
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

SIMULATION-AIDED PATH PLANNING OF UAV

Farzad Kamrani
Rassul Ayani

Royal Institute of Technology
School of Information and Communication Technology

Stockholm, SE-164 40, SWEDEN
ABSTRACT

The problem of path planning for Unmanned Aerial Vehicles
(UAV) with a tracking mission, when some a priori informa-
tion about the targets and the environment is available can
in some cases be addressed using simulation. Sequential
Monte Carlo Simulation can be used to assess the state of
the system and target when the UAV reaches the area of
responsibility and during the tracking task. This assess-
ment of the future is then used to compare the impact of
choosing different alternative paths on the expected value
of the detection time. A path with a lower expected value
of detection time is preferred. In this paper the details of
this method is described. Simulations are performed by a
special purpose simulation tool to show the feasibility of
this method and compare it with an exhaustive search.

1 INTRODUCTION

The focus in this article is on (long-term) path planning
of UAVs in tracking missions where some a priori infor-
mation about the target and terrain topology is available.
The a priori information about the target is assumed to be
available in form of probabilistic measures (distributions).
This information is based on reports from other information
sources and may include the initial probability distribution
of the existence of the target, an assumption about the des-
tination of the target and an approximation of the target’s
velocity. Moreover the terrain topology, in this article a
road network, which constrains the movement of the target
is known and a map of the terrain is available to the UAV
system in digital format.

In this paper, we suggest using simulation to assess
the state of the target in the future and testing alternative
UAV paths against this estimated future. These “what-
if” simulations are performed in advance and before the
UAV starts its mission. The intuition behind this method
is that utilizing information, even when it is incomplete
or uncertain, is essential in constructing effective search
131-4244-1306-0/07/$25.00 ©2007 IEEE
strategies and a system that uses all pieces of information
performs better compared with systems not considering this
information. In order to utilize this information we rely on
Modeling and Simulation techniques which have shown to
be an invaluable tool handling complex and ’difficult-to-
analyze’ systems.

To study this solution, a special-purposed simulation
tool, called S2-Simulator earlier developed (Kamrani, Gar-
cia Lozano, and Ayani 2006) is used. A test case for testing
this method and comparing it with an exhaustive search
method is designed and simulations are performed to verify
results.

1.1 Related Work

The problem of path planning of UAV in surveillance mission
(sensor platform steering) is a subclass of the more general
problem of sensor resource management. Xiong and Svens-
son (2002) present a review of multi-sensor management.
The idea of using simulated future to allocate sensors is de-
scribed in Ahlberg et al. (2004). Simulation-based planning
for allocation of sensor resources is discussed in Svenson
and Mårtenson (2006). The instance of the problem dis-
cussed in this paper, relies heavily on terrain constraints
(road network) implied on the target’s movement. Terrain
information is highly non-linear. Ristic, Arulampalam, and
Gordon (2004) discuss incorporating this information within
the terrain-aided tracking.

The approach in this paper differs from others in that
the only information used to assess the future state of the
target, is the topology of the road network and assumptions
about the movement and goal of the target. Hence, the
process of fusing sensor data to assess position of the target
is completely omitted.

2 PROBLEM FORMULATION

We present the following problem model. Consider a UAV
having the mission of tracking a single mobile non-evading
06

Kamrani an
target on a known road network. With non-evading, we
mean that the target, here a vehicle, has a predefined fixed
path. This path is unknown to the UAV. We assume some
probabilistic a priori information about the initial state of the
vehicle, p(x0), is available. For instance, it may be known
that the target starts from a point uniformly distributed over
a road segment or some road segments in a region. If the
type of the target is known, a distribution over the initial
speed of the target may be available, otherwise a uniform
distribution over a reasonable range is assumed. The target
is constrained to move on the road network.

The velocity of the UAV is considerably higher than
the velocity of the target, and there is only one target to
be tracked. Hence, once the target is detected it can be
followed by the UAV and the main measure of interest is the
time required to discover the target for the first time. For
simplicity, it is assumed that the sensor used for tracking is
a “perfect” sensor, which always detects the target if it is in
a predefined radius. Having a more realistic sensor model,
most algorithms and conclusions presented here, remain
nearly the same. However, the results of test simulations
would be poorer.

