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ABSTRACT 

Engineering large and complex simulation systems is be-
coming more reliant on the reuse of existing simulation 
models. While existing technical standards facilitate syn-
tactic and technical interoperability among disparate simu-
lation models, there is still lack of formal methods that en-
able sound reasoning about the conceptual congruity of 
models that are selected for composition. This paper sug-
gests a graph-theoretic approach to measure the extent of 
conceptual congruity of models within a new context. The 
premise of the approach is based on having contextualized 
models that provide introspective access to their metamod-
els. A metamodel associated with a reusable model entails 
a conceptualization of the domain in which it is originally 
designed to be situated in. The metamodels are used to in-
stantiate a metagraph and graph distance metrics are used 
to measure the alignment of metamodels in the context of 
the new application domain.    

1 INTRODUCTION

Simulation interoperability is a longstanding challenge 
within the Modeling and Simulation (M&S) community 
(Carr and Myers 2003; Davis and Anderson 2003; Tolk 
2004; Yilmaz and Oren 2006). While some engineering 
disciplines successfully apply component-based approach 
to build systems (Falkenheiner and Forbus 1991), it has 
proven significantly difficult to apply in simulation model 
development (Page and Opper 1999). Interoperability is 
viewed as the capability of simulations to exchange data 
and have a common interpretation. Semantic interoperabil-
ity involves unambiguous interpretation of shared data at 
multiple levels of abstraction. Composability, which is de-
fined at the conceptual interoperability (Tolk 2004) level, 
is defined as the capability to select and assemble compo-
nents in various combinations to satisfy user requirements 
meaningfully (Davis and Anderson 2003; Petty et al. 
2003). 
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 M&S community is taking steps to facilitate the im-
provement of integratability (Guttenberg 2003), interop-
erability (DMSO 2004; Tolk and Muguirra 2003), and 
composability (Davis and Anderson 2003; Yilmaz 2004) of 
simulation models. Tolk (2004) suggests the use of open 
standards along with explicit delineation of model interde-
pendencies as a prerequisite for a practical solution to 
composability. The Levels of Conceptual Interoperability 
Model (LCIM) involves different layers of interoperation 
from technical aspects to conceptualization. 
 This paper is based on the premise of explicit 
specification and use of context (Yilmaz 2004, NRC 2006) 
to measure the extent of composability. Here “composabil-
ity” is viewed as the quality of being composable and 
means to be capable or worthy of being composed. Similar 
to other terms ending with –ability, for example maintain-
ability, it refers to the object to which it applies and not to 
the agent (a model composer –human or software) which 
performs necessary acts to realize the composition of mod-
els and/or model components. The composability analysis 
is separated from the domain of the implementation models 
via a meta-level framework. The framework involves 
introspective access to conceptual models of individual 
simulations participating in the study. Conceptual models 
are viewed as graphs, and graph distance functions are 
used to evaluate the alignment of simulations with each 
other as well as the new domain constraints. The 
evaluation of consistency of the composed simulation with 
respect to the domain ontology of the new simulation 
application is assessed in two phases: First, a consensus 
summary metamodel is derived from the metamodels of 
the individual simulation models. Second, distance 
between the consensus metamodel and the domain 
ontology is compared.   

The rest of the paper is organized as follows. In 
section 2 we present an overview of related work in the 
areas of simulation interoperability and composability. In 
particular, we discuss the LCIM model to provide the 
context for our method. Section 2 overviews issues in 
composability and delineates what specific challenge the 
90



Yilmaz 
proposed method is aiming to address. Section 3 introduces 
a case study that involves the conceptual model of a 
simulation study pertaining to UAV coordination mission. 
The domain ontology of the critical entities and their 
associations are presented in this case study. Section 4 
introduces the elements of the proposed method along with 
the application methodology. Section 5 elaborates on the 
application of the method to the case study. Finally, section 
6 concludes with the evaluation of the method and a 
discussion on potential avenues of further research.  

2 BACKGROUND 

Simulation interoperability involves (Tolk and Diallo 
2005) (1) administration of information exchange via loca-
tion, discovery, and retrieval of  content, (2) management 
of the content through clarification and standardization of 
meaning, (3) alignment of the existing and required con-
tent, (4) transformation of existing content through aggre-
gation, disaggregation, and transformation operations so 
that meaningful exchange can be established among dispa-
rate simulations.  

