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ABSTRACT 

Traffic flow management in the National Airspace is an 
important problem in our air transportation system. We 
have developed ProbTFM, a traffic flow management 
evaluation platform and algorithmic solution. ProbTFM 
works with existing traffic flow management tools and 
provides probabilistic data modeling and decision making. 
ProbTFM forecasts airport and airspace capacity and de-
mand; and airport, airspace, and route congestion. 
ProbTFM creates a list of high congestion, "critical" flights 
and recommends delays or reroutes for specific flights. 
ProbTFM can be used as an evaluation platform for ad-
vanced traffic flow management concepts, and to model 
today's National Airspace System. In this paper we report 
on validation results and how ProbTFM can be used to un-
derstand operational tradeoffs and inform policy decisions. 

1 INTRODUCTION

Air transportation demand has grown significantly in re-
cent decades and is projected to continue to grow in future 
years. This means the National Airspace System (NAS) 
will need to implement system improvements if it is to 
avoid ever increasing congestion. 

System improvements range from upgrading the NAS 
technology and infrastructure to improving the daily deci-
sion making that takes place in the NAS. One area of deci-
sion making that has tremendous influence on congestion 
and NAS performance is traffic flow management (TFM). 

TFM decision making in the NAS deals with, among 
other things, real time traffic and weather data. These are 
used to analyze the current system state as well as forecast 
the system state in the coming minutes and hours. Both 
these data sources contain significant levels of uncertainty. 

This, as well as other sources of uncertainty, make 
system forecasting a stochastic problem. This stochastic 
element is reckoned with in today's NAS, for the most part, 
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subjectively. Operators at practically all levels make intel-
ligent, probabilistic, and in general unrepeatable decisions 
based on experience and information at hand. 

We have developed ProbTFM, an algorithmic TFM 
tool that objectively makes probabilistic decisions based on 
stochastic analysis and modeling (Ramamoorthy, 2006). 

ProbTFM is a real-time, NAS wide simulation tool for 
the evaluation of advanced TFM solutions. Our platform 
can evaluate a wide variety of TFM concepts using real-
time system and environmental data. Weather data are pro-
vided by WSI. 

In addition to the evaluation platform, we have devel-
oped an advanced, probabilistic TFM solution in 
ProbTFM. Our solution is trajectory based. It searches for 
the steepest gradient in performance improvement per 
TFM action. 

As with most TFM tools, ProbTFM uses trajectory 
simulation intensively to derive the solution. Therefore the 
trajectory model is important both for computational per-
formance and for solution accuracy. In this paper we report 
on validation results for both the ProbTFM trajectory 
model and for the overall ProbTFM TFM solution. In both 
cases we find excellent agreement with measured values. 
Furthermore, our validation results suggest ways that 
ProbTFM can help inform policy decisions. 

2 TRAJECTORY MODEL VALIDATION 

This section describes our trajectory model and summa-
rizes its validation testing. 

2.1 Trajectory Model Overview 

Trajectory modeling is a core technology required in most 
advanced air traffic management (ATM) and TFM applica-
tions. We use an innovative and extremely efficient, modi-
fied equilibrium iteration approach which converges to the 
exact vertical-plane equilibrium iteratively, accounting for 
61



Hunter, Boisvert, and Ramamoorthy 
horizontal-plane dynamics (Phillips, 1997). This approach 
computes the trajectory using variable integration step 
sizes in appropriate integration variables. The method is 
fast and retains sufficient fidelity to support conflict detec-
tion and resolution when necessary. 

The trajectory is computed using a flight plan and air-
craft performance data as input. The flight plan specifies 
waypoints, climb and descent points, nominal cruise speed, 
and possible altitude constraints. In this method, the verti-
cal profile is specified as a list of segments. Each type of 
segment has a characteristic path in altitude-velocity space. 
The equilibrium equations are solved at nodes along each 
segment. The nodes may be evenly spaced in altitude, ve-
locity, or any convenient parameter which can be mapped 
to altitude and velocity. Reasonable choices for the integra-
tion parameter include altitude, velocity, range, time, flight 
path angle, and turn angle. 

