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ABSTRACT 

Effective hospital capacity planning can not only signifi-
cantly enhance the capability and effectiveness of the 
treatment provided to patients during a bioterrorist attack 
but can also provide critical information. While a lot of 
work has been done to model hospital capacity estimates 
for natural disasters the same cannot be said for manmade 
biological disasters like anthrax or smallpox. In this paper, 
we develop a generic simulation model of hospital capacity 
planning during a bioterrorist attack.  We model both cases 
in which the occurrence of the attack and the type of agent 
used are known as well as when they are not known. The 
model is also unique in developing a feedback loop to alert 
emergency management officials about the occurrence and 
type of an attack.  Our results are able to pinpoint the char-
acteristics of the hospitals that are most relevant at various 
stages of exposure and provide policy recommendations. 

1 INTRODUCTION 

Man-made disasters, such as terrorist attack, industrial ac-
cidents, acts of war, can result in significant economic loss 
and human casualties. One of the most recent and signifi-
cant man-made disasters occurred on September 11, 2001, 
when the World Trade Center in New York City was at-
tacked by terrorists. Approximately 2750 people were 
killed and another 2260 injured. The economic losses suf-
fered have been in the order of trillions of dollars (Wikipe-
dia 2001a). This was followed in September and October of 
2001 by a bioterrorist attack involving anthrax in which 
around 22 people became ill and resulted in 5 deaths 
(Wikipedia 2001b).  

The effective functioning of a medical facility is criti-
cal during an emergency. Unlike a natural disaster like 
earthquake or floods, bioterrorist attacks entail  a different 
set of complexities with respect to care delivery. Firstly, it 
might not be possible to instantly identify the biological 
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agents based on the symptoms that patients come into a 
hospital with. For example, the early symptoms of small-
pox are akin to chickenpox while that of anthrax to any 
common bacterial infection. It often remains to the lab tests 
to be able to determine the true ailment and this might take 
time. Secondly, patients suffering from contagious diseases 
such as smallpox may need to be quarantined from other 
patients. Thirdly, the resources required such as the time of 
nurses and doctors will depend on the agent A nurse or 
doctor has to change the personal protective equipment 
(PPE) every time they attend to a patient thereby consum-
ing a lot of time just getting ready to treat a patient. 
Fourthly, unlike a natural disaster patients affected by 
these bioterrorism agents may not need the services of op-
erating rooms (OR). This changes the constraints on a hos-
pital with respect to number of surgical units/surgical serv-
ices. Finally, facility damage to the hospital itself are less 
likely to exist in the event of such bioterrorist attacks. 

All of this points to the fact that any simulation model-
ing of hospitals for bioterrorist attacks will have to take 
into account a number of factors which are very unique and 
specific to these disaster types. In this paper, we develop a 
generic simulation model of hospital capacity planning 
during a bioterrorist attack that takes into account these 
factors.  We model both cases in which the occurrence of 
the attack and the type of agent used are known as well as 
when they are not known. We also characterize the differ-
ences between contagious and noncontagious diseases. The 
model is unique in developing a feedback loop to alert 
emergency management officials about the occurrence and 
type of an attack.  Our results are able to pinpoint the char-
acteristics of the hospitals that are most relevant at various 
stages of exposure and provide policy recommendations. 

2 LITERATURE REVIEW 

The most relevant literature for this study are models of  
hospital capacity estimation. McClure (1976) described 
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hospital capacity to be the combination of bed and inten-
sity care capacities. HEW (1977) projected bed require-
ments five years ahead by (1) using population, (2) apply-
ing current per-capita hospital experience to obtain 
expected utilization, and (3) applying an ideal occupancy 
factor to obtain beds required. Roemer and Shain (1959) 
concluded that beds beget patients, in the sense that beds 
will ultimately be occupied at approximately the same rate 
in any hospital even if bed number is increased. Bailey 
projected the need for future beds for both certified and 
non-certified beds in a three-year planning horizon for the 
US counties (Bailey 1994). Trye et al. (2002) constructed a 
quantitative mathematical model for estimating future bed 
demand based on two years of seasonally adjusted inpa-
tient data. Mouza (2002) projected hospital bed require-
ments by the end of the planning period based on the con-
sistent forecasts of the admission rates taking into account 
the structure of the admitted population by sex and age 
groups.  

