
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

REPRESENTATION AND SIMULATION OF STOCHASTIC PETRINET MODELS USING XPNML

Hyunsoo Lee
Bikram Sharda

Amarnath Banerjee

Department of Industrial and Systems Engineering
3131 TAMUS

Texas A&M University
College Station, TX 77843, U.S.A.
ABSTRACT

The paper presents an extensible Petri Net Markup Lan-
guage (xPNML), which is an extended version of PNML.
The xPNML format overcomes limitations associated with
PNML structure for simulation and analysis of stochastic
Petri nets. In addition, the proposed format supports modu-
lar concepts for creating specific models (for example, a
module for machine operation including working, failed
and repair states). These modules can be used as templates
and exchanged among different net models. The paper
provides the ontology of xPNML model and overview of
its JAVA based implementation for simulation and analy-
sis of stochastic Petri nets.

1 INTRODUCTION

Petri nets provide a graphical and mathematical frame-
work for understanding systems that are characterized by
distributed, parallel, concurrent and non determinis-
tic/stochastic attributes (Murata 1989). Over the years, dif-
ferent variants of Petri nets (such as stochastic Petri nets,
colored Petri nets (Jensen 1997) have been developed, and
applied in areas such as distributed systems, manufacturing
system modeling and control.

Today, there are more than 70 different tools available
for modeling and analysis of different types of Petri nets.
One of the major problems with these software is lack of a
common medium to integrate the salient features of each
software. For example, there is no standardized file format,
by which a user can create a model in one tool, ana-
lyze/evaluate its properties in another tool. In addition,
with the development of such a standardized medium, the
information can be shared with different cross functional
groups at different geographical locations, who can work
on specific issues in Petri nets modeling (Billington et al.
2003, Weber 2002).

Another problem associated with Petri net modeling is
the state space explosion problem and lack of modular
10631-4244-1306-0/07/$25.00 ©2007 IEEE
concepts. Petri net models become very complex even for
simpler systems, and also become difficult to comprehend
as number of states grow. To overcome this problem, sev-
eral new variants of Petri nets (Chung-Hsien 2005, Jensen
1997) have been suggested. One of the simpler alternative
to this problem can be use of modular concepts as used in
discrete event simulation tools such as ARENA
<http://www.arenasimulation.com>. Modular
concepts can help a great deal in creating abstract models
for understanding the system while each module detail can
provide information about individual subsystems in the
model.

To address some of these issues, an XML based Petri
Net Markup Language (PNML)
<http://www2.informatik.hu berlin.de/to
p/pnml/about.html> was developed as a de-facto
standard for modeling Petri net models. This provides a
standardized medium for creating Petri net models which
can facilitate information sharing among different software
tools. Despite being a good interchange methodology for
Petri net definition, PNML has certain limitations.

PNML is centered around Petri net model creation in a
standardized format that can be used by other software
tools. However, it does not provide any information about
model simulation and analysis. In addition, the PNML
schema does not provide a modular method for creation of
Petri net models.

To overcome these limitations, we propose an exten-
sible Petri Net Markup Language (xPNML). xPNML
builds upon the concepts of PNML, and adds a schema for
simulation and analysis. In addition, xPNML provides a
modular concept which aids in developing simpler and eas-
ier to comprehend Petri net models. The proposed schema
is applied for stochastic Petri nets and is tested on a JAVA
based Petri net simulator.

In this paper, we describe the ontology of xPNML and
demonstrate how simulation and analysis information can
be represented and transferred. In addition, the paper

Lee, Sharda and Banerjee
shows how the proposed approach can be used for stochas-
tic Petri net models.

2 BACKGROUND AND LITERATURE REVIEW

2.1 Petri nets

Petri net is a directed bipartite graph developed by Carl A.
Petri in 1962. Since then, several new extensions such as
colored Petri nets, stochastic Petri net, Distributed Agent
Oriented Petri nets have been developed and applied in
multitude of areas ranging from distributed systems, com-
puter architectures, neural networks and manufacturing
systems modeling. Readers are suggested to refer to (Mu-
rata 1989, Zhou 1999, Al-Jaar 1990, Baccelli F. 1994) for
more details on Petri nets and their applications.

Figure 1 shows a FMS cell which consists of 2 mate-
rial processors (MP), 1 material hander (MT) and 2 Mate-
rial transporters (MT). The control sequence in this cell can
be represented by Petri net model shown in figure 2. The
Petri net model can represent precedence relationship be-
tween entities, and represent structural interaction of un-
predictable, concurrent and asynchronous events. The Petri
net model can then be used to identify bottlenecks and con-
flicting situations in FMS cell.

Figure 1: FMS cell.

Figure 2: Petri net model for Figure 1.

