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ABSTRACT 

Many of today’s military services and applications run on 
geographically distributed sites and need to be tested and 
evaluated under realistic scenarios with many unpredict-
able factors. A remote network emulation framework 
called ROSENET is proposed that can meet this require-
ment by using a remote parallel simulation server to model 
the wide area network and a local network emulator to 
provide timely QoS predictions for real world applications. 
This paper discusses problems faced in applying parallel 
and distributed simulation technique for the remote net-
work emulation. The experimental results show that time-
liness and remote accessibility are main concerns in apply-
ing parallel simulation to remote network emulation. 

1 INTRODUCTION 

As modern military operations are becoming increasingly 
reliant on network communication and connectivity, the 
importance of network centric warfare continues to grow in 
today’s modern warfare. A typical military communication 
scenario involves heterogeneously interconnected networks 
in a possibly hostile setting that supports a large number of 
users and multimedia traffic that are severe, critical, and 
real-time. The network design, configuration, and deploy-
ment problems in such a domain are extremely challenging 
since military networks are usually large in scale, the net-
work scenarios are often complex, the information needs to 
be exchanged and processed timely, and the military appli-
cations are geographically distributed over a wide area net-
work.  
 Although network centric warfare has provided infor-
mation superiority for modern war which translates into 
warfighting advantage over adversaries, information tech-
nology may fail to work as expected. In one Navy SEALs 
mission in 1983, a soldier in Grenada had to call air sup-
port from the base using commercial landlines because of 
failures in military communication.  More recently, in the 
Iraq War in April 2003 (Talbot 2004), ground forces suf-
fered from out of bandwidth range and software lockup 
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problems that rendered the computer system useless. Sol-
diers had to stop their vehicle to receive data on enemy po-
sitions which made them easy target for enemy fire. There-
fore, before deployment in an actual network environment, 
it is extremely important to test and evaluate these military 
services and applications under a wide variety of network 
scenarios to determine possible unexpected system behav-
iors. 
 ROSENET (Gu and Fujimoto 2004) is a remote net-
work emulation system intended to test and evaluate  dis-
tributed services and applications, including modern mili-
tary applications, by integrating remote parallel simulation 
servers with local network emulators. It is designed to pro-
vide scale, accuracy, timeliness, flexibility, and remote ac-
cessibility. Sample military applications where ROSENET 
may be applied include: 

Information Assurance in Global Information Grid. 
The Global Information Grid aims at integrating all of 
DoD’s information systems, services, and applications 
into a seamless, secure, and reliable information envi-
ronment  to achieve information superiority over ad-
versaries and form the basis of network centric warfare 
doctrine. Tools are needed to ensure reliable delivery 
of critical messages, e.g., Call-for-fire messages, or 
medical evacuation orders.  
QoS in wireless networks in urban environments.   
Mobile applications operating in urban environments 
are becoming increasingly more important in military 
operations. People and vehicle movements, weather, 
terrain (e.g., high-rise buildings), are important and of-
ten unpredictable factors that have strong impacts on 
Quality of Service (QoS) for wireless communications. 
ROSENET’s ability to integrate different simulators 
into one framework and make them accessible to re-
mote users are useful features for this type of applica-
tions, e.g., to provide real time analysis and control of 
networks. 
Realistic communication in military training. 
The need for collective and joint training is increasing 
as a result of the transformation to network centric 
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warfare (Mevassvik et al. 2006). A testing framework 
such as ROSENET capable of providing realistic 
communication scenarios over a secure wide area net-
work at geographically distributed training sites will 
provide greater realism for joint tactical training.  

The performance of the remote network emulation 
model on a single node simulation is evaluated in (Gu and 
Fujimoto 2007). This paper focuses on addressing the chal-
lenges faced in applying parallel and distributed simulation 
techniques in the ROSENET remote network emulation, 
specifically for military applications. The remainder of this 
paper is organized as follows. Section 2 provides back-
ground information and discusses related work. Section 3 
describes the design of a parallel and distributed version of 
the ROSENET architecture. Preliminary experimental re-
sults are presented in Section 4. Section 5 gives conclu-
sions. 