We use a discrete-time approach and denote the position
and velocity (state) of the target at time t = k by xk. Since
the motion of the vehicle is bound to a known road network,
its state can be specified by three variables. That is, xk =
[rk,dk,vk], where rk is the current road, dk is the distance the
target has moved on road rk and vk is the instantaneous speed
of the vehicle. Furthermore, the state transition model (the
movement model of the vehicle) as a probabilistic model
is specified, i.e. the conditional probability p(xk | xk−1) is
known. This model specifies the conditional probability
distribution of the state of the target at time xk, given the
state at time xk−1. The probability that the target follows
each outgoing road when it arrives at a crossing is part of
this model.

The road network can be considered as a kind of directed
graph G = (N,R), where N = {ni} is the set of all nodes
and R = {ri j} is the set of all directed roads. Each road ri j
that connects node ni to n j is a vector of points, containing
sufficient number of points to specify the geometry of the
road with reasonable resolution. That is, road ri j is defined
as a triple (ni,n j,< points >).

To reduce the complexity of the problem, we make
some assumptions about the movement pattern of the UAV.
We assume that the UAV flies approximately above the
road network and is inclined to finish surveillance of a
road segment (road delimited by two nodes) before it starts
flying above a new road. This assumption is more justified
in presence of occlusion, for example in urban environments
or roads surrounded by trees and buildings. The UAV has a
fixed maximum velocity and a fixed altitude which provides
the best detection capability.
130
d Ayani

With these conditions, the problem can be defined as
searching a directed graph for finding a moving object that
moves in the direction of the edges. Care should be taken
not to confuse the problem of “searching a graph” discussed
in this paper with searching state in a state-graph. The graph
discussed here is a spatial graph that is physically searched.

3 EXHAUSTIVE SEARCH

The problem in its most general form has no solution.
If a target on a road network is free to move, stop and
change direction, even in a rather simple network, it may
be undetected forever. However, in the presence of some
constraints on the road network and the target’s movement
the problem is guaranteed to have solution. If the road
network is a directed acyclic graph and the target is only
allowed to move in the direction of the roads or stop, the
problem is solvable, i.e. there are algorithms that finally
find the target. We present here an example of such an
algorithm.

A directed acyclic graph G = ({n},{r}) is a directed
graph such that for any node n ∈ G, there is no nonempty
directed path that starts and ends on n. In directed acyclic
graph a node with no incoming edges is called a source,
while a node with no outgoing edges is called a sink. A
finite directed acyclic graph has at least one source and at
least one sink (Weisstein 2003). Using this model, the target
starts from a source, moves in the direction of edges (roads)
and stops at a sink. Figure 1 shows a directed acyclic graph
with the only source in node A and the only sink in node
G.

Figure 1: A directed acyclic graph.

Despite seeming to work at the first glance, breadth-
first search algorithm sometimes fails to detect the target.
For instance consider the graph in Figure 1. The result
7

Kamrani and Ayani
of a breadth-fist search may be A, B, C, D, E, F and G,
but traversing the edges AB, BC, BD, BE, CD, CF, EF and
FG may fail to detect the target since the search does not
include the edges ED and DF . Failure occurs since in
standard breadth-first search algorithm the goal is to visit
all nodes and visited neighbors of an examined node are
not added to the search queue. However, a modified version
of the algorithm that puts all of the neighbors of examined
nodes in the search queue, solves the problem at the cost
of redundant and overlapping searches.

