.
In Proceedings of the fifteenth workshop on Parallel
and distributed simulation, IEEE Computer Society.

Yeom, I. and A. L. N. Reddy 2001. ENDE: An End-to-end
Network Delay Emulator Tool for Multimedia Proto-
col Development. Multimedia Tools Appl. 14(3): 269-
296.

Zheng, P. and L. M. Ni 2004. EMPOWER: A Cluster Ar-
chitecture Supporting Network Emulation. IEEE Trans.
Parallel Distrib. Syst. 15(7): 617-629.
335

Gu and Fujimoto
Zhou, J., Z. Ji, M. Takai and R. Bagrodia 2004. MAYA:
Integrating hybrid network modeling to the physical
world. ACM Transactions on Modeling and. Computer.
Simulation. 14(2):149-169.

AUTHOR BIOGRAPHIES

YAN GU is a Ph.D. candidate of the College of Comput-
ing at Georgia Institute of Technology. Her research inter-
ests are in parallel and distributed systems and simulation,
and her Ph.D. research is focused on developing a remote
network emulation system that meets the requirements of
scale, accuracy, and timeliness. In 2005 She did a summer
intern at IBM Almaden Research Center. Before joining
Georgia Tech, she earned a master degree at Johns Hop-
kins University. Her email address is
<gygy@cc.gatech.edu>.

RICHARD FUJIMOTO is a professor and Chair of the
Computational Science and Engineering Division of the
College of Computing at the Georgia Institute of Technol-
ogy. He received the Ph.D. and M.S. degrees from the
University of California (Berkeley) in 1980 and 1983.
Among his current activities he is the technical lead con-
cerning time management issues for the DoD High Level
Architecture (HLA) effort, and has also been chair of the
steering committee for the Workshop on Parallel and Dis-
tributed Simulation, (PADS) since 1990. His email address
is <fujimoto@cc.gatech.edu>.
1336