 Some models have been developed that take into ac-
count other important factors besides beds and therefore, 
are more robust. Boer et al. 1989 defined hospital treat-
ment capacity (HTC) as the number of casualties that can 
be treated according to normal medical standards in one 
hour. It depends on the total number of surgeons, anesthe-
siologists, operating rooms, intensive care beds, residents, 
and the like. Yi et al. 2006 have developed a generic simu-
lation model for real time estimation of hospital capacities 
during a bioterrorist attack disaster situation. Patvivatsiri 
(2006) developed a simulation model of emergency room 
to better prepare for a bioterrorist attack. The objective of 
the model was to identify the bottleneck resources and de-
termine their appropriate allocation levels to better handle 
sudden surge of patients resulting from a bioterrorist attack.   

3 METHODOLOGY 

The agents that could be used in a bioterrorist attack can 
lead to two types of diseases: noncontagious but still 
deadly like anthrax or contagious like smallpox with 
equally (or even) higher deadly effects. In this paper, we 
specifically focus on developing a generic hospital model 
for anthrax but discuss the implications for smallpox. The 
important aspects to be considered for the simulation 
model are discussed in the sections below. 

3.1 Characteristics of Bioterrorist Attacks 

In this section we describe the differing characteristics of 
anthrax and smallpox which make mitigation very different 
and much more complicated than natural disasters.  
11
3.1.1 Symptoms 

There are three possible forms of the disease anthrax, the 
most common of which is cutaneous anthrax. in which the 
organism enters through a break in the skin. The cutaneous 
form begins as a bump that looks like an insect bite and 
within days opens into a painless ulcer with a black area in 
the center. The patient may have fever, malaise and head-
ache. Mortality of cutaneous anthrax victims ranges from 
20-25% without treatment, less than one percent with 
treatment. A more serious form is inhalation anthrax in 
which the victim breathes in the organism and develops a 
severe respiratory disease. The signs and symptoms of in-
halational anthrax follow a two stage pattern. In the first 
stage, the symptoms commonly observed are viral respira-
tory illness, sore throat, mild fever, muscle aches, malaise 
etc. In the second and fulminant stage, the symptoms ob-
served are shortness of breath, fever, shock, meningitis, 
respiratory failure etc. (Defencejournal 98, Tasota etal. 
2002, Labtestonline 2006). Systemic infection resulting 
from inhalation of Bacillus anthracis has a mortality rate 
approaching 100%. The third form is gastrointestinal an-
thrax which occurs 2 to 5 days after the ingestion of under-
cooked infected meat.   
       Smallpox is a highly contagious and virulent, often fa-
tal infectious disease caused by variola virus, a large or-
thopoxvirus of the family Poxviridae, subfamily Chordo-
poxvirinae (afip 2006). There are four types of smallpox 
that a person could get a)Classical variety b)Hemarroghic 
c)Malignant d)Modified. The symptoms develop in two 
stages. First stage symptoms primarily include aching 
pains, prostration, rash, lesions, bleeding into the skin and 
intestinal tract etc. The second stage symptoms include 
pneumonia, meningal irritation etc.  Malignant smallpox is 
the most severe one and modified is the least variety of 
smallpox.  

3.1.2 Contamination 

During a bioterrorist attack, it is normal for many patients 
to present themselves as contaminated victims (AHRQ 
2004). For faster disaster mitigation it is critical that these 
patients be decontaminated. There are three main purposes 
for carrying out this procedure: 1) make victim’s skin and 
clothing free of the agent in order to reduce further possi-
ble agent exposure and further effects among victims; 2) to 
protect the emergency responders and other hospital staff 
from secondary transfer exposures, which is the primary 
rationale for ensuring detailed decontamination at the 
health care facility, and 3) to provide psychological com-
fort to victims at or near the incident site to mitigate nega-
tive long-term psychological impact (Tan 2003).  
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3.1.3 Quarantine 

 For some infectious diseases like smallpox and SARS 
which spreads at an alarming rate from an infected person, 
it might be necessary to totally quarantine a hospital or a 
region treating such cases to avoid any further contamina-
tion. A hospital might have to be totally closed for normal 
patients while treating the infected ones. An alternative is 
for the hospital to be kept open to normal patients with the 
infected or contaminated ones treated at offsite locations. 
These might require extensive equipment and staffing to be 
effective. They also impose a constraint on the available 
capacity and thereby the number of people that could be 
given necessary care.  