2 BACKGROUND AND RELATED WORK 

Three techniques are commonly used in testing network 
protocols and applications. Live network testing (Bavier et 
al. 2004) experiments with new services directly in the real 
network such as the Internet. However, the underline net-
work status is not controllable, the experiments are not re-
peatable, and the testing environment is not secure for mili-
tary applications. Network simulation can model different 
types of networks independent of the underlying platforms, 
but the difficulty in modeling real world applications has 
limited the use of network simulation as a tool to test new 
applications and services. Network emulation (Ingham and 
Parrington 1994; Allman et al. 1997; Rizzo 1997; Yeom 
and Reddy 2001; Vahdat et al. 2002; Carson and Santay 
2003; Zheng and Ni 2004) integrates real world physical 
applications with a virtual target network. Existing simula-
tion tools can be used for emulation (Black and Harris 
1999) if they can interact with real world applications. An 
emulator in this sense is also referred to as “real time simu-
lator”. The real-time constraints, also referred to as timeli-
ness, require that network emulators process events and 
deliver the results to applications within certain deadlines.  
 High fidelity simulations at large scale are always de-
sirable for network researchers and general users, but the 
limited availability of physical resources may force users 
to trade accuracy over time. A single node emulator may 
not be able to simulate the network with much detail. 
Trace-based methods (Noble and Satyanarayanan 1997) try 
to make up for this inaccuracy by using real world data. 
However this method is only limited to specific network 
scenarios, and the trace data cannot be adaptable to specific 
application traffic.  Clustered network emulators can im-
prove the scale of network topology, but clustered ma-
chines may not be readily available and typically are not 
easily configured. 
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 Parallel Discrete Event Simulation (PDES)(Fujimoto 
1990) (Ferenci et al. 2002) partitions a target network and 
simulates it concurrently on multiple machines, thus offer-
ing the potential to simulate large scale network topologies 
at a detailed packet level. A number of tools have been de-
veloped utilizing parallel computing facilities to improve 
the scalability and performance of network simulation. Ex-
ample systems include PDNS (Riley et al. 1999), GTNetS 
(Riley 2003) (Fujimoto et al. 2003), DaSSF (Liu and Nicol 
2001)  (Cowie et al. 1999), GloMoSim (Bagrodia et al. 
1998) and its commercial successor QualNet , and Genesis 
(Liu et al. 2006). These efforts have studied large scale 
network simulation on a variety of platforms ranging from 
workstations to cluster computers to supercomputer and 
have demonstrated the ability to simulate a million web 
traffic flows with over a million network nodes in near real 
time. 
 One of the main challenges in applying parallel and 
distributed simulation for network emulation is to meet the 
timeliness requirement. Existing parallel simulation tools 
are designed to improve scale and accuracy, and achieving 
good performance is desired but not required to meet cer-
tain deadlines. In order to meet the timeliness requirements, 
different approaches are used when developing simulation-
based emulators based on parallel simulation techniques. 
IP-TNE (Simmonds and Unger 2003) is a network emula-
tor using the parallel discrete event simulation IP-TN that 
runs on shared memory multiprocessors. IP-TNE synchro-
nizes only the edge of the simulated network that interacts 
with real traffic with wall clock time. Maya (Zhou et al. 
2004) is a hybrid software emulator which uses a fluid 
model for TCP and ties the fluid model with the physical 
network interface and network statistics over a time inter-
val calculated periodically. RINSE (Liljenstam et al. 2006) 
uses a priority-based schedule to prioritize emulation 
events in scheduling and sending the emulation packet 
ahead of its scheduled time from one router to another in 
the simulation, based on the assumption that without the 
physical connection latency the event would have entered 
the queue much earlier. Communication Effects Server 
(CES) (Bagrodia et al. 2006) is a wireless network simula-
tor which adapts the concept of transactional real-time 
which is defined as one where the wall-clock time to exe-
cute an average transaction is less than its simulation time. 
In (Xu et al. 2001) real time lookahead is exploited from 
the interactions between wireless applications and the 
simulated wireless network in the parallel simulator Glo-
MoSim since the maximum throughput of a traffic flow is 
limited by the link capacity. This way simulators can ad-
vance its simulation time ahead of real time to improve 
performance. 