The method solves the exact equilibrium equations it-
eratively and in the same way for each type of segment, 
rather than using the exact solution for approximate equa-
tions that depend on segment type. This encapsulates the 
solution in one place and makes it easy to support many 
type of segments. The method requires an aerodynamic 
model, a propulsion model, the vertical profile specified by 
segment type, aircraft configuration, and endpoint, the 
horizontal profile specified as a series of waypoints, and a 
weather model which specifies the wind and non standard 
temperature in four dimensions. No small angle assump-
tions are made in the equilibrium equations and the trajec-
tories are always continuous.  

2.2 Derivation Using Energy Methods 

The equilibrium equations (Eqns. 1–5) represent the appli-
cation of Newton’s Second Law of Motion in the vertical 
plane containing the aircraft center of gravity. 
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These equations are often called the point-mass equa-
tions because the aircraft is approximated as a concentrated 
mass at the center of gravity, as illustrated in Figure 1. 
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Figure 1: Point mass trajectory model forces and angle 
definitions. 

The energy follows directly as the sum of the potential 
and kinetic energies: 

E mgh
1

2
mV 2 Wh

1

2

W

g
V 2

(6)
Dividing by weight gives the specific energy: 
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Taking the derivative of Equation 7 and substituting 

from Equations 1 and 2, we have: 
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T cos D

W
Ps V nx

(8)
Ps  is defined as the specific excess power and nx  is 

the available horizontal acceleration in g's. 

2.3 Equilibrium Iteration and the Horizontal 
Profile 

In this trajectory model we solve the equilibrium equations 
iteratively. The state includes weight, lift, thrust, drag, 
flight path angle, angle of attack, fuel flow, and specific 
excess energy. The computation proceeds as follows: 

1. Compute the next altitude and velocity in the segment. 
2. Approximate the new lift coefficient and / or angle of 

attack.
3. Compute the new drag, thrust, and fuel flow. 
4. Compute the new weight using a quadratic formula 

solution of an implicit equation which uses the average 
fuel flow and average specific excess power. 

5. Compute the new flight path angle. 
6. Compute the new lift coefficient. 
7. Use the secant method to drive the difference between 

the guessed lift coefficient at Step 2 and the lift coeffi-
cient at Step 6 to zero. This iteration converges rap-
idly. 
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The input for the horizontal route is a list of way-
points. A waypoint is a latitude-longitude pair. A great cir-
cle arc is laid between each pair of waypoints making a 
leg. An arc is laid in between each pair of legs using a ref-
erence true airspeed and minimum bank angle. This breaks 
the route into a series of alternating turns and straight legs.  

With respect to the vertical profile, the difference be-
tween a turn and a straight section is that the equilibrium 
equations must be solved with the correct bank angle and 
the step size typically needs to be reduced during turns. 

The trajectory is integrated using the vertical profile. 
With each step, the end range is compared against the start 
range of the next route change. If a step exceeds the start of 
the next route change, then iteration is performed to find 
the integration end state that produces the required range. 
At this point the bank angle and step size are adjusted for 
the next route change. 

The result of an energy step is potentially a new true 
airspeed. The route defines the true course of the flight. 
The great circle through the last two points defines the true 
course direction. The wind triangle is then used to compute 
the ground speed and heading. The new ground speed and 
delta time are used to update the range which is then used 
to update the position using the route. 

2.4 Flight Range and Time Predictions 

We have validated our point mass trajectory model using a 
variety of aircraft tracking data. Here we present a com-
parison of the point mass trajectory simulation predictions 
and en route radar tracking results taken from May 24, 
2007. Figure 2 illustrates the medium convective activity 
in the late afternoon of that day. 

http://www4.ncdc.noaa.gov/cgi-win/wwcgi.dll?WWNEXRAD~Images2

Figure 2: May 24, 2007 Afternoon convective weather ac-
tivity. 