2.1 The LCIM Model 

Current research results led to the development of the 
“Levels of Conceptual Interoperability Model (LCIM),” 
which was presented in several papers (Tolk and Muguira 
2003).  LCIM copes with different layers of interoperation 
from technical aspects to conceptual ideas, which are the 
basis for the purposeful abstraction of reality underlying an 
M&S application.  The LCIM introduces seven layers to 
cope with different aspects of interoperation.  These as-
pects are characterized as follows: 

Stand-alone systems have No Interoperability.
On the level of Technical Interoperability, a 
communication protocol exists for exchanging 
data between participating systems. 
The Syntactic Interoperability level introduces a 
common structure to exchange information, i.e., a 
common data format is applied. 
If a common information exchange reference 
model is used, the level of Semantic Interopera-
bility is reached.  Pragmatic Interoperability is 
reached when the interoperating systems are 
aware of the methods and procedures that each are 
employing.  In other words, the use of the data – 
or the context of its application – is understood by 
the participating systems. 
If systems have attained Dynamic Interoperabil-
ity, then they are able to comprehend the state 
changes that occur in the assumptions and con-
straints that each is making over time, and are 
able to take advantage of those changes. 
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Finally, if the conceptual models – i.e. the as-
sumptions and constraints of the meaningful ab-
straction of reality – are aligned, the highest level 
of interoperability is reached: Conceptual Inter-
operability.

2.2 Conceptual Interoperability 

Composability of simulations requires establishing sub-
stantive alignment of models across a number of dimen-
sions involving both functional and non-functional aspects 
(i.e., quality of service). At the functional domain, com-
posability of models at least requires the alignment of con-
ceptual and contextual assumptions of models and such as-
sumptions are consistent with the constraints and 
objectives of the new application. To facilitate analyzing 
simulation assumptions regarding the concepts and the 
context, it is critical to formalize the mission and simula-
tion space (Pace 1999). The simulation’s mission space in-
cludes all simulation elements, i.e., the things represented 
in the simulation and specifies how they interact with one 
another. It includes assumptions, algorithms, characteris-
tics, relationships (especially interactions with other things 
within the simulation), data, etc., that identify and describe 
that item’s possible states, tasks, events, behavior and per-
formance, parameters and attributes, etc. The simulation 
space part of the simulation concept includes all additional 
information needed to explain how the simulation will sat-
isfy its objectives. Simulation space characteristics range 
from identification of specific kinds of computing systems 
(hardware and operating systems) and timing constraints so 
that real systems can be part of the simulation (such as 
hardware in the loop unitary simulations or involvement of 
live forces in distributed simulations) to the kinds of simu-
lation control capabilities described above.  
 While the mission space focuses on the functional 
domain, simulation space includes additional characteris-
tics pertaining to non-functional requirements. To assure 
composability at the mission space level (i.e., conceptual 
interoperability) we need to determine if there is a consen-
sus among the used models regarding the conceptual and 
contextual assumptions. Once the consensus is confirmed, 
proper indicators are needed to measure the extent of con-
gruity between the consensus model and the conceptual 
domain model of application The next section introduces 
the formalism used in capturing domain models. 

3 MISSION SPACE MODELS AND DOMAIN 
ONTOLOGIES

To illustrate mission space specification for a composite 
model, we use a case study, in which a multiresolution co-
ordinated mission for UAVS is being considered. 
1
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3.1 Simulation Modeling of Coordinated UAV 
Mission