A more appropriate algorithm would not search an edge
(road) before all incoming edges to the start node of the
edge are searched. The outline of such an algorithm, which
has a running time linear in the number of nodes plus the
number of edges is shown in Figure 2. This algorithm
searches the graph in topological sorting. A topological
sort is a permutation p of the nodes of a graph such that an
edge ri j implies that i appears before j in p. Only directed
acyclic graph can be topologically sorted (Weisstein 2000).
As a consequence, if i appears before j in p, there is
no path from j to i. Every directed acyclic graph has at
least one topological sort, which may be not unique. For
instance {A, B, C, E, D, F, G} and {A, B, E, C, D, F, G} are
(the only) two topological sortings of the graph in Figure 1.
The algorithm in Figure 2 orders the nodes in topological
sorting and traverses edges that start from each of these
nodes. This search always detects the target, since the
search is complete and according to the above, there is
no path from the yet unsearched edges of the graph to
those already searched. Failure to detect the target when
the search is completed implies that the target has moved
from the unsearched area to the searched area, which is not
possible.

As an example we apply this algorithm to the graph
in Figure 1. The search starts with enqueuing node A in
a FIFO queue (Q), dequeuing it, traversing road AB and
enqueuing B. Then, node B is dequeued from Q, roads
BC, BD and BE are traversed, but only nodes C and E are
enqueued. Node D is not added to Q, since it has two more
incoming edges, CD and ED. The algorithm continues by
dequeuing node C from Q, traversing roads CD and CF ,
dequeuing node E, traversing road ED, enqueuing node D
and traversing road EF . Remaining steps are dequeuing
D, traversing road DF , enqueuing and dequeuing node F ,
traversing road FG and adding node G to Q. The algorithm
terminates when node G is removed from Q. In short, the
roads are searched in the following order and direction:
AB, BC, BD, BE, CD, CF, ED, EF, DF and FG. The path
of the UAV then is composed of traversing these roads in
the given direction and order. The UAV moves from the
end of a road to the start of the next if these two points are
not the same.

Note that, in the algorithm in Figure 2, the structure
Q does not need to be a FIFO queue and a set may be
13
given
directed acyclic graph G = ({n},{r})

start topological sort(G)
1 Q a First in First out queue
2 Q← enqueue all nodes with no incoming roads
3 while (Q is non-empty)
4 n← dequeue Q
5 for (each node m with a road from n to m)
6 traverse the road rnm
7 if (target found)
8 return
9 end if

10 remove road rnm from the graph
11 if (m has no other incoming roads)
12 Q← enqueue m
13 end if
14 end for
15 end while
16 if (graph has roads)
17 output error message (graph has a cycle)
18 else
19 no target was found
20 end if

end topological sort

Figure 2: Searching in topological order.

used instead. However, even if the topological sorting is
preserved by using a set, in many cases, it results in an
unbalanced search of the graph. Even using a FIFO queue,
the output of the algorithm in Figure 2 is not unique and
it may be optimized by changing the order in which the
outgoing roads from a node are traversed (lines 5 and 6).
It is sometimes possible to allow the UAV to move in
the opposite direction of a road without compromising the
correctness of the algorithm to obtain an even shorter path.
For example, an optimization of the earlier given search
order yields: AB, BC, DB, BE, ED, EF, FC, CD, DF and
FG. The path using these road segments includes only two
“extra” movements from C to D and from D to E.

4 OUR APPROACH

We suggest prioritizing search in part of the road network
where the probability of the existence of the target is higher.
In order to locate these regions a Monte Carlo method similar
to Particle Filtering (also called Sequential Monte Carlo
Simulation) is proposed, hence the name simulation-aided
path planning.

Particle Filtering is a well-studied approach in data
fusion and signal processing communities and is an appro-
priate tool for estimating the state of a non-linear system
with a non-Gaussian process noise, using a sequence of
noisy measurements (Doucet, de Freitas, and Gordon 2001).
Particle filtering is an iterative method which repeatedly es-
timates the new state of the system according to a transition
model (propagation stage) and filters this result using a sen-
08

Kamrani and Ayani
sor model when new measurements are available (updating
stage). Since measurements are assumed to be available at
discrete times, a discrete-time approach is convenient.

In tracking, the transition model specifies the probability
of location of the target at time t = tk, given its location at
time t = tk−1. This model is derived from properties of the
target, terrain characteristics and other forehand information
we have about the mission of the target. The sensor model
is the probability of existence of the target in a location,
given an observation. The probability density function of the
target having the state x, in each time-step k is represented
as a set of n particles pi

k = {(xi
k,w

i
k)}n

i=1, where xi
k is a point

in the state-space and wi
k is the weight associated with this

point at time t = tk. These weights are non-negative and
sum to unity.

