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ABSTRACT 

This paper describes the motivations, methods, and 
solution concepts for the use of ontologies for simulation 
model integration.  Ontological analysis has been shown to 
be an effective initial step in the construction of intelligent 
systems.  However, the modeling and simulation 
community has not taken advantage of the benefits of 
ontology management technology.  Moreover, the 
popularity of semantic technologies and the semantic web 
has provided several beneficial opportunities for the 
modeling and simulation communities of interest.  The 
paper outlines the technical challenges in simulation 
integration and describes an ontology-based method that 
addresses these challenges.  An example military combat 
simulation application scenario is used to illustrate the 
practical benefits of the simulation model integration 
approach.

1 MOTIVATIONS 

A key motivation for distributed, federated simulation 
modeling is to allow for the decomposition of the target 
system into smaller, more manageable components and to 
distribute the model development effort among different 
organizations and functional groups.  Once the component 
simulation models have been developed, there is a need for 
mechanisms to assemble a simulation model of the entire 
target system in a manner that ensures accomplishment of 
system performance goals.  The U.S. federal government’s 
ongoing investments in distributed simulation and 
initiatives such as the High Level Architecture (HLA) have 
been motivated significantly by this idea.  The idea of 
distributed simulation is also critical to the success of 
Simulation Based Acquisition (SBA) for federal 
acquisition programs. 

Designing and building a federated simulation 
involves several inter-related activities, including the 
following activities. 
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1. Members of the simulation modeling team must 
agree upon a core “community of interest” 
ontology.   

2. The distributed and negotiation-based nature of 
the simulation model design process requires the 
sharing of knowledge that is described at different 
levels of abstraction using a variety of 
terminology sets / ontologies and housed in a 
heterogeneous collection of simulation tools / 
databases.   

3. Simulation application designers lack of a 
common set of template reference simultaion 
models (i.e., a “simulation model design 
handbook”) that has generally accepted validity 
and well defined criteria for application. 

4. The need to reuse pre-existing (“legacy”) 
simulation models, data, and tools.   

5. The need to fuse and harmonize information at 
multiple levels of abstraction. 

6. The need to faciliate semantic information 
exchange between different simulation models, 
tools, and databases. 

The research described in this paper addresses the 
technology requirements implied by the above activities.  
We now outline the challenge of component based 
simulation and composability—key ideas that motivate our 
work. 

1.1 The Challenges of Component-Based Distributed 
Simulation and Composability 

From a software engineering perspective, a “component” is 
an independently deployable set of software services.  The 
component-based approach to software development is an 
area of intense research and development in the 
information technology community. This approach seeks 
to provide the mechanisms that will allow developers to 
assemble software systems from collections of re-usable 
parts or building blocks. This approach has been very 
successful in the hardware world as evidenced by the "plug 
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and play" hardware peripherals for computers. The path to 
success has been considerably slower in the software arena 
owing to the inherent complexity of software. The 
convergence to a relatively robust set of "standard" 
languages and protocols in the past few years augurs well 
for increasing plug compatibility in the software domain.  
The challenge of component-based software has not, 
however, been adequately addressed in the simulation 
community.  In particular, lacking are methods and tools 
that address the hard technical challenges of semantic 
interoperability and semantic composability.

1.1.1 Key Challenge 1: Semantic Inaccessibility 

The semantic rules of the component simulation tools and 
the semantic intentions of the component designers are not 
advertised or in any way accessible to other components in 
the federation.  This makes it difficult, even impossible, for 
a given simulation tool to determine the semantic content 
of the other tools and databases in the federation, termed 
the problem of semantic inaccessibility.  This problem 
manifests itself superficially in the forms of unresolved 
ambiguity and unidentified redundancy.  But, these are just 
symptoms; the real problem is how to determine the 
presence of ambiguity, redundancy, and their type in the 
first place.  That is, more generally, how is it possible to 
access the semantics of simulation data across different 
contexts?  How is it possible to fix their semantics 
objectively in a way that permits the accurate interpretation 
by agents outside the immediate context of this data?  
Without this ability—semantic information flow and 
interoperability—an integrated simulation is impossible. 