Figure 1 presents the major components of the simulation.  
The simulation is driven by the MUAV tool that generates 
inputs for the tactical level. The scenario starts at the low 
resolution with a number of UAVs sweeping an area that 
contains multiple targets. Targets are classified as low 
resolution (i.e., tank battalions) and high-resolution entities 
(i.e., individual tanks). Individual UAVs can detect and de-
stroy high-resolution entities such as tanks. In the case of a 
detection of a low-resolution aggregate entity such a battal-
ion, UAVs aggregate into teams by virtue of a team forma-
tion strategy to establish multi-resolution entities, called 
Teams. Each team is composed of multiple UAVs. 
Figure 1: The Mission Sp
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The high-resolution representation of a team is associated 
with a COA strategy component that encapsulates the co-
ordination mechanism that implements the engagement 
policy of the team of UAVs. 
 A policy includes decision making strategy, task allo-
cation approach, and the COA that is appropriate in the 
identified situation. There exist multiple strategy compo-
nents from which the team object can choose at the time of 
its instantiation. The flexibility in choosing alternative 
strategy components as COAs facilitates experimenting 
with alternative realities. 
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Figure 2: Undirected Graph-based Metamodel 

3.2 Transforming Mission Space Model into Graph 
Formalism 

In our approach, conceptual models are defined as 
graphs. A graph G is defined in terms of )(GVV , which 

is a vertex or node set, and a set )(GEE  of pairs of ver-

tices that are elements of V . If the elements of E  are un-
ordered pairs of vertices, then the graph G is undirected. If 
the elements of E  are ordered pairs of vertices, then the 
graph G  is directed. Figures 2 and 3 depict undirected and 
directed graphs that represent the entities and relations 
shown in the conceptual model of the problem domain of 
interest (see sections 3.1 and 3.2).  Representation of the 
conceptual model in terms of undirected graphs without 
annotations results in loss of information regarding the 
type and direction of dependency, as well as the cardinality 
constraints on the associations. While the direction of de-
pendency can be captured via directed graphs, the con-
straints over the entities and associations are still not repre-
sented. The method is limited to measuring the extent of 
alignment of the consensus model and the conceptual 
model of the problem domain. Each simulation model is 
expected to have a metamodel represented in terms of the 
graph formalism, as shown in Figures 2 and 3. 
1093
Figure 3: Directed Graph-based Metamodel 

Metamodels can be packaged and distributed along 
with the simulation models using the introspective meta-
data wrappers as discussed in section 6. For the sake of 
brevity and simplicity of illustration of the method, we as-
sume metamodels share a common domain vocabulary. 
Discrepancies in domain vocabularies can be resolved via 
manual or automated use of existing thesaurus as preproc-
essor before the use of the proposed method.  

4 A GRAPH-THEORETIC VIEW ON 
CONCEPTUAL INTEROPERABILITY 

As depicted in (Tolk and Diallo 2005), interoperability re-
quires the alignment of the required and available content. 
Measuring the extent of discrepancy between the available 
models, as well as the required conceptual model of the 
problem domain and the agreed upon synthesized model 
would be an indicator of interoperability at the conceptual 
level; hence the composability of the synthesized model. In 
this section we elaborate on the notion of alignment and a 
solution to measuring it in terms of well-known graph dis-
tance metrics. 

4.1 Aligning Metamodels of Simulation 

Given a set of metamodels depicting the assumptions of 
reused simulations with respect to the problem domain, 
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exploring how they align with each other involves finding 
a consensus or summary model. Different strategies may 
be used to measure the holistic discrepancy within a collec-
tion of models. 

Centrality aims to minimize the worst case dis-
tance between the graph that includes the central 
nodes, which have elements with minimum eccen-
tricity (Buckley and Harary 1990) among the 
metamodels, and individual metamodels.  Assum-
ing that each model is represented as a node in a 
graph, eccentricity of a node in a graph is defined 
as the distance to a node farthest from v. Each 
central node can be characterized as a center, and 
central nodes prevent high-level dissent or dis-
crepancy of any given node from the collection of 
nodes. 
Alternatively, one can maximize the agreement 
between the individual metamodels and the sum-
mary graph that is representative of the meta-
model of the synthesized simulation. In other 
words, minimizing the average distance between 
the given set of metamodels and the derived con-
ceptual model of the synthesized model (consen-
sus metamodel), the median metric suggests a 
consensus model that improves the overall agree-
ment of the collection. 