Particle filtering starts with sampling a set of n parti-
cles, S0 = {(xi

0,w
i
0)}n

i=1 from the given distribution p(x0),
such that the number of particles in each interval [a,b] is
proportional to

∫ b
a p(x0)dx0. The weights of the particles

are set equally to 1/n. At each iteration, particles in the set
Sk−1 are propagated using the transition model, that is by
sampling from p(xi

k | xi
k−1). When new observations arrive

the weights are updated according to wi
k ∝ wi

k−1 p(zk | xi
k)

where, zk is the observation in time t = k and p(z | x),
is the sensor model. Particles are resampled periodically
considering their weights, i.e. they will be sampled with re-
placement in proportion to their weights and weights are set
to wi

k = 1/n. This step is necessary to replicate particles with
large weights and eliminate particles with low weights and
avoid degeneracy of the algorithm (Arulampalam, Maskell,
Gordon, and Clapp 2002).

In simulation-aided path planning, the simulation of
future is performed before the tracking mission is started.
Due to the lack of any sensor information, the estimated
state of the target is completely based on the transition
model. This results in a simpler model of particles without
having any weights and makes the updating and resampling
stages unnecessary. The procedure would be the same with
the exception that since future measurements are not known
yet, the updating and resampling stages are omitted.

Once the future state of the target over a period of
time is estimated, this prediction is used to compare various
suggested UAV paths and choose the one that minimizes
the expected value of the detection time. This path is static
and once calculated, it does not change during the mission
and under the influence of observations. The UAV follows
the path until it either tracks the target or reports a failure;
indicating the target has not been detected after adequate
time.

4.1 How Does it Work?

Consider the rather simple road network in Figure 3. As-
sume that a moving object is starting from point A and
130
is moving towards one of the three goals E, F or G. The
velocity of the object, vi, is one of the 25 discrete con-
stant values vi ∈{6, 7, 8, . . . , 30m/s}with equal probability.
When it reaches road junctions B, C or D it takes one of the
roads toward the goals with equal probability, i.e. the path
p j ∈ {ABCE, ABCF, ABDF, ABDG}. Having 25 possible
different velocity vi and 4 different possible paths p j, there
exists 25∗4 = 100 possible futures, each equally probable.

A UAV has the mission to fly to this area of responsibility
and locate the target before it reaches one of the nodes E,
F or G. The detection time τ is the critical parameter that
we want to minimize. We assume the UAV should fly over
road network to detect the target and that the UAV traverses
a road segment before going to a new road. Hence, paths
of the UAV comprise different combinations of the road
segments including possibly movements to join these road
segments together to compose a continuous route.

Having 7 road segments as in Figure 3 there are 27∗7! =
645120 different search orders (including direction). But
for now, we assume that using some criteria the number
of candidate search orders is narrowed down to a tractable
size.

For each fixed search order, τ is a stochastic parameter
whose value depends on the path and velocity of the target.
We are interested in a search order that minimizes the
expected value E(τ). One way to calculate this value is to
represent the target with 100 particles, each one modeling
a target ∈ (vi× p j). By simulating the movement of the
UAV for each search order, the detection time τi j of the
particle with velocity vi and path p j, is obtained. Calculating
the expected value of detection time is then an easy task:
E(τ) = ∑i, j τi j

100 . It is reasonable to believe that the search
order with lowest E(τ) is the best choice for the UAV.
One could generalize this approach to more complicated
configurations, including uncertainty in the initial position
of the target and existence of noise in the velocity of the
target. If the total number of particles is large the estimated
E(τ) is a good approximation of the real E(τ).