Here we compare a randomly selected set of 316 
flights, with flight times ranging from 16 to 336 minutes, 
and mean flight time of 68 minutes. Our objective in this 
validation test is to evaluate the airborne phase, so we use 
the first and last piercings of 3,000 ft altitude to define the 
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beginning and ending of the trajectory to be compared. The 
mean difference between the point mass flight time predic-
tion and the measured flight time (interpolated from the 
Enhanced Traffic Management System [ETMS] Aircraft 
Situation Display [ASD] tracking data) is 0.32 minutes 
with a standard deviation of 11.95 minutes. 

As Figure 3 shows, this flight time prediction error is 
highly correlated with the flight range prediction error. The 
correlation coefficient is 0.84. 

N: 316

Mean: 0.321 min

Std dev: 11.95 min

N: 316

Mean: 0.321 min

Std dev: 11.95 min

Figure 3: Trajectory prediction flight time error is highly 
correlated with flight range error. Residuals are computed 
as the simulated quantity minus the measured quantity. 

The mean flight range prediction error is –2.41 nmi, 
with a standard deviation of 53.75 nmi. Deviations in the 
flight range may arise from a variety of sources. An obvi-
ous source of this deviation is the differences in the in-
tended route from that described in the flight plan. This 
may arise due to pilot's obtaining direct-to vectors to 
shorten the path, air traffic control delay vectors, weather 
vectoring, and so forth. 

2.5 Detrended Flight Time Prediction 

The flight plan route is input to the trajectory model. 
Therefore flight time deviations, due to route deviations, 
are not a measure of the trajectory model accuracy. These 
flight time deviations would not occur if the trajectory 
model had knowledge of the final intended route. 

We detrend the flight time prediction error, shown in 
Fig. 3, to account for the flight range prediction error. This 
gives us a better estimate of the inherent flight time predic-
tion error of the point mass trajectory model. Figure 4 plots 
the detrended flight time prediction error data. The de-
trended mean flight time error is 0.80 minutes, and the 
standard deviation is reduced almost by 50%, to 
6.51 minutes. This prediction error does not show a sig-
nificant growing trend with longer flights, and is easily 
within the accuracy requirements for most NAS-wide or 
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regional applications, such as traffic flow management de-
cision support tools. 

N: 316

Mean: 0.80 min

Std dev: 6.51 min

R2: 0.012

N: 316

Mean: 0.80 min

Std dev: 6.51 min

R2: 0.012

Figure 4: Detrended trajectory prediction flight time error 
has standard deviation of 6.5 minutes. 

3 TRAFFIC FLOW MANAGEMENT RESULTS 
AND VALIDATION 

This section presents ProbTFM qualitative and quantitative 
NAS wide traffic flow management results and validation. 

3.1 System Congestion Versus Delay Tradeoff 

There is, in general, a tradeoff between congestion and de-
lay in finite capacity systems when demand exceeds capac-
ity, such as sometimes occurs the NAS (Wanke, 2005). 
Consider a scenario where the sustained demand exceeds 
capacity. If there is no delay, then the traffic throughput is, 
by definition, identical to demand and congestion occurs 
(i.e., throughput exceeds capacity). The introduction of de-
lay serves to reduce throughput, and therefore congestion. 
Eventually, with sufficiently high delay, throughput is re-
duced to the level of the capacity, and congestion vanishes. 

This tradeoff is illustrated in the simple example of a 
traffic stream, with randomly fluctuating density, transiting 
an airspace sector. We analyze this tradeoff using a Pois-
son distribution to model the sector loading, n, where  is 
the mean loading. 

We define the congestion level as the congestion prob-
ability weighted by the magnitude of congestion. For in-
stance, if the probability that a sector is loaded in excess of 
capacity by two operations is 0.1, then the corresponding 
congestion level is 0.2. 