4.2 Meta-level Graph 

To measure the alignment of the metamodels of reused 
simulations, we use an abstract graph representation, the 
nodes of which are the metamodels. This meta-level graph 
abstracts away the details of individual metamodels and 
focuses on (1) dependencies between simulations and (2) 
derivation of a consensus summary graph (i.e., central or 
median graph). Figure 4 illustrates the abstraction hierar-
chy that constitutes the simulation models, their metamod-
els, and the meta-level graph. Simulation models and their 
concrete dependencies characterize the concrete implemen-
tation level. In our case study, each simulation model is 
represented by a federate. A dependency between two 
simulations exists when two entities are said to interact or 
exchange information. For instance, the tactical and the 
team federates, in our case study, are dependent, as COA 
(strategy) components are selected by the tactical federate 
to instantiate and configure high-resolution team objects 
governed by the team federate. Also, the high-resolution 
target visualization federate is dependent on the team and 
engagement federates, as the visualization is updated based 
on the change of state in the team behavior and dynamics 
of the engagement scenario. Each federate has its own 
metamodel as depicted by the middle layer in Figure 6. 
The metamodel captures the assumptions of the federate 
about the context in which it is expected to be embedded. 
That is, it represents the domain model for which it is 
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originally designed to operate in. The highest level of ab-
straction is represented by the meta-level graph.  

The meta-level graph is defined in terms of the graphs 
that denote metamodels of the individual simulations. Let 
G  be the set of graphs and GGGRR )(  be a relation 

over the set of graphs. A dependency Rmm ),( 21 , if there 

exists a concrete dependency between simulation 1s  and 

simulation 2s , such that 1s  is specified by 1m  and 2s  is 

specified by 2m . The meta-graph is defined as 

GMV )( and )()( GRME . Given that the purpose of 

the meta-level graph is to identify an agreement (consen-
sus) model, the vertex set, )(MV , contains just those 

metamodels in the given set, and  each graph (i.e., node in 
the meta-level graph) contains exactly the same edges as 
the original metamodel. The next step in defining the meta-
level graph is to identify the edges in terms of relations on 
the set of metamodels. A relation between two metamodels 
is predicated on the existence of a dependency between 
corresponding simulations. If two simulation models de-
pend on each other, then a relation is inserted between cor-
responding metamodel nodes. The meta-level graph is then 
processed to determine and assign weights on each indi-
vidual relation by using graph distance metrics. These met-
rics measure the extent of similarity in the conceptual 
views of individual simulations. The metrics can be used in 
conjunction with a distance threshold value so that rela-
tions (i.e., edges in the meta-level graph) can be dropped if 
the distance between the corresponding nodes is over the 
designated threshold.  

4.3 Graph Similarity Metrics 

Graph metrics are functions that compute distances be-
tween pairs of graphs. The metamodels in our study are ei-
ther undirected or directed graphs, so we focus on these 
two basic types of graphs. The metrics assume a common 
vertex set, and they are defined in terms of the adjacency 
matrix representation. The metrics used in this work build 
on prior work based on symmetric difference approach 
(Banks and Carley 1994). In this approach, the premise is 
that the difference between graphs is due to existence or 
absence of links between nodes. These metrics can be ex-
tended in the future to take into account the prominence of 
nodes as well as multiplicity (cardinality) of associations 
between concepts. Before presenting the metrics that 
measure the distance between graphs, we first specify the 
basic constructs and formal definitions over which the met-
rics are declared. Given a graph G with vertex 
set ],...,,[ 21 nvvvV , the adjacency matrix A is a 

nn matrix, where 1ija if )(),( GEvv ji .
4
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Figure 4: Abstraction Hierarchy 
4.3.1 Metrics for Undirected Graphs 

In prior work presented by Banks and Carley (1994), a 
symmetric difference concept is used to estimate a central 
graph. The strategy used in this approach is to count the 
discrepancies in the edges of two graphs. Its functional 
form for undirected graphs is given by the following equa-
tion (Banks and Carley 1994) 

        ])[(
2

1
),( 2

2121 AAtrGGd ,                 (1) 

where the tr operator simply sums the diagonal entries in 
the matrix. Langfield-Smith and Wirth (1992) report an al-
ternative formulation that provides the same results. The 
following equation is adopted from their study.  

        ||
2

1
),( 21

21 ij
i j

ij aaGGd                   (2)  