1.1.2 Key Challenge 2: Logical Disconnectedness 

Even given a solution to the problem of semantic 
interpretability, however, a further problem impedes full 
cooperation among disparate systems/sub-systems.  
Suppose, for instance, we have determined that a certain 
representation R1 in a design model M1 is semantically 
equivalent to a representation R2 in a given analysis model 
M2, and that both R1 and R2 stand for the same entity.  
Thus, the models M1 and M2 both carry information about 
P.  Suppose now that the information about P in M2 is 
updated.  This requires a change in the information carried 
about P in M1.  The fact that it is known that R1 and R2 
are semantically equivalent in and of itself has no bearing 
whatever on whether the implications of the change in M2 
will be propagated to M1.  The problem in question is that 
the constraints between the particular pieces of information 
generated by various component tools within the 
simulation federation are rarely maintained.  This is 
referred to as the problem of logical disconnectedness.
10
2 ONTOLOGY-BASED SIMULATION MODEL 
INTEGRATION METHOD 

The principal hypothesis that underlies our method is as 
follows: Semantic Information Exchange and Integration
for distributed simulation based applications will be 
effectively enabled using an ontology-directed approach 
that automates the mediation, sharing, and interchange of
semantic information from multiple types of domain and 
simulation specification models (Benjamin et. al 2006a).   

2.1 Ontologies and Ontological Analysis in 
Simulation Integration 

A key assumption is that the simulation modeling 
environment has a set of pre-existing (and possibly partial) 
ontology models.  Different types of ontology models have 
been found to be useful for simulation model integration as 
shown in Figure 1. 
1. Domain Ontologies.  These are representations of the 

knowledge in a well-circumscribed domain of interest.  
A domain might be organized based on natural 
phenomena (e.g., Biology, Physics, Geology) or based 
on man-made systems (e.g., Transportation, 
Telemetry, Semiconductor Equipment, etc.). 

2.  Community Of Interest (COI) Ontologies.  These are 
knowledge models that are organized around 
communities of practice that share a common goal.  
Examples of Communities of Interest include Military 
Command and Control, Modeling and Simulation, 
Military Combat, Clinical Medicine, etc. 

3. Simulation Tool Ontologies.  These ontologies 
represent knowledge that is encoded within simulation 
modeling tools.  These ontologies capture the (implicit 
or explicit) ontological commitments made by the 
designers of these simulation tools.  In our research, 
we have studied the ontologies of several commercial 
simulation tools including ARENA, Witness, and 
FLAMES, and a few simulation tools used primarily 
within the military M&S community such as 
EAAGLES, AMBER, and JSAF. 

Our experience indicates that it is possible to design 
the COI Ontologies using multiple domain ontologies.  
This design process involves the integration and 
harmonization of multiple, possibly overlapping domain 
ontologies as depicted in Figure 1.  We have also identified 
the need to perform comparative ontology analysis that 
maps the Community of Interest Ontologies to the different 
Simulation Tool ontologies (for the set of simulation tools 
that are used in the context of a federated simulation 
exercise). 
82



Benjamin, Akella, and Verma 
Figure 1.  Ontology-based Simulation Integration involves Analysis Using Multiple Ontologies 
A set of baseline ontology models will establish a 
mechanism for performing mapping / comparative analyses 
between the target simulation tool ontologies and reference 
Community of Interest (COI) ontology.  The value derived 
through ontology model comparisons to determine 
potential integration mismatches is illustrated in Figure 2. 

Figure 2.  Using Ontology Comparison for Mismatch 
Assessment 

Broadly, knowledge modeling mismatches are 
categorized as Language Level and Knowledge Level 
mismatches (see Klein 2001).  Language Level mismatches 
occur because of differences in syntax and expressivity (of 
the languages used to represent multiple ontologies / 
applications).  Knowledge Level mismatches are grouped 
1083
into two broad categories: (1) Conceptualization 
Mismatches and (2) Explication Mismatches. 