In stochastic Petri nets (SPN), the time taken for tran-
sition/place firing follows a probability distribution. For
example, in figure 2, the firing time for transition T9 repre-
sents time for processing the part on Machine_2, and this
time can be represented stochastically by a distribution,
10
such as exponential or normal with appropriate parame-
ter(s).

2.2 Petri net Tools

Currently there are more than 70 stand alone software
packages for modeling, simulation and analysis of different
types of Petri nets. Some of these are proprietary software
packages and some are open source. The current trend in a
majority of these software is to use JAVA
<http://java.sun.com>. This is because JAVA
has several open APIs for mathematics and graphics in
2D/3D. As a result, most open source APIs of Petri net are
implemented in JAVA. Readers can refer to
<http://www.informatik.uni hamburg.de/T
GI/PetriNets/tools/quick.html> for a more
detailed list of the tools available, and their strengths and
weaknesses. Some of these tools provide good graphical
interface for creating the models while some provide good
interface for analysis. However, there is no single tool
which is comprehensive enough to provide a single model-
ing, analysis and simulation platform. In addition, each of
these tools have their own format for storing and retrieving
models, which makes it very difficult to interchange data
and information between these software.

PNML was developed to address some of these issues.
It provides a standardized interchange format which can be
used by different software. This helps in incorporating the
salient features of each of these software. The following
section describes the ontology of PNML.

2.3 Petri Net Markup Language (PNML) ontology

Petri Net Markup language (PNML) is an XML based in-
terchangeable format for Petri Nets (Billington et al.,
2003). This was originally developed as a file format for
Petri Net Kernel
<http://www2.informatik.hu berlin.de/to
p/pnk/index.html>. PNML allows flexibility to in-
tegrate different types of Petri nets and openness to future
Petri net extensions. The schema of PNML is defined in
Petri Net Type Definition (PNTD) and Conventions
Document. Using PNTD and Conventions Document,
PNML can be extended and represented in various forms.
 Figure 3 shows the overview of different parts of
PNML. The Meta Model represents the basic structure of
the Petri net. The Type Definition allows definition of new
Petri net types and Feature Definition allows definition of
new features in Petri nets. These three parts are fixed and
do not change. The Conventions Document is an evolving
document which contains the definition of standard fea-
tures of Petri nets, defined according to Feature Definition
interface. New features can be added to Conventions Doc-
ument and Petri net Type Definition and are maintained via
a common web site
64

Lee, Sharda and Banerjee
<www.informatik.hu berlin.de/top/pnml/>.
Currently, PT-Net and HLPNG model are being fixed as a
standard document.
 Figure 4 shows the detail of meta model of PNML.
PetriNetDoc meets the requirements of a PNML core mod-
el. The PetriNetDoc can contain multiple Petri nets (Petri-
Net) which are identified by a unique id and type. A Petri
net model can have multiple top level Pages, which con-
tain objects. The objects of a Petri net model are nodes and
arcs, which are identified by a unique id. The nodes of a
Petri net model are places (PlaceNode) and transitions
(TransitionNode). In addition, the objects have labels,
which are further classified in the form of attributes and
annotations. For constructing high level Petri net models,
PNML core model specifies Pages and Reference nodes.
The PNML model file also contains tool specific informa-
tion which is unique to each tool that creates a PNML file.

Figure 3: Overview of PNML parts (Billington et al. 2003)

Figure 4: PNML core model (Kindler et al. 2006)
10
 The current PNML structure does not provide any in-
formation about simulation and analysis of the Petri net
model. In addition, the information contained in object an-
notation (such as initial marking, timing) is represented in
a text format, which makes it difficult to use for simulation
and analysis purposes. This information is very important
for analysis of Petri net models. In addition, this informa-
tion should be easily searchable in a PNML file. These fea-
tures can be enabled if the schema is described in the meta
model as common entity associated with each object.

3 REPRESENTATION OF PETRI NET MODEL
USING XPNML

3.1 Considerations for simulation and analysis

As discussed in section 2, the information in PNML is
centered around how to build Petri net models. This sche-
ma does not provide important information that is required
for simulation and analysis of Petri net models, which lim-
its the potential use of PNML. The Petri net model file
should not only provide information about Petri net struc-
ture but also provide information about governing parame-
ters which are used for analysis and simulation. This in-
formation is critical to compare alternative models as the
results will be different despite same Petri net structure.
Providing simulation parameters gives a standard for com-
paring alternative models.
 xPNML focuses on how to represent Petri net model
as well as incorporate information for simulation and anal-
ysis. Generally this information can be classified into
simulation environment, simulation attributes and analysis
parameters. Table 1 describes this information in detail.