3.1.4 Lab capacity and Tests 

Laboratories play a critical role in the response to bioter-
rorist attack, as the timeliness, accuracy, and security of lab 
diagnostics will have a direct impact on the containment 
and mitigation of an incident and on the effectiveness of 
treatment to victims.  

3.2 Characteristics of Hospitals For Simulation 
Modeling 

The hospitals of interest during a bioterrorist attack are 
those that treat general conditions like fever, GI problems, 
nausea etc. Specialty hospitals such as cancer institutes, 
psychiatric centers, etc., are not seen as significant con-
tributors to the treatment of bioterrorist attack related con-
ditions. Only non-specialty hospitals are thus included in 
this study.  
 We classify hospitals according to their characteristics, 
e.g., by size, location, etc. The capacity of a hospital is as-
sociated with the number of beds as well as its care deliv-
ery system (PAHO 1995), where the latter is essentially its 
surgical capabilities. The casualties resulting from a bioter-
rorist attack rarely need surgical services however, a large 
percentage of patients require ventilator support in addition 
to other care, and thereby the role of intensive care units 
becomes very critical during bioterrorist attacks.  

3.2.1 Number of beds  

After studying more than 50 hospitals randomly selected 
from different states across the country and data from 
AHA (Health Forum 2001-2002), we consider a typical 
large hospital to have about 500 beds, a medium-sized one 
to have 300 beds, and a small one with about 100 beds. We 
therefore categorize hospitals into three sizes with 100, 
300, and 500 beds. Hospitals within the range can be inter-
polated from the obtained results. Lab capacity has been 
shown to be related to the number of beds  (Yi et al 2006). 
11
The higher the number of beds  in a hospital the higher is 
the capacity of the lab in that  hospital. The functional rela-
tionship between Lab capacity and number of beds is as 
follows: 
 LCAP = ROUND ((92 * B+2267)/ LCAP _Scaler+3)   
where LCAP is Lab capacity, B is the number of beds and 
LCAP _Scaler is a constant that depends on the size of the hos-
pital. 

3.2.2 Number of Intensive Care Units (ICU) 

Intensive care units play a critical role since patients sub-
ject to anthrax (especially cutaneous and inhalational an-
thrax) or smallpox generally suffer from severe respiratory 
distress and require the services of ventilation and critical 
care (Rubinson  L. et al. 2005). Thus, the number of inten-
sive care units in a hospital would have a significant im-
pact on the capacity available at the hospital to treat such 
patients and we include it as factor in our model. Intensive 
care unit is a specialized facility that provides intensive 
care medicine. Many hospitals also have designated inten-
sive care areas for certain specialties of medicine as dic-
tated by the needs and available resources of each hospital. 
 Based on the data collected from around 150 hospitals 
across United States, we estimated the number of ICUs in 
hospitals to range from 4 through 104 (AHD 2006). Small 
hospitals with around 100 beds have approximately 5 
ICUs, a medium sized hospital with around 300 beds have 
15 and large hospitals with around 500 beds have 35 ICUs.     

3.2.3 Intensive Care Unit Efficiency 

Even for hospitals with the same number of beds and 
ICUs, the number of patients treated varies widely with 
various degrees of ICU efficiency. Performance of ICU in 
terms of patient mortality has been shown to be related to 
patient length of stay in ICU (BJS 2002 and Bandolier 
2003). Lesser the number of vent days the more successful 
are the outcomes. Thus, a logical measure of ICU perform-
ance is the patient length of stay.  
 We obtained data for patient length of stay in ICU by 
patient type (Cerner APACHE 2007). The mean length of 
stay by patient type was found to be not statistically differ-
ent by patient type or diagnosis. We used this data to create 
a confidence interval for length of stay. The lower limit, 
overall mean and upper limit of this confidence interval are 
used as estimates for low, medium and high efficiency 
ICUs. The ICU efficiency values we have considered in 
this paper are 4, 4.5 and 5 respectively .  