Conceptualization mismatches occur because of the 
differences in the granularity and scope of different 
ontologies (for example, a general ontology of space 
transportation resources versus an ontology of resources 
used for range system reconfiguration). 

Explication mismatches are of three types:  (i) 
Terminology, (ii) Modeling Style, and (iii) Encoding. 
Terminology mismatches arise because of the ambiguity of 
natural language and the naming conventions used by 
different organizations.  The most common terminology 
mismatches are those caused by synonyms (using different 
words to refer to the same concept) and homonyms (the 
difference in meaning of the same word used in different 
contexts). 

Modeling Style mismatches occur because of modeling 
paradigm differences (for example, using temporal logic 
based on time points versus time intervals) and modeling 
conventions (for example, to allow for the distinction 
between types and instances, and allowing for the 
representation of relational properties such as transitivity 
and symmetry). 

Encoding mismatches occur due to formatting 
conventions (date formats) and differences in scale (units 
of measure differences, etc.). 
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2.2 Example Application Scenario 

Before describing our methodology, we outline an example 
military combat simulation application scenario.  This 
scenario is used to illustrate the method in the subsections 
that follow. 

Figure 3 show an example tactical air combat scenario.  
In this case, two F/A-18C Hornets are pitted against two 
MiG-23 Floggers.  The latitude and longitudes of the 
aircraft, MiG23 Orbit, trigger locations (CM1 and CM2), 
F/A-18 Orbit, and route for the BASE are depicted.  Also 
represented in the figure are the aircraft call signs, initial 
altitude, initial heading, initial speed, and competency 
factor; radius of orbits (MiG-23 and F/A-18); distance 
between two trigger locations (CM1 and CM2); and 
distance between aircraft and nearest trigger locations.  
The F/A-18C fighters employ Electronic Suppression 
Measures (ESM) and radar to continuously track and 
monitor the position of MiG23 aircrafts.  While the MiG23 
aircrafts don’t have ESM capability, their radars are active 
to locate F/A-18C fighters. 

We now describe our method and illustrate its 
application using the above example scenario.  Our 
Ontology-Based Simulation Model Integration Method 
involves four inter-related activities:  (1) Assess 
Simulation Goals and Context, (2) Establish / Configure 
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Figure 3.  Example Tactical Air Combat Scenario 
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Baseline Models, (3) Perform Simulation Integration 
Assessment, (4) Determine Integration Information Flow 
Requirements, and (4) Generate Model Integration Advise. 

2.3 Simulation Integration Method 

The activities of the simulation integration method are 
described in greater detail in the following paragraphs. 

2.3.1 Assess Simulation Goals and Scope 

Preliminary and important steps in the development of the 
simulation models are to define the simulation modeling 
goals and the purpose, scope, and level of detail.  Access to 
an explicit representation of simulation objectives, scope, 
levels of detail, experiment plans, and performance criteria 
would assist (by providing “context”) with the downstream 
design and integration of the component simulation 
models.  In particular, the results of this assessment may be 
used later to perform in-context interpretations of the 
component simulation models, the simulation data, and the 
different ontology models. 

In our example simulation based training model 
scenario, the simulation goals and scope are expressed as 
follows: 
84
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1. Enhance pilot skills in the areas of Target 
Acquisition, Communications, Situational 
Awareness, Weapons Employment, and 
Electronic Warfare for 2V2 DCA missions.  
Instructor observations include assessment of 
pilot performance in critical areas such as airspace 
management, sensor employment, and post 
engagement status communication.  The 
performance factors (for pilot performance 
evaluation) include aircraft closure rate, weather, 
enemy electronic emissions, multiple targets, 
onboard weapons, and radar efficiency. 