4.2 Simulation-aided Path Planning Algorithm

One major problem, as mentioned in Section 4.1, is that
the number of different paths to be compared grows very
fast and the problem is evidently NP-Hard O(2NN!) in
number of road segments. We use a heuristic approach
to overcome the complexity and in each step choose the
road that minimizes the expected value of detection time,
E(τ). Although this greedy algorithm works quite well,
there may exist far better heuristics that increase the over-
all performance of the system. Details of algorithm for
the function simulation aided path planning are shown in
Figure 4. This function, in its turn, calls two other functions
sample (Figure 5) and what i f simulations (Figure 6).
9

Kamrani and Ayani
Figure 3: Possible future state of a target starting from
node A. Uncertainty in the model is represented by disper-
sion of particles (yellow rectangles).

The function simulation aided planning calculates the
best path combined of desired number of road segments,
given the road network, UAV’s location and time needed
to start the mission (time needed to run the simulation).
First, in line 4 a set of particles is initiated. In lines 5 to 9
these particles are propagated forward to their estimated
position by the time when the mission starts. This yields an
approximation of the future state of the target. Having an
assessment of the future we can run a number of “what-if”
simulations (in line 10) and calculate which alternative in
the next period minimizes the expected value of detection
time. The new start point of the UAV is set to the end
of the chosen road in line 12 and time is set to the time
needed for the UAV to reach this point (line 11). The road
chosen by the simulation is removed from roads vector in
line 13 and added to the best path vector in line 14. The
while loop controls if the best path vector has the desired
length in line 3.

To initiate a set of N particles according to a known
a priori information, the function sample as defined in
Figure 5 is called. We assume that the information is given
and expressed as a probability density function p(x0).

Since the state is defined by xk = [rk, dk, vk], it implies
that p(x0) = [p(r0), p(d0), p(v0)] is available, where p(r0)
is the probability mass function of the target being on
a road. p(d0) is the probability density function of the
target being on a distance from the start point of the road,
and p(v0) is the probability density function of the target
having a velocity. Using these functions, we sample N
particles from these distributions with replacement. Each
particle is given a unique id number and is placed on a
road. Similar to particle filtering, it is difficult to make any
13
given
roads[]←road network
start point← location of the UAV
time← time needed to start the mission

start simulation aided planning(roads, start point, time)
1 best path[]← /0
2 constant N← number of particles
3 while (length(best path) is not large enough)
4 particles[]← sample(N, p(x0))
5 for (t = 0 : time)
6 for (j = 1 : N)
7 particles[j].move()
8 end for
9 end for

10 i← what i f simulations(particles, time, start point)
11 time← time+

time to (start point,end(roads[i]))
12 start point← end(roads[i])
13 roads← roads\ roads[i]
14 best path← best path∪ roads[i]
15 end while

end simulation aided planning

Figure 4: Simulation-aided path planning.

given
p(x0) = [p(r0), p(d0), p(v0)]

start sample(p(x0))
1 for(i = 1 : number o f particles)
2 r← draw from p(r0)
3 d← draw from p(d0)
4 s← draw from p(v0)
5 particle← a new particle
6 set id of the particle to i
7 set speed of the particle to s
8 place the particle on the distance d of road r
9 end for

end resample

Figure 5: Sampling particles.

precise statement on how many samples are required to give
a representation of a probability function (Gordon, Salmond,
and Smith 1993). This number increases exponentially with
the dimension of the state-space. We sample as many as we
can computationally afford. In test programs in Section 5,
the number of samples N, is equal to 1000.

The algorithm for what-if simulations is given in Fig-
ure 6. In lines 3 to 7 as many “What-if” simulations as
the number of road segments are initiated. These simu-
lations are run to find the road segment that minimizes
the expected value of detecting particles. The while loop
in lines 9 to 27 continues until all these simulations are
completed. In each step of this loop, all particles and all
UAV models are moved forward for a time unit. The return
value of the UAV models’ move function (line 15) is a
boolean, which expresses whether the current simulation is
completed or not. That is, if the UAV model has reached
the end of the corresponding road segment, the function
10

Kamrani and Ayani
global
observed[nr o f simulations][N]← f alse
observation times[nr o f simulations][N]← ∞

start what i f simulations(particles, time, start point)
1 N← number of particles
2 nr o f simulations← number of roads
3 for (i = 1 : nr o f simulations)
4 u[i]← model of uav(start point)
5 u[i].set mission(roads[i])
6 simulation done[i]← f alse
7 end for
8 tick← 0
9 while (not all simulations completed)