3.2.4 Severity Separation and Priority Assignment 

Patient separation based on severity and priority assign-
ment based on severity has been shown to be a more realis-
tic modeling of hospital operations (Saunders et al. 1989). 
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In this paper, we consider three different severities. Pa-
tients are given priorities based on these three severity 
types. Each patient is assigned a survivability time corre-
sponding to his/her severity. The survivability time is the 
maximum time that a patient can wait before getting treat-
ment in ER or ICU or else he/she dies. Severity 3 will al-
ways get priority over 2 and 1. Similarly severity 2 will get 
priority over 1.  

3.2.5 Change in Patient Mix 

Patient mix has been identified as an important factor af-
fecting the available resources and thereby, waiting time of 
the patients. Studies have shown that clinical environments 
are highly sensitive to small changes in patient mix and pa-
tient scheduling rules. The performance of the ICUs has 
been noticed to be significantly different if they have dif-
ferent case mixes (Glance et al 2000). The standardized 
mortality ratio was found to be different for ICU’s dealing 
with different case mixes. 

In this paper we classify patient mix to be of three 
types, one: ratio of Severity 1 patients/Total number of pa-
tients denoted by α, two: ratio of Severity 2/Total number 
of patients denoted by β, and three: Number of severity 
3/Total number of patients denoted by γ. The effect of the 
change in these factors on the patient waiting times will be 
studied by running the model for different values of α, β 
and γ.  

3.3 Design of Simulation Experiments 

The four factors (beds, ICU, ICU efficiency, and patient 
mix) are considered in the design of a factorial experiment 
to obtain a set of experimental results, which will used in 
the subsequent regression. We have not considered infeasi-
ble combinations like a hospital with around 100 beds with 
15 ICUs or 35 ICUs. These narrow it down to only 15 fea-
sible combinations as shown in Figure 1 . 

4 SIMULATION MODEL OF HOSPITALS 

4.1 Generic Simulation Model of Hospitals 

Using the simulation software ProModel, we developed a 
generic hospital model using the partial factorial design de-
scribed earlier. In a disaster situation, all staff will be 
called on duty. Due to the same reasons, human resource 
and equipment constraints are not considered in this phase 
of the study. 
 Since capacity estimate cannot be directly measured 
from the simulation outputs, we need to identify the rele-
vant indicators. Although utilization shows the available 
capacity of a resource, this long-term performance measure 
does not relate directly to the number of additional patients 
11
the hospital can treat. Since it is possible to treat an in-
creased influx of patients if prolonged waiting times are 
allowed, the capacity estimate also depends on the allow-
able waiting time. Therefore, actual waiting times are a 
meaningful measure. Additionally, waiting can be related 
to capacity subject to the survivability time (maximum 
waiting time a patient can wait before the treatment be-
gins). In order to do so, we consider the waiting time to be 
the time a patient waits for treatment to begin. 

100 300 500

4

4.5

5

35

15

5

# of beds

# of

ICU

ICU LOS(Days)

  
Figure 1: Experimental design factors and levels(Dots in-
dicate the 15 feasible combinations we have considered for 
our study) 

4.2 Patient Types 

Based on the similarity of medical symptoms and treatment 
procedures, patients were categorized into three types of 
Anthrax patients: 

Type 1 patients: bumps on skin, sore throat (Respira-
tory), mild fever (Any system), muscle aches (Any sys-
tem), sever cramps, malaise (Any system – general symp-
toms, swelling in the mouth or esophagus, swollen lymph 
nodes. 