2. The reference ontology models (in this case, the 
COI reference ontology is the “military combat 
simulation ontology”) is used to unambiguously 
interpret the terminology and concepts that are 
embodied within the description of the simulation 
goals (e.g., the meaning of the terms “Target 
Acquisition, Communications, Situational 
Awareness, Weapons Employment, and 
Electronic Warfare”). 

2.3.2 Establish and Allocate Model Requirements 

The next simulation activities are (1) determine the 
simulation modeling requirements and (2) allocate the 
requirements to the different component models within the 
simulation federation.  In our example, the overall combat 
10
mission functions may be decomposed into (a) the Friendly 
Aircraft combat functions, (b) Enemy Aircraft combat 
functions, and (c) the Combat Environment functions.  An 
IDEF0-based representation of the functional requirements 
(for the example scenario) is shown in Figure 4. Perform 
Simulation Integration Assessment 
Simulation integration assessment involves four inter-
related activities: (1) Perform Process Mismatch Analysis, 
(2) Perform Object Mismatch Analysis, (3) Perform 
Abstraction Analysis, and (4) Perform Data Mismatch 
Analysis.  These activities are described in the following 
subsections.  

2.3.2.1 Perform Process Mismatch Analysis 

This activity identifies simulation integration and 
composability issues that arise because of inter-process 
mismatches.  The analysis is performed across multiple 
processes in simulations targeted for integration.  Multiple 
types of process comparisons have been developed, 
including the comparisons described in the following list. 

1. Input – Output Inconsistencies: if the output of 
activity A is input to B, then there should be a 
precedence between A and B.  If there is a 
precedence relationship between B and A, then 
the two information pieces (object dependencies 
and precedence) contradict each other.  
Figure 4.  Example Functional Requirements Analysis – an Important Step in Federated Simulation Model Design 
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2. Missing inputs: any input to an activity should 
either be produced by some other activity in the 
process or is an input to the process itself 
(external input).   Here the inputs necessary for a 
given activity are calculated to be the inputs 
required for each task in the activity minus the 
objects produced internally within the activity. 

3. Unused outputs: any object produced by an 
activity in a process should either be consumed by 
some other activity or should be the goal or 
desired output of the process itself (output of the 
process).   

4. Rate mismatch:  the rate of flow of “flow objects” 
out of a given activity must be compatible with 
the rate at which a downstream activity is 
expecting flow object arrivals.  

5. Infeasible resource allocations: the sum of 
allocation of resources to the component model 
activities must be less than or equal to the overall 
model resource availability. 

Figure 5 shows a detailing of our example scenario 
that illustrates the information exchange between two 
combat simulation tools.  The illustration also identifies the 
types of data that must be exchanged in order to simulate 
the scenario.   

Suppose that we use Simulation “Tool 1” to simulate 
the dynamics of multiple aircraft and Simulation “Tool 2” 
to mimic the performance of a ground based radar in the 
108
emerging scenario.  Assume that several aircraft are 
airborne with friendly Blue aircraft and enemy Red 
aircraft.  Suppose also that a friendly ground station is 
tracking various aircraft through radars that ultimately 
influences the strategy employed by Blue force in 
combating the Red force.  In this example, Tool 1 
simulates the Red and Blue forces, while Tool 2 simulates 
the Ground Based Radar system.  Initially the Red force is 
outside the range of the ground based radars and hence the 
Blue force is operating without the knowledge of the 
whereabouts of the Red force.  In time, as the Red force 
gets closer it becomes visible to ground based radar.  The 
radar tracks both Blue and Red aircraft. Therefore, it is 
initially tracking all the Blue force aircraft as they move 
within range.  As soon as the Red aircraft become visible, 
they are also tracked and their position and heading 
information are dynamically conveyed to Blue force.  The 
dynamic information updates enable the Blue force to react 
in an appropriate manner as it engages the Red force in 
combat. 