We use hypothetical traffic streams to evaluate the non 
dimensional mean flight delay and overall congestion 
level, for this analytical case. Figure 5 plots the results. 
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Figure 5: Simple one dimensional illustration of congestion 
versus delay tradeoff in an airspace sector. 

Figure 5 illustrates the tradeoff between mean delay 
and the frequency of congestion events. Low congestion 
comes at the cost if high delay, and likewise low delay 
comes at the cost if high congestion. Figure 5 also indi-
cates the cost of a zero-tolerance policy for congestion. As-
suring no congestion comes at the cost of higher delay in 
this random traffic stream example. 

As illustrated in Fig. 5, the tradeoff curve shifts away 
from the origin with increasing demand or reducing capac-
ity, and toward the origin with decreasing demand or in-
creasing capacity. Therefore a particular congestion versus 
delay tradeoff exists for a given scenario, and it shifts with 
changing demand or capacity, for example due to weather 
or due to the introduction of technology or infrastructure 
improvements that increase capacity. 

Our first aggregate, NAS-wide validation test for 
ProbTFM is a qualitative one. We evaluate the aggregate, 
NAS-wide mean flight delay imposed by ProbTFM in its 
TFM solution, and compare to the aggregate, NAS-wide 
congestion. Our congestion metric is evaluated, after simu-
lation completion, as the total number of congestion events 
(each occurring over a 15 minute time interval), weighted 
by the level of congestion (i.e., the number of operations 
that the throughput exceeds congestion). 

ProbTFM operates on a NAS-wide level. Compared to 
the single sector analytical solution in Fig. 5, ProbTFM is 
multi-dimensional and nonlinear. So we do not expect to 
see an identical congestion versus delay tradeoff in the 
ProbTFM results. But when the NAS is overloaded, this 
fundamental tradeoff should be apparent. 

We explore this relationship on a NAS wide basis with 
controlled traffic flows, using ProbTFM to solve the TFM 
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problem in a variety of historical NAS days. For instance, 
Fig. 6 illustrates the weather on Jan. 7, 2007, a Sunday. 

http://www4.ncdc.noaa.gov/cgi-win/wwcgi.dll?WWNEXRAD~Images2

Figure 6: Jan. 7, 2007 Convective weather activity. 

We vary the congestion sensitivity and measure the re-
sulting mean flight delay and congestion level. Figure 7 
shows our results for a series of runs, using traffic schedule 
and weather data derived from Jan. 7, 2007 archived data. 
Figure 7 shows a tradeoff between the congestion level and 
flight delay similar to that of our analytical case in Fig. 5. 

Jan 7, 2007

8.5 minutes

delay reduction

ProbTFM

ETMS/ASPM

3.5k congestion

reduction

Figure 7: ProbTFM aggregate NAS-wide congestion and 
delay results for Jan. 7, 2007 simulation Actual data meas-
ured using ETMS/ASD traffic data, and ASPM delay data 
are shown in gray for comparison. 

The Fig. 7 tradeoff shows the expected tradeoff be-
tween congestion and delay in the ProbTFM results. The 
NAS congestion is inversely proportional to delay. The re-
lationship shows a more pronounced knee in the curve, 
compared to the Fig. 5 analytical result. 

The Fig. 7 results are typical. In our ProbTFM testing 
we always see the congestion versus delay tradeoff. Fig-
ure 8 shows typical ProbTFM results for NAS days with at 
least moderate weather. 
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Jul 4, 2006:

Light Tx, Moderate Wx

Jan 7, 2007: 

Light Tx, Heavy Wx

Nov 16, 2006:

Normal Tx, Heavy Wx

Jul 4, 2006:

Light Tx, Moderate Wx

Jan 7, 2007: 

Light Tx, Heavy Wx

Nov 16, 2006:

Normal Tx, Heavy Wx

Figure 8: ProbTFM aggregate NAS-wide results for three 
historical days with increasing levels of traffic and 
weather. 