All of the above approaches attempt to apply parallel 
simulation for network emulation in order to meet the real 
time requirement. But they all fail to meet another re-
quirement: accessibility. Parallel computing facilities re-
29



Gu and F
quired in these network emulators may not be locally 
available, and co-locating application code with a remote 
high performance computing facility may be cumbersome 
and inconvenient. If a user attempts to use high perform-
ance computing facilities remotely, the real time con-
straints for emulation may not be met since latency be-
tween the application and remote simulation servers may 
exceed predicted delay. Although many research efforts 
have been designed to realize an emulation framework that 
is remotely accessible, they require participants to upload 
models to the test bed remotely and observe the system 
performance without interactions.  
 In addition to the previously mentioned systems tar-
geting at applying parallel simulation in network emulation, 
PRIME (Liu et al. 2007) is a system most similar to 
ROSENET. PRIME aims to implement an open and scal-
able network emulation infrastructure to allow a large 
number of real time applications to dynamically interface 
with network simulators running on supercomputers. It 
uses a Virtual Private Network (VPN) to bridge traffic be-
tween physical entities and network simulators.  Real ap-
plications run as VPN clients which automatically forward 
network packets to the VPN servers. VPN is used to cir-
cumvent the firewall of the supercomputing center and also 
serves as a network interface on the client machine.  
 Sharing a common goal of providing an open network 
emulation infrastructures to test real time applications us-
ing network simulators running on supercomputers, 
ROSENET differs from PRIME with its support for remote 
access capability. ROSENET allows users to access the 
high fidelity simulation remotely. The experimental results 
in PRIME show that with a simple dumbbell topology, 
losses and delays experienced by the packets as they travel 
through the simulation gateway and the client machines 
can have a profound impact on the emulation accuracy. 
Good results are achieved when the simulation and appli-
cations are in a local area network and results become very 
bad when they go through a wide area network, which is 
susceptible to loss and delay between them. Also the simu-
lation gateway’s bandwidth and latency could affect the 
quality of service on the applications. These two problems 
have been predicted in ROSENET design in (Gu and Fuji-
moto 2004). The results in PRIME further confirms that 
network emulation with remote accessibility is required. In 
this sense, ROSENET and PRIMSE are not direct competi-
tors. ROSENET can complement PRIME by integrating 
PRIME into its client/server framework and using it as the 
high fidelity simulation server to provide remote users ac-
cess.
 ROSENET and PRIME also address the same problem 
in large scale network emulation using different ap-
proaches. In order to achieve results within emulation’s 
real time constraints, PRIME integrates fluid model with 
packets to improve parallel simulation performance, while 
ROSENET uses network models describing network status 
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within one time interval, instead of sending single packets 
as in PRIME, to trade time for accuracy. Using fluid model 
to improve simulation performance has been studied previ-
ously in various simulation tools and is not the focus of the 
ROSENET emulation system, but more of interests for a 
particular network simulation tool to be integrated into the 
ROSENET framework (such as how GTNetS uses fluid 
model to improve simulation performance). Its effects on 
network emulation performance is worth studying as future 
work.  

3 SYSTEM ARCHITECTURE 

This section describes the high level design for the 
ROSENET framework. The implementation of a parallel 
and distributed version of ROSENET using the GTNetS 
simulator is then described, and the time management issue 
is discussed as well. 

3.1 Overall Architecture 

Figure 1: Overall architecture 

Figure 1 shows the overall architecture of ROSENET. The 
client and server are the principle components of 
ROSENET. The low fidelity emulator provides rapid QoS 
estimation as well as application traffic monitoring by in-
teracting with the local distributed applications. The re-
mote server controls the high fidelity simulation by inject-
ing traffic and extracting measurements such as end-to-end 
delay from the simulation. The simulation time is parti-
tioned into time intervals with the assumption that the traf-
fic characteristics change little within each time interval. 
Clients and servers exchange their status through periodic 
updates of network models at the end of each interval. The 
update frequency can be dynamically adjusted according to 
the required accuracy and capacity of the simulation as 
well as the available bandwidth between client and server. 
More detailed information about how the system works can 
be found in (Gu and Fujimoto 2007).  
 This design allows ROSENET to achieve timeliness 
through the low fidelity network emulation, scale and accu-
racy through the high fidelity network simulation, flexibil-
ity in integrating different simulator/emulators through 
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High Level Architecture (HLA) (Kuhl et al. 1999) and 
standard interface definitions to hide internal details of 
simulation and emulation.  Finally periodic network model 
exchanges between simulators and emulators trade simula-
tion accuracy for time  and achieve accessibility for remote 
network emulation users by avoiding sending packets to 
remote high fidelity simulation facility to simulate, which 
will cause large bandwidth consumption and a wide area 
round-trip delay for each emulated packet. 