The process mismatch analysis information for the 
above scenario is illustrated in Figure 6.  This example 
illustrates the types of mismatches that might occur as the 
Blue aircraft, the Ground Based Radar, and the Red aircraft 
communicate with each other during the simulation 
execution.  In particular, the example shows mismatches 
between the following attributes:  (1) Coordinate_System, 
(2) Time_Unit, (3) Distance_Unit, (4) Time_Step_Value, 
and (5) Reference_Frame. 
Figure 5.  Dynamic Information Exchange in a Federated Air-To-Air Combat Simulation Scenario 
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Figure 6.  Process Mismatch Analysis Example 
Ontological analysis helped facilitate the process 
mismatch analysis techniques described earlier in this 
section.  In particular, the ontology mappings between 
multiple ontolologies identified the semantic and 
terminological differences of the information represented 
in the simulation process models. 

2.3.2.2 Perform Object Mismatch Analysis 

This activity identifies simulation integration issues that 
arise because of simulation object mismatches.  This is 
accomplished by performing comparative analyses of the 
objects that reside within the different simulation  models. 
We have developed different types of comparative analysis 
techniques including (1) Syntactic Analysis, (2) 
Topological Analysis, (3) Lexical Semantic Analysis, (4) 
Compositional Semantic Analysis, and (5) Information 
Fusion.   
 The above example illustrates the mismatches in the 
terminology and semantics of multiple Radar ontologies.  
Natural Language Processing (NLP)-based semantic 
analysis techniques are used to interpret and compare the 
text within the “Description” fields shown in the figure. 
 Perform Abstraction Analysis This activity will 
perform abstraction level mismatch analysis to (1) identify 
simulation integration issues that arise because of multiple 
levels of abstraction and (2) to determine information flow 
requirements between simulations that are at different 
levels of abstraction.
 The level of abstraction of a model determines the 
amount of information that is contained in the model 
(Benjamin et. al 1998).  The quantity of information in a 
108
model decreases with the levels of abstraction.  Thus, a 
“low level abstraction” model contains more information 
than a “high level abstraction” model.  To illustrate, 
consider the simple example shown in Figure 7.  Model M 
transforms Input I to Output O.  A decomposition of M 
into M1, M2, and M3 shows a detailing of input – output 
transformations that is hidden at the more abstract level.  
Thus, I1, I2, and I3 are transformed by M1, M2, and M3 to 
O1, O2, and O3, respectively, at the “lower” level of 
modeling abstraction.  This shows how the quantity of 
information contained at the lower level is more than at the 
higher levels.  Therefore, it is convenient to think of 
abstractions as a mechanism for selectively “hiding” 
information. 

M1

M2

M3
I3

I2

I1

O2

O3
O1

M
I O

Abstract

Detailed

Figure 7.  Abstractions in Modeling 
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Our abstraction analysis is used with different types of 
models: (1) Process Models, (2) Ontology Models, and (3) 
Information Models.  

An essential ingredient of abstraction analysis is 
ontology-based reasoning.  The focus Community of 
Interest (COI) Ontology Reference Model and the 
mappings between the COI ontology and the different 
component simulation tool ontologies are used to (1) 
interpret and (2) disambiguate (at the semantic level) the 
concept descriptions within the multi-level modes.  We 
have designed several “abstraction analysis rules” that are 
used for the ontology-based abstraction analysis.  These 
rules are described below. 

Consistency with respect to mean: checks whether 
the abstraction parameter (e.g., time taken) is the same, on 
average, across different levels of abstraction.  This 
involves identifying the beginning and the end of a given 
process and then navigating through each activity to 
calculate the total processing time.  

Consistency with respect to variance of process 
duration: checks whether the variation in the abstraction 
parameter (e.g., time taken) is the same across multiple 
levels of abstraction. This involves calculating the variance 
of the parameter, performing F-tests for equality of 
variances, etc. 

Object definition consistency (omission): checks for 
differences in object specifications across different levels 
of abstraction.  This involves identifying objects in the 
detailed model that are not defined in the high-level model.   
This also involves evaluating object definitions/properties 
from the ontology models. 