The Fig. 8 results also validate the behavior of 
ProbTFM over a range of different NAS days. As illus-
trated in Fig. 5, the congestion versus delay tradeoff curve 
should shift away from the origin as the demand-to-
capacity ratio increases. As expected, the ProbTFM results 
in Fig. 8 show increasing shift away from the origin as traf-
fic and/or weather levels increase. 

3.2 System Performance Validation 

We next validate the ProbTFM system-wide results by 
comparing the ProbTFM congestion versus delay tradeoff 
with the measured values. We measure the actual conges-
tion metric using the ETMS/ASD traffic data, and obtain 
an estimate of the flight delay from ASPM. Figure 9 shows 
the measured values, with arrows pointing to the corre-
sponding ProbTFM simulated curves. 

Jul 4, 2006:

Light Tx, Moderate Wx

Jan 7, 2007: 

Light Tx, Heavy Wx

Nov 16, 2006:

Normal Tx, Heavy Wx

ETMS/ASPM

ETMS/ASPM

ETMS/ASPM

Jul 4, 2006:

Light Tx, Moderate Wx

Jan 7, 2007: 

Light Tx, Heavy Wx

Nov 16, 2006:

Normal Tx, Heavy Wx

Jul 4, 2006:

Light Tx, Moderate Wx

Jan 7, 2007: 

Light Tx, Heavy Wx

Nov 16, 2006:

Normal Tx, Heavy Wx

Jul 4, 2006:

Light Tx, Moderate Wx

Jan 7, 2007: 

Light Tx, Heavy Wx

Nov 16, 2006:

Normal Tx, Heavy Wx

ETMS/ASPM

ETMS/ASPM

ETMS/ASPM

Figure 9: ProbTFM aggregate NAS-wide results for three 
historical days with data points representing measured con-
gestion and delay values. 
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We have tested several more historical days in addition to 
the three shown in Fig. 9. As suggested in Fig. 9, we con-
sistently find that the ProbTFM results follow the observed 
trend in the ETMS/ASPM data. For historical days with 
high congestion and/or high delay, ProbTFM produces a 
higher tradeoff curve, with higher congestion and delay. 
Likewise, for historical days with lower congestion and/or 
low delay, ProbTFM produces a lower tradeoff curve, with 
lower congestion and delay. 

4 DISCUSSION AND CONCLUSIONS 

In this paper we show validation data for both the 
ProbTFM trajectory model and overall aggregate perform-
ance. In particular, our comparison of the ProbTFM trajec-
tory model with tracking data shows a mean flight time er-
ror of less than one minute with a standard deviation of 
6.5 minutes. This accuracy is sufficient to support NAS 
wide TFM applications. 

Concerning ProbTFM aggregate performance, we 
qualitatively validated the shape of the congestion versus 
delay curve produced by ProbTFM, and we validated the 
shifting of the curve with changes to the NAS-wide de-
mand-to-capacity ration. We also validated that the 
ProbTFM congestion versus delay curves correlate with 
the measured NAS performance. 

These validations suggest that ProbTFM can be used 
to simulate the NAS performance. A major advantage of 
ProbTFM is that successive runs, with varying congestion 
sensitivity, can be used to generate the congestion versus 
delay curve for a given NAS day. So rather than merely re-
viewing measured NAS performance, ProbTFM provides 
curves that indicate the full range of possible operating 
points where the NAS could have performed. This infor-
mation is useful to policy makers. 

That is, the congestion versus delay tradeoff curves in 
Fig. 9 suggest that, without technology or infrastructure 
improvements, the NAS performance can vary, from the 
observed operating points, along the tradeoff direction to 
different congestion and delay settings. In this sense, these 
congestion versus delay tradeoff curves represent contours 
of constant NAS performance. In this view, moving along 
the tradeoff curve does not represent a change in perform-
ance, but rather a change in policy. On the other hand, 
moving orthogonal to the tradeoff curve represents a 
change in performance, with performance improving in the 
direction toward the origin. 