Type 2 Patients: shortness of breath (Respiratory), fe-
ver (Any system), meningitis (Neuro), respiratory failure 
(Respiratory), viral respiratory illness (Respiratory), severe 
nausea (Gastrointestinal), loss of appetite, vomiting (Gas-
trointestinal or Neuro), vomiting blood (GI or Neuro), 
bloody diarrhea (GI), delirium, sweating, severe difficulty 
breathing 

Type 3 Patients: severe abdominal stress (Cardiovas-
cular), abdominal pain (Cardio). 

Based on patient data available from the 2001 anthrax 
episodes, we assume that patients have an average incuba-
tion period of 4 days after attack, prodormal stage setting 
in 4 days after incubation before going into the fulminant 
phase (Jernigan et. al. 2001). This logic is used in separat-
ing the patients into different severity levels for the attack 
known-cause known scenario that we plan to simulate. In  
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addition, in the attack and cause known case, it is expected 
that there will be higher numbers of severity 1 patients 
compared to attack known-cause unknown and attack un-
known-cause unknown cases. The percentages of patients 
by type are obtained from historical data (Holty et al 
2006). Patient routings after anthrax attacks can be seen in 
Figure 3. 

4.3 Modeling Logic 

Unlike natural disasters like earthquakes it may not be im-
mediately apparent that a bioterrorist attack has oc 
curred. Even if it were known that an attack has occurred, 
the type of agent and whether it is contagious or not may 
not be known immediately.  The biological attack can en-
tail different scenarios. Either the moment attack occurs 
the time might be known and the cause might be known or 
either may be known or only one may be known. This 
might lead to different care delivery needs in the hospital. 
To our knowledge this is the first model to capture this 
critical component of biological disasters. A visualization 
of the same is provided in the Figure 2.  

If the occurrence of attack is known and the type of 
agent is known the patient is assigned to the ER bed or 
ICU/CCU depending on his stability as shown in Figure 6. 
Similarly if the occurrence of the attack is not known and 
type of agent is not known, the actual cause of the prob-
lems the patients comes in with is known only when lab 
results are known.  
 Once the patient arrives at the hospital he will follow 
the flowchart in Figure 3. One unique aspect of our model 
is the feedback loop that alerts public health officials to the 
possibility that an attack has occurred and the type of agent 
involved. The biological agent triage algorithm we utilized 
is the one previously developed by Bond et al. 2006.  
 We begin by studying the attack known and cause 
known case first. We analyze the effect of different patient 
volumes and severities on hospital capacity estimates for 
both contagious and non contagious diseases 

5 CAPACITY PREDICTION MODEL 

5.1 Pre-disaster Steady-state Waiting Time 
Equation 

For each of the different hospital settings in the factorial 
design, we obtain the steady-state pre-disaster waiting time 
from simulation. Then, a metamodel in regression of these 
results relates pre-disaster steady-state waiting time to 
number of beds, number of ICUs, and efficiency:  
T = C0 + C1B + C2I + C3E + C4A + C5B2 + C6I2 + C7E2 + 
C8A2 + C9BI+ C10BE + C11BA + C12IE + C13IA + C14EA 
  (1) 

 

11
where T is the steady-state waiting time under normal 
times, B is number of beds in the hospital, I is number of 
ICU’s, E is efficiency index, A is patient mix (representing 
all the three α, β, γ) and C0, C1, … are constants. 

5.2 Post-disaster Steady-state Waiting Time 
Equation 

Post-disaster waiting time regression equations have the 
same form as the pre-disaster waiting time equation. The 
patient volumes after the bioterrorist attack that can be 
treated may vary from zero volume of patients to a thresh-
old maximum volume.  

5.2.1 Post-disaster Base and Critical Cases 

If after the bioterrorist attack, no disaster patients arrive, 
there would only be a minimum arrival rate of regular ER 
patients, resulting in a large capacity available. This patient 
volume is a hypothetical base case. When any disaster 
takes place the incoming patient volume would be greater 
than or equal to this base case. Using the same regression 
approach, we obtain the steady-state base case waiting time 
for any given hospital.  

By experimenting on various post-disaster arrival 
rates, the critical arrival rate will be determined. That is, 
any sustained rate greater than this critical rate would push 
the system into in equilibrium. We call this situation the 
critical case, where the system is on the threshold of be-
coming over- capacitated.  