Object definition consistency (substitution): checks 
for differences in object specifications across different 
levels of abstraction. An object in the detailed model may 
exist in the high-level model but may be known by a 
different name, or may be a generalization. For example, 
the detailed model may distinguish different types of 
fighter planes but the high-level model may refer to all of 
them by one name.  Again, this involves evaluating object 
definitions/ properties from the ontology models. 

Variable unit mismatch: This rule checks if the 
variables used in the two models to be integrated are 
consistent with respect to units. Detailed models 
sometimes use a finer unit of time (e.g., hours or minutes 
instead of days or weeks).  

2.3.2.3 Perform Data Mismatch Analysis 

This activity identifies simulation integration issues that 
arise because of simulation data mismatches.  This activity 
focuses attention on the data models used to represent 
information within the component simulation tools that are 
part of the federation.  The data model representations 
covered by our mismatch analysis include (1) the Unified 
Modeling Language (UML) and (2) the Entity Relationship 
(ER) modeling language.  The data mismatch analysis 
10
results are used to (1) diagnose potential simulation 
integration issues and (2) determine simulation integration 
(inter-tool) information flow requirements. 

2.3.3 Assess and Harmonize Mismatch Analysis 
Results

The mismatch analysis results from the (1) process, (2) 
object, and (e) data perspectives are harmonized.  The 
results of this activity are used to (1) mediate the 
information flows between the component simulation tools 
through mismatch resolution and (2) determine (execution-
time) information exchange requirements between the 
component simulation tools.  We have implemented an 
Ontology-Driven Translation Generation technique that 
uses the inter-tool ontology mappings to automate the 
generation of translators between the component 
simulation tools (see Benjamin et. al. 2006a). 

3 SOLUTION APPLICATION EXAMPLE 

We have designed a solution application framework that 
provides automated support for the simulation integration 
method.  The solution is called the Ontology-based 
Simulation Integration Framework (OSIF) (Figure 8).  
OSIF provides a “visual programming environment” for 
rapidly composing, building, and maintaining federated 
simulations. 

Central to the OSIF solution concept are (1) OSIF 
Model Libraries and (2) Reference Libraries.  The “OSIF 
Model Libraries” contain template models that encapsulate 
structural and behavioral information that will allow for the 
rapid composition of simulation from re-usable component 
parts.  The modeling procedure will involve selecting 
appropriate templates, editing the templates, and 
composing complex models by connecting multiple 
components together.  The model libraries will include 
ontology templates, process (behavior) templates, 
information meta-models, design patterns, and example 
simulation models.  The “Reference Libraries” refer to re-
usable and extendible “domain models,” including 
reference ontologies, reference process models, and 
reference information meta-models.  The reference 
libraries will provide a mechanism for composing and 
integrating (at the semantic level) external simulation 
models and tools from other environments / vendors.  The 
model Composition Workspace is used to browse and edit 
the model libraries and provide a graphical user interface 
for M&S application composition.  The Composability 
Assessment Tools (CAT) are invoked to (2) diagnose 
mismatches between candidate models that are to be 
integrated and (2) generate model reconfiguration advice to 
revise model library components or candidate new models 
that need to be integrated into the OSIF.  The Ontology 
Driven Translator Generator is used to generate translator 
code between external models / tools and the OSIF. 
88
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Figure 8.  OSIF Conceptual Architecture 
4 POTENTIAL BENEFITS 

The principal short-term benefit of the solution described 
in this paper is the significant reduction in time and effort 
needed for developing and deploying distributed 
simulation applications.  Other important benefits are (1) 
significant increases in the quality of information sharing 
and communications for distributed modeling and 
simulation applications, and (2) significant reductions in 
the time and effort for semantic knowledge sharing, 
communication, and semantic integration for modeling and 
simulation applications.  We are currently working on 
designing and configuring multiple demonstration 
applications of this research that will facilitate the 
development and execution of distributed military 
simulations to support Simulation Based Acquisition.
Longer term, we anticipate that this solution will provide a 
sustainable mechanism for building simulations that 
interoperate and share information at the semantic level.  
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