3.2 Support for Parallel Discrete Event Simulation 

In extending ROSENET’s architecture depicted in Figure 1 
to support for parallel discrete simulation, an intuitive ap-
proach will be to allow the emulator to directly interact 
with each simulator in the distributed simulation. However, 
this approach will cause several problems.   

Time management  
The emulator executes in real time while the distrib-
uted simulators execute in simulation time. In a paral-
lel discrete event simulation, simulation time is main-
tained locally on each simulator and specific 
algorithms are used to manage time advance on each 
simulator. Thus it is rather difficult for the emulator to 
interact with distributed simulators with different 
simulation time clocks.  
Communication latency 
In ROSENET the simulators and the emulator are dis-
tributed over a wide area network. If the emulator 
joins the federation of the simulators, the synchroniza-
tion among these federates may not be very efficient 
since they have to wait for the slowest federate before 
they can advance. 
Security
Distributed simulators running on high performance 
computing facilities are usually protected by firewalls 
and only provide limited access to users. Allowing the 
remote emulator to frequently access each node in the 
parallel and distributed machines behind a firewall 
over a wide area network may be difficult to control 
and manage if security of these machines is not to be 
compromised.  
Locality 
Since the target network is partitioned and modeled by 
different simulators, the source and destination appli-
cations for the network emulation may be mapped as 
virtual nodes modeled by different simulators. The in-
formation about the locality of these mapped nodes in 
the distributed machines should not have to be main-
tained by the emulator. A thin client is desirable to re-
duce the computing resources needed at client ma-
chines. 
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Figure 2: Parallel and distributed version 

 An extension of the ROSENET approach with support 
for parallel and distributed simulation has been developed. 
The parallel and distributed version of ROSENET is com-
posed of two federations: the emulation federation and the 
distributed federation as shown in Figure 2. The server is 
involved in both federations and acts as a proxy to provide 
the following services: 

Network model exchange 
Two types of network models are exchanged in the 
distributed federation: TrafficSummaryModel and 
LowFidelityModel. The distributed simulation event 
scheduler on each simulation node receives Traf-
ficSummaryModel generated by the remote emulation 
client and forwarded by the ROSENET Server, up-
dates the corresponding virtual node’s traffic patterns 
in its simulation, and executes the simulation till the 
end time of all the current TrafficSummaryModels in 
this federate. Compared with the previous version of 
ROSENET system with a sequential event simulation 
on a single node, this parallel and distributed version 
allows the source and destination applications to be 
modeled on different physical nodes which execute at 
their own pace. This requires that the traffic models be 
applied at the nodes at the same simulation time, 
which means they execute the simulation in the same 
time interval in ROSENET. 
Time management 
In ROSENET, the emulator and the applications exe-
cute at real time (or wall clock time) while the simula-
tor executes at simulation time. Since the execution of 
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the emulation cannot be reversed as in optimistic in-
teractive simulations, the high fidelity simulation has 
to follow the low fidelity emulation to avoid a causal-
ity error that occurs when traffic times-tamped behind 
the current simulation time is injected into the simula-
tion. This is achieved by piggybacking time informa-
tion on network models exchanged between simulator 
and emulator. When forwarding network models be-
tween the simulation federation and emulation federa-
tion, the proxy server also translates the timestamp on 
network models between real time and simulation time. 

3.3 Time Management Protocols 

ROSENET
Server

emulator

Source
application

Destination 
application

Packets
(milliseconds)

simulator1

simulator2 simulator3

Events
(milliseconds)

Models
(seconds or minutes)

Figure 3: Time management in ROSENET 

In a distributed version of ROSENET, the time manage-
ment is two fold: time management among the distributed 
simulators and time management between the emulator and 
simulators. In a distributed simulation, the simulator ad-
vances its simulation time through time management ser-
vice in the HLA RTI. They process events and make time 
advance requests to the RTI which grants time requests to 
make sure no causality error occurs within the distributed 
simulation. In this sense, time advance within simulators is 
fine-grain as the time advance is event-drive which is usu-
ally in the order of milliseconds. On the other hand, the 
time management between emulator and simulators is more 
coarse-grain, meaning that time advance for emulator and 
simulators is by time intervals which is usually in the order 
of seconds or minutes.  The two-level time management in 
ROSENET is illustrated in Figure 3. 