5.2.2 Arrival Rates between the Base Case and the 
Critical Case 

In order to find the relationship between patient arrival rate 
and the steady-state waiting time under situations between 
the base case and the critical case, we will perform a series 
of simulations with different arrival rates for each hospital. 
Waiting time increases exponentially with patient arrival 
rate. There is a good log-linear relationship between wait-
ing time and patient arrival rate. Therefore, for any given 
hospital, the following relationship holds: 
  Log (

s
! ) = a + b*λ (2) 

where a and b are constants, 
s
!  = Steady-state waiting 

time and λ = Patient arrival rate 
For any given hospital combination, the above equa-

tion corresponds to a straight line in a two-dimensional 
space of Log (Steady-state waiting time) and Patient arri-
val rate. Therefore, the constants a and b can be uniquely 
determined by two points known to lie on the line. These 
points correspond to the base case and the critical case. It is 
important to note that a and b depend on four basic hospi-
tal factors only, which strongly supports our research  
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Figure 2: Flow chart (Attack Scenarios) 
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Figure 3: Flow chart (Patient Flow) 

 

objective on developing generic hospital models to repre-
sent all hospitals in the disaster area. 

5.3 Transient State Waiting Times 

The hospital transient behavior can be described by the 
weighted sum of two exponential functions. The two expo-
nential functions take into account all arrival rates from the 
base case to the critical case and any state in between. The 
time of bioterrorist attack is teq; the transient waiting time 
at clock time t is Tr (t); the steady state waiting time before 
bioterrorist attack is Ti; and the steady-state waiting time 
11
corresponding to the patient arrival rate after the bioterror-
ist attack is Tf. Assuming static but different pre-disaster 
and post-disaster arrival rates, the following equation is ob-
tained, 
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 For dynamic post-disaster arrival rates, the relation can 
be generalized as follows. If at time t1 the waiting time is 
T1, the patient arrival rate λ during the transient (within a 
time interval from t1 to t2) is a constant, and the steady-
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state waiting time corresponding to λ is T2, then the tran-
sient waiting time Tr(t) is given by 
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where τ1 and τ2 are two time constants corresponding to the 
base case and critical case, respectively. They are ap-
proximately linearly related to the time it will take to reach 
from a pre-disaster steady state to the post-disaster steady 
state. The higher the value of τ, the longer it will take to 
reach a new steady state from the previous steady state and 
vice-versa. Weighting factor α is between 0 and 1. In the 
base case, α = 0, and in the critical case, α = 1. The value 
of α can be obtained by performing several simulations 
with different post-disaster patient arrival rates for selected 
hospital combinations.  

5.4 Capacity Estimation 

Since our ultimate objective is to estimate hospital capacity 
in terms of the number of patients that the hospital can ac-
cept with an acceptable waiting time not exceeding surviv-
ability time, it is necessary to convert the waiting times 
into capacity estimates. 
 Assuming the maximum permitted waiting time is Tm, 
from equation (2), in steady state, this waiting time for a 
maximum patient arrival rate (λm) given by  
 
 baT

mm
/))(ln( !="  (6) 

 
 Assuming the current waiting time (transient wait-

ing time from double exponential curve) to be a steady-
state waiting time for a certain patient arrival rate, this ar-
rival rate (λs) can be calculated as 

 
 batT

rs
/))(ln( !="  (7) 

 
where Tr(t) is current waiting time. 

Then the available capacity is equal to the difference 
between the maximum capacity and the used capacity  

 
 tC

sm
!"= ).( ##  (8) 

 
where Δt is length of time and C is available capacity. 
 If the length of time is one hour, then the available 
hourly capacity (Ch) is 

 
 

smh
C !! "=  (9) 
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6 RESULTS 

6.1.1 Results for Attack and Cause Known Scenario 
(Anthrax). 

For incubation stage patients (Severity 1) the results are: 

T= C0 + C1B+ C2V+ C3B2+C4V2+ C5BV  
R-square =94.9% 
 
C_vol= C0 + C1B+ C2B2,  R-square=97%, 
where C_vol is the critical volume that the hospital can 
handle. 