10 for (k = 1 : N)
11 particles[k].move()
12 end for
13 for (i = 1 : nr o f simulations)
14 if (not simulation done[i])
15 simulation done[i]← u[i].move()
16 for (k = 1 : N)
17 if (‖(x,y)particles[k]− (x,y)u[i]‖< ε)
18 if(not observed[i][k])
19 observed[i][k]← true
20 observation times[i][k]← time+ tick
21 end if
22 end if
23 end for
24 end if
25 end for
26 tick← tick +1
27 end while
28 min← arg min

i
(∑N

k=1 observation times[i][k])/N

29 for (i = 1 : nr o f simulations and k = 1 : N)
30 observation times[i][k]← observation times[min][k]
31 end for
32 return min

end what if simulations

Figure 6: What-if simulations.

move returns true. Completed simulations are skipped in
the later iterations of the loop. In each simulation those
particles which are in the detection radius and have not
yet been observed are marked as observed and their ob-
servation times are registered (lines 16 to 23). Observation
time of a particle (line 20) is sum of the parameter time
(updated by simulation aided path planning) and the time
steps in “what-if” simulations. The index of the chosen
road that minimizes the expected value of the detection
time is found in line 28 and returned in line 32. Before
the function returns, observation times of all particles in
all simulations are updated (lines 29 to 31). This step is
crucial for correctness of the algorithm in later calls of the
function.

5 TEST AND EVALUATION

To evaluate the performance of the simulation-aided solution,
a test scenario is designed and simulations are performed
using a special purposed simulation tool introduced in Kam-
rani, Garcia Lozano, and Ayani (2006). This tool is used
to simulate a moving object on a road network and a UAV
13
which has the mission to track this target. Different paths
for the target are chosen and the efficiency of the exhaus-
tive search and simulation-aided search methods are tested
under equal conditions. Detection times obtained for these
two methods are compared.

The geography of this scenario, as shown in Figure 7,
consists of a regular road network of perpendicular cross-
roads. Each road segment is 15 km long and these 60 road
segments make an area of responsibility that covers a square
of size 75 Km times 75 Km.

Figure 7: Geography of area of responsibility.

For convenience, a 2D coordinate system that has the
origin located at the upper left-most node, with x values
increasing to the right, and y values increasing downwards
is introduced.

The target is initially located at the upper left-most
node at origin. At this node and all other nodes the target
has the possibility to move either to east or toward south,
if any of these options are available. Hence, after passing
10 nodes and traversing 150 Km the target reaches the
lower right-most node and stops there. Considering these
directions, the road network can be modeled as a directed
acyclic graph with a source at origin and the sink located
at the node in (75 Km, 75 Km).

Velocity of the target is 20±5m/s, uniformly distributed
on this interval, thus it reaches its goal after a time between
6000 and 10000 seconds.

The target’s movement is predefined but unknown to
the UAV which starts its mission form a point in the III
quadrant on the line y = x with a distance u0 from the origin.
Velocity of the UAV is 100m/s. A large distance between
the initial location of the UAV and the area of responsibility
ensures that the target has a lead over the UAV. For example
u0 = 180Km is equivalent to 1/2 hour if the UAV starts its
search from the origin.
11

Kamrani and Ayani
The information available to the UAV system consists
of the approximate initial location and velocity of the target,
i.e. it is known that the target starts from a point uniformly
distributed on the roads passing origin having a maximum
distance of 7.5Km and has a velocity of 20±5m/s. It is
as well known, that the target chooses one of the outgoing
roads (if more than one) downward or to the right and there
is no reason to believe that the target prefers one of these
outgoing roads.