4.3.2 Metrics for Directed Graphs 

The symmetric difference metric (Banks and Carley 1994) 
has also been applied to directed graphs. Therefore, we 
will also be utilized in our approach to measure the extent 
of dissimilarity between metamodels. When applied to di-
rected graphs, the metric takes slightly different algebraic 
form. This modified function is given by (Banks and Car-
ley 1994) as follows: 
10
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Similar to the metric for undirected graphs, the above for-
mulation can be equivalently expressed by the following 
equation (Langfield-Smith and Wirth 1992).  

          ||),( 21
21 ij

i j
ij aaGGd                      (4) 

4.4 Consensus Models 

Finding central elements that maximizes conceptual 
agreement (alignment) for a given collection of metamod-
els would provide means to measure if the synthesized 
model fits into its new context. The center and the median 
of the meta-level graph are two alternatives for computing 
the consensus model for the collection. The consensus 
model can then be compared to the application domain 
conceptual model to determine if the synthesized model is 
sufficiently close for use in this new context. If the similar-
ity is below a particular threshold, then reused simulations 
can be updated (tuned) in conjunction with their metamod-
els until the threshold value is achieved. The threshold de-
pends on the application domain and the extent of credibil-
ity and correspondence needed from the synthesized 
model. Alternatively, one can continue searching for new 
simulation models, the metamodels of which bring the 
level of agreement between the specification of the synthe-
sized model and the application conceptual model is suffi-
cient for the purpose of the study. 
95



Yilmaz 
 There are a number of metrics for identifying central 
elements (Buckley and Harary p.31 1990) reported in the 
graph theory literature. Two of these are particularly rele-
vant to the study presented here. The center measure that is 
based on the eccentricity metric enables finding those 
nodes in the meta-level graph that prevent high-level dis-
sent or discrepancy of any given node from the consensus 
metamodel depicted by central node. On the other hand, 
the median metric (Buckley and Harary p.42 1990) mini-
mize the average distance from the metamodels of individ-
ual simulation models to the agreement model depicted by 
the median node. In other terms, the use of the median 
nodes as agreement models maximize the agreement be-
tween the individual metamodels and the summary graph 
that is representative of the metamodel of the synthesized 
simulation. 

4.4.1 The Center 

To determine the center nodes, one has to compute the ec-
centricities of all the nodes in the meta-level graph and se-
lect those nodes, for which the eccentricity value is mini-
mum. Given a meta-level graph there are either weights 
associate with edges or both weights and directions. The 
weights depict the distance between two metamodels that 
is computed using the distance metrics presented in section 
4.3.  Given a connected graph G , let v be a node of G . The 
eccentricity of v  is defined as  

               }:),({max)( Vuvudve                (5) 

The radius )(Grad  denotes the minimum eccentricity 

of the nodes. More specifically, v  is central node 
if )()( Gradve . The first step in identifying the central 

nodes is to compute distance metrics for each node in the 
meta-level graph. Note that using the direct dependencies 
between the metamodels one can compute the distance 
metrics, assign weights to edges, and specify them in the 
adjacency matrix representation of the meta-level graph. 
The indirect dependencies and associated weights need to 
be derived by producing the distance matrix in terms of the 
consecutive powers of the adjacency matrix. The second 
step is to identify for each node v  the node which has the 
highest disagreement (dissimilarity). The central nodes are 
then defined as the ones with minimum eccentricity. As 
such, the central nodes minimize the discrepancy between 
the rest of the metamodels and the agreement model repre-
sented by the central node. It is important to recognize that 
there can be multiple nodes with the same minimum eccen-
tricity, and each one of these nodes is an element of the set 
of central nodes. Figure 7 presents the algorithm used to 
realize the first step of the method defined above. Using 
the derived distance matrix, we can identify the eccentrici-
1

ties of a specific node v  using equation 5. Next, we need 
to locate the nodes with minimum eccentricity. 