 
 Similarly for prodormal stage patients (Severity 2) 
T= C0 +C1I + C2E + C3V + C4I2 +C5E2 +C6V2 +C7BI+ 
C8BE + C9BV+ C10IE + C11IV +C12EV ,  R-square=97.6% 
 
C_vol= C0 +C1I + C2E + C3I2 +C4E2 + C5BI+ C6BE +  
C7IE , R-square=98% 

and finally for fulminant Stage Patients (Severity 3) 

T = C0 +C1I + C2E + C3V + C4I2 +C5E2 +C6V2 +C7BI+ 
C8BE + C9BV+ C10IE + C11IV +C12EV , R-square=98.4% 
 
C_vol = C0 +C1I + C2E + C3I2 +C4E2 + C5BI+ C6BE +  
C7IE , R-square=98.7% 

6.1.2 Implications for Attack Known and Cause 
Unknown Scenario 

Some states such as Georgia do not permit hospitals to 
conduct testing of potentially infected patients in their own 
labs while some other states do. The results developed ear-
lier readily apply to the latter but not to the former.  In 
states that do not allow such testing, hospitals are required 
to send samples to the CDC.. In these states, the waiting 
time and critical volume results will remain the same, 
however mortality rates will be significantly higher. This is 
because hospitals will have to wait for results from CDC 
which generally takes a time period of 1-3 days (CDC 
2007). This delays the appropriate care delivery to patients 
and thereby increase the mortality. It is likely to be not so 
severe in a non contagious disease like anthrax but ex-
tremely serious in the case of contagious diseases like 
smallpox where patients can infect others including health 
care workers and pose a big problem for achieving effi-
cient disaster mitigation (provide reference). 

6.2 Empirical Observations 

The stage at which patients enter the hospital has a huge 
impact on which hospital characteristics matter most.   
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1) Incubation patients are not affected by the ICU number 
or ICU efficiency of a hospital but are affected by the 
number of beds that a hospital has (ER and labs) and the 
volume it takes.  This is because they do not need the serv-
ices of ICU. They require only the care delivery given to a 
normal ER patient. 2) Prodormal and incubation patients 
are not affected significantly by the number of beds that a 
hospital has. The major bottleneck for these patients is the 
number of ICUs, ICU efficiency and patient volume. Beds 
do not show up as a significant factor because the hospital 
gets bogged down due to the very low ratio of ICU/Beds 
that any hospital has. 3) The critical volume of patients that 
a hospital can bear is highest for incubation, the second are 
prodormal and the lowest are fulminant patients. This is 
mainly a function of the severity of these three categories 
of patients and the type of care that each of the three cate-
gories need. 4) Policies banning testing in some states 
should be changed. All states must permit hospitals to do 
testing in their labs since it has a significant impact on 
mortality. In addition, the turnaround of the results is 
faster, more accurate and less risk prone than when sent to 
the CDC (RID 2007). 

7 CONCLUSIONS AND FUTURE WORK 

In this paper, we developed a generic hospital simulation 
model to obtain temporal performance measures (waiting 
time) during emergency operations for anthrax attacks. We 
model cases in which the occurrence of the attack is known 
and the type of agent used are known as well as cases in 
which they are not known. We have highlighted the differ-
ences between contagious and noncontagious diseases. We 
developed a parametric regression metamodel to obtain 
real-time hospital capacity estimates from simulation re-
sults. The model is also unique in developing a feedback 
loop to alert emergency management officials about the 
occurrence and type of an attack. Our model is also able to 
point out those characteristics of  hospitals that are of criti-
cal importance at various stages. 
          We have not simulated the scenario where both at-
tack and cause of agent are not known in this paper. In ad-
dition due to the lack of smallpox patient data, we have 
simulated only anthrax attack. We have also not considered 
different patient mixes to see its impact on the waiting 
times and hospital critical volumes. This would be a very 
important factor especially in the attack and cause un-
known scenario. In addition bottleneck that is created due 
to shortage of nurses and doctors also needs to be modeled. 
These are all important aspects that will be pursued in our 
future work.  
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