Considering all the constraints discussed, in addition
to chosen search strategy of the UAV, there still remains
three parameters that affect the detection time of the target:
distance of the UAV to the area of responsibility, the target’s
velocity and the target’s path. In order to compare the
performance of the simulation-aided search and exhaustive
search methods, simulations with different values of these
three parameters in two main categories are conducted. In
the first category the relation between the detection time
and distance of the UAV to origin for 4 different chosen
paths by the target are studied. In the second category the
impact of the target’s velocity on the detection time for
one chosen path is studied. The exhaustive search utilized
here, is an optimized version of the search in topological
order of the roads as described in Figure 2. UAV’s path
has been optimized to minimize extra movements between
the end of a road segment and the start of the next. The
simulation-aided search algorithm needs 5 simulated minutes
to simulate 60 “what-if” simulations with 1000 particles in
depth 16. That is, it composes a path for the UAV using
16 road segments. Simulations are run by time factor 10,
i.e. 10 simulated seconds take 1 clock second. A modest
computational power (a PC with 2 GHz processor and 1
GB RAM) has been used for this purpose. To increase our
confidence in the results, all simulations are run 10 times
using different random seeds and the average values are
presented.

In Figures 8 detection time of the target as a function
of the distance of the UAV to the origin, for both methods
and for 4 different target paths are depicted. The values on
the horizontal axis show the distance u0 of the UAV to the
origin, beginning from 0 to a maximum of 700 Km. The
vertical axis shows the average time for detection of the
target. In both search methods if the UAV fails to detect
the target in 10000 seconds, the search is stopped since
this time is long enough for the target, even having lowest
velocity, to reach its goal. As expected in all 4 experiments,
the detection time increases by increasing the distance of
the UAV to the origin. While in the simulation-aided search
method, the detection time remains significantly under 10000
seconds for all values, in the exhaustive search it exceeds
10000 seconds rapidly. Summarizing these results, we can
conclude that the simulation-aided search method in most
cases succeeds to detect the target before it reaches its goal
13
Figure 8: Detection time as a function of UAV’s distance to
the origin in exhaustive search and simulation-aided search.
Four different target paths are compared.

while exhaustive search fails to detect the target when the
UAV’s distance to origin is more than 120 Km.

To study the effect of the velocity of the target on the
detection time, 3 series of tests with different velocities for
both search methods are conducted and the results are given
in Figure 9. In both cases, velocities of the target are in
the range 15 to 25 m/s which is a range anticipated by the
UAV. As expected, in both search methods, by increasing the
velocity of the target, the detection time increases. However,
in exhaustive search this increasing results in earlier failure
of the mission (for shorter distance between the UAV and
origin), but in simulation-aided search the detection time
stays considerably under 10000 seconds.

6 FUTURE WORK

One of shortcoming of the simulation-aided approach as
presented here is that the simulations are run prior to the
12

and Ayani
Kamrani

Figure 9: Impact of target’s velocity on the detection time
in exhaustive search and simulation-aided search.

start of the mission. The path of the UAV is calculated
using an a priori model, which does not change during the
mission in response to sensor data. In a simple scenario,
where only one target is involved, and the objective is to
detect the target for the first time before any sensor data
is available, this method is feasible. However, in a more
complex scenario, where the aim of the mission is to track
several objects, a more dynamic path planning method is
desirable. One way to address this problem is to run similar
“what-if” simulations in real-time, i.e. under the entire
surveillance mission. In these real-time simulations, the
model and prediction of the future is refined by the incoming
sensor data periodically. The simulations are repeated and
the UAV’s path is changed dynamically. In future work,
we will address real-time simulations for path planning of
UAVs.

7 CONCLUSION

In this paper, we presented a method for path planning of
a UAV with the task of tracking a moving target on a road
network. This search method utilizes “what-if” simulations
to prioritize the search in areas where the probability of
existence of the target is higher.

An exhaustive search method that searches the road
network in the direction of the movement of the target was
also described. These two methods are compared by running
simulations in a special-purposed simulation tool. Except
for cases where the distance of the UAV to the origin is
under 120 Km, simulation-aided approach shows superior
results in detection time.
13
ACKNOWLEDGMENTS

This work is part of a project funded by the Swedish Defence
Research Agency (FOI). We would like to thank Pontus
Svenson, Farshad Moradi and Marianela Garcia Lozano
at FOI for their comments, suggestions and constructive
critiques.