]}[min)(|)({)(
)()(

x

GVwGVx
EueGVuGC

where  

xww

x

GVw
dE max

)(

The set )(GC includes the central nodes with the same 

eccentricity value. If we let 
},...,,,{)( 321 kuuuuGC ,

where each kiui 1, is a node that represents a meta-

model depicted by a graph. The consensus model is se-
lected by measuring the distance between each element of 

)(GC and the provided conceptual model M , which speci-

fies the context of the application domain. We use graph 
distance metrics to measure the distance between the se-
lected central node and M . Let the distance between each 
node kiui 1, and M be depicted by MiD , , then the cen-

tral node with the minimum distance 
is }{min ,, Mi

i
Mj DD , and its metamodel is depicted by the 

node ju . If we assume the existence of a threshold, A , for 

the simulation application A , one has to assure that the 
consensus model of is sufficiently relevant in terms of its 
conceptual model to the application domain model. This 
constraint can be evaluated by checking if AMjD , .

Otherwise, the simulations and/or the application con-
straints need to be tuned or new simulation models should 
be located for reuse until AMjD , .

4.4.2 The Median 

While the centrality measure aims to minimize the discrep-
ancy of individual metamodels from the consensus model, 
median maximizes the agreement between the individual 
metamodels and the summary graph that is representative 
of the metamodel of the synthesized simulation. In other 
words, minimizing the average distance between the given 
set of metamodels and the derived conceptual model of the 
synthesized model (consensus metamodel), the median
metric suggests a consensus model. Formally, let G  be a 
connected graph. The )(vdist of a node v  in G is the sum 

of distances from v  to each other node in G . This is intro-
duced by Harary (1959). The median )(GMed  of a graph 

G  is the set of nodes with minimum distance; the total dis-
tance )(Gtdist  is the sum of all the distances 

That is, )(GMed  minimizes the total distance between 

any vertices in the graph. Algorithms for the derivation of 
096
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)(GMed  are presented in (Buckley and Harary 1990). The 

following set theoretic specification provides a declarative 
formalization of )(GMed .

)()(
)(

)]},([min),(|)({)(
GVwGVw

GVu
wudwvdGVvGMed

An important point to recognize is that there can be 
multiple nodes that exhibit the characteristic of a median 
node. In that case a strategy that is similar to the one dis-
cussed in section 4.4.1 can be used to select the node that 
minimizes the distance against the simulation application’s 
conceptual model. Furthermore, threshold value can be 
used to assess the fitness of the consensus model.  

It is also important to notice that 
if )()( GMedGC , then there exist nodes that act both 

as central and median.  

||
2

1
),( 21

ij
i j

ij aaHRVEngagementd

= 5.3]1111111[
2
1

 Note that while there may not be a direct coupling be-
tween  two  simulations,  they  may  indirectly  affect  each 
other via intermediate models that share and disseminate 
data.  
Figure 5: The Consensus Model 
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Such nodes are particularly good candidates for being 
consensus models, as they not only minimize dissent of 
any given metamodel, but also maximize the agreement 
between the individual metamodels and the consensus 
model. The resultant meta-level graph is denoted by an ad-
jacency matrix, as shown in Figure 7.  To compute the set 
of central nodes, the eccentricity values for each node at 
the meta-level is computed.  As denoted by equation , the 
eccentricity for a node is computed using  

}:),({max)( Vuvudve .

 For instance, the eccentricity value for the engagement 
model is  

}5.3,5,5,4,5,3,5,2,5,1,5max{)( dddddEngagemente .

 Once the eccentricity values are calculated, the next step 
is to identify the model with the minimal eccentricities. The 
distance between the agreement model and the mission space 
model provides insight about the fitness of the synthesized 
model to the context depicted by the mission. A discrepancy 
beyond a selected threshold requires either selecting new 
models for assembly or, if possible, revising existing models 
and their metamodels to fine tune the consensus model until 
fitness to mission space is assured. 



Yilmaz
Figure 6: Adjacency Matrices for the Engagement and 
High Resolution Visualization (HRV) Models 

Figure 7: Adjacency Matrix for Meta-level Graph 

5 CONCLUSIONS 

This paper suggests a graph-theoretic approach to measure 
the extent of conceptual congruity of models within a new 
context. The premise of the approach is based on having 
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contextualized models that provide introspective access to 
their metamodels. A metamodel associated with a reusable 
model entails a conceptualization of the domain in which it 
is originally designed to be situated in. The metamodels are 
used to instantiate a metagraph and graph distance metrics 
are used to measure the alignment of metamodels in the 
context of the new application domain. 
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