Table 1: Information for simulation and analysis
Classification Information requirements

Simulation
environment

- Number of replications
- Replication length
- Warm-up period
- Time units

Simulation
attributes

- stochastic distribution in places
and transitions

- Token information
- Invariants (transition/place)

Analysis
parameters

- Parameters for analysis such as
expected number of tokens ar-
rived, average firing time, aver-
age wait time, overall cycle time

 The analysis of Petri net model can be divided into
two parts. The first part deals with understanding structural
properties of Petri nets such as liveness, reversibility and
boundedness. These properties can be directly related to
identifying issues such as bottlenecks and conflicts in sys-
65

Lee, Sharda and Banerjee
tems. In order to perform such an analysis, the tool needs
to have information such as adjacency matrix or reachabil-
ity graph (Zhou 1999).This information can also be derived
from structure and tokens at each place/transition.
 The second part deals with simulation analysis to un-
derstand performance aspects such as mean time for firing
of transition/place and average number of tokens at a place.
In order to perform such analysis, the tool needs to know
simulation environment parameters such as number of rep-
lications, replication length and transition/place firing dis-
tributions. The proposed extended PNML (xPNML) ex-
tends the PNML ontology to facilitate capturing the
required information to calculate the desired performance
metrics of the system being modeled.

3.2 Schema for simulation and analysis

Figure 5 provides an overview of xPNML generation.
Unlike PNML, xPNML type definition is generated by
Common Type Definition (CTD) and User Defined Mod-
ule Definition (UDMD).
 In PNML model, user designs a specific Petri net us-
ing Petri Net Type Definition (PNTD). Specific PNTD is
referred implicitly by PNML meta model and has specific
type definition for a particular model. For example, to de-
sign a stochastic Petri net, modeler should use PNTD for
stochastic Petri net. Although there are many advantages
associated with such an approach, it has a major disadvan-
tage that it requires a specific PNTD before use. In addi-
tion, PNML’s PNTD cannot contain user defined schema
explicitly.
 The reason for introducing xPNML is to overcome li-
mitations associated with creations of PNTD. Although
PNTD concept is small and compact, it needs to be fixed as
a standard document before use. This makes broad use of
PNML difficult. In xPNML, type definition is separated
into common part and user defined part. Common part is
based on xPNML meta model. We call it as a Common
Type Definition (CTD). The other part is called a User De-
fined Module Definition (UDMD). As a result, the Type
Definition document is not needed to be fixed as a standard
document in xPNML.
1066
Figure 5: Overview of xPNML generation.

 xPNML’s type definition is made by CTD and UDMD.
CTD is not changed schema/definition but UDMD is chan-
geable schema/definition. These two definitions follow
XML Data type Definition (DTD). So, xPNML type defi-
nition is generated by xPNML definition generator auto-
matically. xPNML definition generator is a software mod-
ule which can merge two DTD files into one DTD file.
 This architecture provides a more powerful extension
than that of PNML. In PNML, the software has to refer to
each PNML Type Definition Document. So, before using
it, each PNML Type Definition should be fixed as a stan-
dard. This late process for standardization results in the he-
sitation for selecting PNML format in many Petri net tools.
 Figure 6 shows the process of generating xPNML file
with CTD. To generate xPNML, software only has to refer
to CTD standard document and optional UDMD. UDMD
does not need to be fixed as a standard. So, xPNML is a
more extensible structure than PNML. The xPNML type
definition generator makes xPNML Type Definition with
CTD and UDMD. In the process, xPNML type definition
generator checks the validity of UDMD. User can generate
specific Petri nets with their specific format, and xPNML
generator generates xPNML file with the corresponding
xPNML Type Definition.

Figure 6: xPNML file generation mechanism in software

Lee, Sharda and Banerjee
3.3 Modifications for simulation and analysis

xPNML extends PNML concept from design and modeling
mechanism to simulation and analysis mechanism. Gener-
ally, a user’s objective for using Petri nets are focused to-
wards using Petri nets as a tool for modeling, simulation
and analysis. Although PNML schema allows interopera-
bility of Petri net models among different users, it does not
allow specification of simulation information. Without
such an information, shared information becomes more
centered towards model sharing, but it can lead to misin-
terpretations as there is no common standard for comparing
alternative Petri net models. Simulation information pro-
vides a benchmark against which multiple models can be
compared. To prevent these misinterpretations and to ac-
count for simulation interoperability, xPNML includes
schema for simulation and analysis.
 Figure 7 shows the label entity in PNML model. The
label entity consists of annotation and attributes (Billington
et al. 2003) .