4 EXPERIMENTS 

The objective of the experimental studies is to evaluate 
how the ROSENET system meets the timeliness require-
ment with support for parallel and distributed simulation. 
The baseline performance of the ROSENET measuring the 
emulation accuracy of end-to-end delay and loss has been 
evaluated and validated in (Gu and Fujimoto 2007) through 
a sequential simulation version of ROSENET.  
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4.1 Measurement Metrics 

Network simulators are usually designed to achieve scale 
and accuracy. Although efficient execution of simulation 
models is required, no strict real-time requirements are im-
posed on the execution of the simulation. However in net-
work emulation, it is required that simulation process 
events and deliver results to applications within certain 
deadlines. When measuring network emulation perform-
ance, one of the main concerns is whether the emulation 
results can be delivered within the real-time deadlines. This 
is often referred to as timeliness requirement. Timeliness 
can be measured using timeliness ratio which is the per-
centage of packets that meet the real time deadlines, or 
their estimated end-to-end delay. In the ROSENET system, 
the network emulation client can use network models to 
quickly generate packet QoS predictions and is unlikely to 
miss the timeliness requirement given that only some sim-
ple mathematical calculations with network models are 
needed. 
 Although using network models can achieve timeli-
ness, the network models uses a network model from his-
tory data to predict QoS in the future. Hence we need an-
other metric to measure the network emulation 
performance in the ROSENET system context. We call it 
obsoleteness or lateness, meaning how obsolete/late the 
network model is when generating predictions for a packet 
in emulation. The correctness of the emulation is directly 
related to lateness and an upper bound on the lateness in 
ROSENET emulation is particularly important to the users. 

4.2 Experiment Settings 

Figure 4: Basic DARPA NMS campus network 

The ROSENET system is implemented using distributed 
GTNetS simulator and NIST Net emulator. The simulated 
network is a modified version from DARPA’s NMS pro-
gram’s baseline network model (2003). The network to-
pology is a ring of  NMS campus networks. As shown in 
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Figure 4, each NMS campus network consists of four sub-
nets, several routers, and a number of servers/clients gen-
erating background traffic. The hardware configuration to 
run the simulation experiment is a 40-node HP Integrity (2 
x 900 MHz Itanium 2 IA-64) running Red Hat Enterprise 
Linux 4. 

In this experiment, two machines in a cluster are used 
to execute the NMS campus network simulation, each of 
which models one or more of the NMS network. The 
source/destination nodes tested through the emulator are 
separately mapped to a leaf node in one NMS network on 
one processor and a leaf node in another NMS network on 
another processor. Each NMS network models 550 nodes. 
The background traffic is modeled as OnOff applications 
generating flows to neighboring NMS networks. The two 
mapped nodes send constant bit rate UDP packets and their 
end-to-end delay and loss is modeled by the distributed 
simulation.  

4.3 Experimental Results 

Two groups of experiments are performed measuring the 
lateness value under different scenarios. The lateness value 
is computed as the difference of the time when the Traf-
ficSummaryModel’s is generated and the time when the 
corresponding LowFidelityModel is received from the re-
mote simulation server. The model update interval de-
scribes how often the TrafficSummaryModel and LowFi-
delityModel are updated, which is also the length of time 
of the traffic described by the models. Therefore a Traf-
ficSummaryModel updated in one time interval needs to be 
generated using traffic data collected for one time interval 
in real time, and a LowFidelityModel for one time interval 
needs to be simulated in the simulator for one time interval 
in simulation time. The lateness value actually describes 
the time for the emulation client to collect the data from 
applications in one time interval to generate a Traf-
ficSummaryModel, send it over a LAN or WAN to the 
simulator to simulate for one time interval in simulation 
time, and generate the LowFidelityModel to send it back to 
the emulation client to generate QoS predictions. Since this 
process is repeated and is executed in parallel by the dis-
tributed simulators and emulator, the actual lateness value 
is less than the sum of all the time consumed in this proc-
ess due to time overlap. 