REFERENCES

Ahlberg, S., P. Hörling, K. Jöred, C. Mårtenson, G. Neider,
J. Schubert, H. Sidenbladh, P. Svenson, P. Svensson,
K. Undén, and J. Walter. 2004, Jun. The IFD03 in-
formation fusion demonstrator. In Proceedings of the
Seventh International Conference on Information Fu-
sion, Volume II, 936–943. Mountain View, CA.

Arulampalam, S., S. Maskell, N. Gordon, and T. Clapp.
2002, February. A tutorial on particle filters for on-
line non-linear/non-gaussian bayesian tracking. IEEE
Transactions on Signal Processing 50 (2): 174–188.

Doucet, A., N. de Freitas, and N. Gordon. 2001. Sequential
monte carlo methods in practice. Springer Verlag.

Gordon, N. J., D. J. Salmond, and A. F. M. Smith.
1993, April. Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. IEE Proceedings-F 140 (2):
107–113.

Kamrani, F., M. Garcia Lozano, and R. Ayani. 2006, Oc-
tober 23–25,. Path planning for UAVs using symbiotic
simulation. In Proceedings of the 20th annual Euro-
pean Simulation and Modelling Conference, ESM’2006,
215–238. Toulouse, France.

Ristic, B., S. Arulampalam, and N. Gordon. 2004. Beyond
the Kalman filter: Particle filters for tracking appli-
cations. Artech House Radar Library. Artech House
Series Publishers.

Svenson, P., and C. Mårtenson. 2006, May 16–18,. SB-Plan:
Simulation-based support for resource allocation and
mission planning. In Proceedings of the Conference on
Civil and Military Readiness (CIMI 2006). Enköping,
Sweden.

Weisstein, E. W. 2000. Topological sort, From Mathworld–
A Wolfram web resource. Available via<mathworld.
wolfram.com/TopologicalSort.html> [ac-
cessed March 29, 2007].

Weisstein, E. W. 2003. Acyclic digraph, From Mathworld– A
Wolfram web resource. Available via <mathworld.
wolfram.com/AcyclicDigraph.html> [ac-
cessed March 29, 2007].

Xiong, N., and P. Svensson. 2002. Multi-sensor manage-
ment for information fusion: issues and approaches.
Information Fusion 3 (2): 163–186.
13

http://mathworld.wolfram.com/TopologicalSort.html
http://mathworld.wolfram.com/TopologicalSort.html
http://mathworld.wolfram.com/AcyclicDigraph.html
http://mathworld.wolfram.com/AcyclicDigraph.html

Kamrani and Ayani
AUTHOR BIOGRAPHIES

FARZAD KAMRANI is a PHD student in the School
of Information and Communication Technology at Royal
Institute of Technology (KTH), Stockholm, Sweden. He
holds a Master of Science in Computer Science from
Göteborg University. His research interests are simulation
methodologies and Particle Filtering. His email address is
<kamrani@kth.se>.

RASSUL AYANI is professor of computer science in the
School of Information and Communication Technology at
the Royal Institute of Technology (KTH), Stockholm, Swe-
den. He received his first degree from University of Tech-
nology in Vienna (Austria), his MSc from University of
Stockholm and his PhD from Royal Institute of Technology
(KTH) in Stockholm. Prof. Ayani has been conducting
research on distributed systems, distributed simulation and
wireless networks since 1985. He has served as program
chair and program committee members at numerous inter-
national conferences and have been an associate editor of
the ACM Transactions on Modeling and Computer Simu-
lation (TOMACS) since 1991. His web page can be found
via <www.it.kth.se/˜rassul>. His email address
is <rassul@imit.kth.se>.
1314

mailto:kamrani@kth.se
http://web.it.kth.se/~rassul/
mailto:rassul@imit.kth.se

	INTRODUCTION
	Related Work

	PROBLEM FORMULATION
	EXHAUSTIVE SEARCH
	OUR APPROACH
	How Does it Work?
	Simulation-aided Path Planning Algorithm

	TEST AND EVALUATION
	FUTURE WORK
	CONCLUSION