Figure 10 shows the measured delay and congestion 
for seven historical days, with various traffic and weather 
conditions. The Fig. 9 performance contours are shown in 
gray for reference. As expected the NAS measured per-
formance moves away from the origin as traffic and/or 
weather level increase. But the ProbTFM performance con-
tours suggest that significant delay reduction is possible at 
the cost of minimal congestion increase. 
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Increasing traffic

and/or weather

2006/09/08

2006/11/17

2006/07/04
2006/11/12

2006/11/16

2007/01/07

2006/12/14

Lines of constant

NAS performance

Date Traffic Weather

2006/11/16 Normal Heavy

2007/01/07 Light Heavy

2006/11/12 Light Moderate

2006/12/14 Normal Light

2006/07/04 Light Moderate

2006/09/08 Normal Clear

2006/11/17 Normal Clear

Increasing traffic

and/or weather

2006/09/08

2006/11/17

2006/07/04
2006/11/12

2006/11/16

2007/01/07

2006/12/14

Lines of constant

NAS performance

Date Traffic Weather

2006/11/16 Normal Heavy

2007/01/07 Light Heavy

2006/11/12 Light Moderate

2006/12/14 Normal Light

2006/07/04 Light Moderate

2006/09/08 Normal Clear

2006/11/17 Normal Clear

Figure 10: ProbTFM performance contours suggest NAS 
policy changes. 

Delay reduction with only minimal congestion in-
crease is possible when the NAS operating point is to the 
right of the knee in the performance contour. This is the 
case for several of the days plotted in Fig. 10, and particu-
larly so for Dec. 14, 2006 (circled on the plot). 

The performance contours indicate that the NAS per-
formance on Dec. 14, 2006 was reasonable. There was 
light weather and normal traffic, and the congestion and 
delay observed for that day fall onto a contour that is simi-
lar to that of other days with similar conditions. Also, the 
Dec. 14, 2006 operating point is only slightly above the 
ProbTFM simulated performance contour for that day (not 
shown).

But the Dec. 14, 2006 operating point, though close to 
the simulated performance contour, is far from the knee in 
the curve. The operating point is in the flat part of the 
curve, and this suggests that substantial delay reduction is 
possible with only minimal congestion increase. In the case 
of Dec. 14, 2006, a mean delay reduction of up to 15–20 
minutes may be possible. 

The policy change to shift days, such as Dec. 14, 
2006, toward the knee in the performance contour, is to ac-
cept slightly more congestion (easily within the NAS toler-
ance) in order to reduce delay significantly. This means 
changes to the TFM decision making regarding how 
weather and other system uncertainties are handled. The 
specific changes required, however, are complicated be-
cause the NAS policy is not currently repeatable. TFM de-
cision making is determined by a large number of deci-
sions made by a variety of operators. Sometimes these 
decisions are made objectively according to recognized 
guidelines. But often they are unrepeatable, subjective de-
cisions made in the absence of specific guidelines. 

ProbTFM is a prototype TFM tool that provides an ob-
jective set of guidelines such that TFM decision making is 
objective, repeatable, and public. ProbTFM integrates 
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weather into TFM/ATM decision making, and it is based 
on a single, unified weather database. This approach lays 
the groundwork for a common situational awareness be-
tween TFM provider and operators. In a collaborative 
scheme, ProbTFM could be simultaneously used by opera-
tors and provider, thus providing transparency in TFM de-
cision making to operators so they can anticipate problem 
flights and remedy them so the TFM provider will not need 
to. 

Finally, we note that the ProbTFM performance con-
tours we have generated typically have improved perform-
ance compared to the ETMS/ASPM measured congestion 
and delay values. Figure 9, for instance, shows that two of 
the three days plotted show substantial delay reductions in 
the ProbTFM performance compared to the ETMS/ASPM 
measurements. This suggests that a probabilistic, trajec-
tory-based approach, such as ProbTFM, can provide good 
performance improvement in today's system. 
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