4.3.1 Baseline Lateness 

We first evaluate the basic lateness of the ROSENET sys-
tem using a model update interval of 1 second. The emula-
tor and simulator are placed within the Georgia Tech cam-
pus and there is an end-to-end delay within 2 milliseconds 
between them. Figure 5 shows the lateness value under 
normal execution conditions and the average lateness per 
model update is 1.264 seconds. Since the data collection 
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takes at least 1 second to generate a model for 1 second 
traffic which is much larger than the cost in the other 
stages of the model update process, we perform another 
group of experiments using previously collected data for 
model generation to avoid the data collection cost, and the 
results are shown in Figure 6. The average lateness in this 
case is 0.521 seconds, which is only 40% of the lateness 
when data collection is involved. 
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Figure 5: Lateness in normal execution 
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Figure 6: Lateness with pre-stored data 

 From both figures we can see that when the execution 
starts, the lateness value is varied dramatically due to the 
simulation/emulation warm-up period. After that the late-
ness value varies between 2.25 and 0.2 seconds for normal 
execution and remains constant at 0.2 second for execution 
with pre-stored data. This illustrates that the variance and 
extra overhead is caused by the data collection and model 
generation. For example, when no data is available, the 
models can not be generated and the system has to wait for 
enough data to accumulate. During this waiting and model 
generation period, more data is collected so that the next 
one or two models can be generated with much less late-
ness as shown in Figure 5. If all the data has been previous 
collected, the lateness is composed of transmission delay, 
3
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simulation cost, and model generation cost, which is of 
constant values. The fact that the smaller lateness in Figure 
5 is around the same (around 0.2 second) as the lateness 
value in Figure 6 also confirms that the data collection is 
the main cost in lateness. This experiment shows that the 
data collection  time, which is of one update interval time 
usually in the order of seconds or minutes is the bottleneck 
in the lateness value in ROSENET. 

4.3.2 Lateness for Remote Access 

In this experiment, an end-to-end delay is introduced to 
model the remote access to the simulation cluster by a net-
work emulation client/user over a wide area network. Ac-
cording to (Floyd 2002), most (85%) of the round-trip de-
lay in the Internet varies from 15 to 500 milliseconds. 
Therefore we introduce end-to-end delay in this range and 
observe the lateness value changes over the end-to-end de-
lay. The update interval is 1 second and it is expected that 
this is the lower bound of update intervals in a remote ac-
cess scenario. 
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Figure 7: Lateness with varying end-to-end delay between 
emulation client and simulation server 

Figure 7 shows the lateness value changes with the 
end-to-end delay between the simulation cluster and the 
emulation client. In comparison, we also collect the late-
ness value with pre-store data for model generation as in 
previous experiments. As the figure shows, the lateness in-
creases with the end-to-end delay in both scenarios and the 
increase is linear with pre-store data. Starting from 0.4 sec-
onds, lateness value is the same in both cases whether data 
collection is included or not. This is because when the end-
to-end delay is 0.4 seconds, the round-trip delay (0.4 sec-
ond *2) plus the overhead (0.2 second) observed from 
Figure 6 is around 1 second. The 1 second data collection 
time is overlapped by the model transmission time and the 
overhead cost in other components of the system. If the 
model transmission is larger than 0.4 second, the model 
transmission delay over the wide area network becomes the 
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bottleneck in the ROSENET system. Since the update in-
terval is likely to be much larger than 1 second and the 
end-to-end delay over Internet is usually smaller than 0.4 
second, this is the worst case scenario performance for 
lateness with varying end-to-end delay. 

5 CONCLUSION 

This paper explains the challenges in applying parallel 
simulation techniques in a remote network emulation ap-
proach to meet today’s new services and applications re-
quirements, especially for military applications under the 
network centric warfare doctrine. This large scale network 
emulation framework capable of integrating a remote high 
fidelity simulation facility with a local network emulation 
addresses requirements not met in existing emulation tools. 
The experimental results show that timeliness and remote 
accessibility are main concerns in applying parallel simula-
tion to remote network emulation, which are also desired 
features in testing today’s military applications and ser-
vices. ROSENET approach is very promising in meeting 
these requirements. 
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