Figure 7: Label entity in PNML meta model (Billington et
al. 2003)

 Annotation describes information that is represented
along with the Petri net node in graphics window. This in-
cludes information such as name, markings and stochastic
information. The attribute information specifies the graphic
property such as color and styles. The detail information
about these entities is defined in Petri net type definition
(PNTD). This increases the size of PNTD document and
increases its complexity. Furthermore, most of the annota-
tion information is stored in text format, which is difficult
to use for simulation and analysis.
 To overcome these limitations, the Label entity in
xPNML is modified as shown in figure 8. The attribute
node consists of general information, marking information
and stochastic time information. The General information
consists of names and inscriptions. The Marking informa-
tion consists of number of tokens for places, or arc
weights. The TimeInfo consists of stochastic information
for firing of transitions. This information contains the type
of distribution and its parameter values. This information
will be used for simulation and analysis of Petri net mod-
els.
 Figure 9 shows the simulation parameters added in
Petri net meta file. The simulation parameters consist of
settings and analysis. The settings consists of simulation
environment parameters such as number of replications,
replication length. The analysis component provides in-
10
formation about structural analysis and simulative analysis
of Petri net model.

Figure 8: Label entity in xPNML meta model .

 Figure 10 shows an example xPNML file with simula-
tion parameters. A JAVA based software is being devel-
oped for editing xPNML file without professional xPNML
tools. If the user knows xPNML schema, s/he can easily
edit or modify the xPNML file. Also, the software supports
validation of xPNML file. The left windows shows the
structure of xPNML file shown in right window. For ex-
ample, to change value of number of steps, the user can
click value of number of steps entity in left window and
this value is automatically highlighted in right window.
This makes xPNML file editing simple and easy to update.

Figure 9: Simulation parameter entity in xPNML meta
model.

Figure 10: xPNML file with simulation parameters.
67

Lee, Sharda and Banerjee
3.4 Modifications for modularity of Petri nets

For designing complex models and to simplify Petri net
model structure, a modular concept is required. PNML
uses reference objects : Pages, Places and Transitions for
modular concept. An example of such a concept is CPN
tools developed by university of Aarhus
<http://wiki.daimi.au.dk/cpntools/cpnto
ols.wiki>. The xPNML extended module concept is
derived from PNML reference node concept and
ARENA’s modular concept
<http://www.arenasimulation.com>. While
PNML’s node is just for merging other sub net, ARENA’s
modules have specific purposes. For example, packing
modules in ARENA help users to design packing system
easily. This helps in creating modules which can be easily
imported and used in different Petri net models and thus
help in saving development time.
 The proposed xPNML meta model provides a schema
for creating Petri net modules. These can simplify the
structure of Petri net model and aid in easily understanding
Petri net properties. In essence, it is similar to a template.
For example, a machine template can represent all the
states of a machine condition such as working, repaired or
in failed state. There are certain advantages associated with
the use of modular concept in Petri net models:
- The complex models can be simply represented using

modular concept.
- The modular concept aids in reusability of small mod-

els across different Petri net models. For example, the
designers can create templates of machines, and then
use them in different Petri net models,

 There can be two different types of modules: sub Petri
net and sub object module. Sub Petri net module can be
used to represent the control logic of small systems within
a large system. On the other hand, the sub object module
can represent certain objects or resources, such as machine
within a Petri net model.
 In xPNML, a module can be defined in user defined
module definition (UDMD). UDMD is a type of XML Da-
ta Type Definition (DTD) and xPNML meta model has en-
tities for linking UDMD to xPNML meta model. Figure
11 shows the schema for modular concept in xPNML.
ModularPetriNet entity is for sub Petri Net modules and
ModularObject entity is for sub objects.
1

Figure 11: Schema for module concept in xPNML meta
model

3.5 xPNML meta model

Figure 12 shows the xPNML meta model. The model in-
cludes the simulation, analysis and modular implementa-
tion for stochastic Petri nets. As mentioned in section 3.1,
the label entity in xPNML meta model is modified with
stochastic and marking information. Depending upon the
type of stochastic Petri net (that is, Timed Place Petri net or
Timed Transition Petri net), the time information can be
added to each object (place or transition) and its parame-
ters can be defined. The marking information associated
with objects helps in the analysis of structural Petri net
properties.
 The simulation parameters are unique to each Petri net
file and they define the simulation aspects for each model.
This information can be used by tools for identifying the
parameters that are to be evaluated (for example, average
number of transitions fired, average number of tokens at
each place) and simulation settings such as replications,
replication length.

3.6 Tool design for xPNML

 Table 2 enlists some of the key requirements for a
good Petri net tool. The model should be able to import,
create and export xPNML based Petri net models. The
graphics editor for the tool should allow ease in model
building and verification. The tool should allow support for
various distributions in stochastic Petri nets. One of the li-
mitations with current tools is that they do not allow user
specific distributions. In addition, the tool should be able to
verify structural properties of Petri net models and provide
interactive simulation to understand the logic flow of in-
formation in the Petri net model. The tool should also al-
low discrete event simulation for performance evaluation
of models under consideration.
 Keeping these points in mind, a JAVA based xPNML
design tool is presented here.
068

Lee, Sharda and Banerjee
Table 2: Requirement for new Petri net tool
 Requirement and function

Common menu
- Interchangeable file format
(xPNML format)

Graphics editor
- Ease of model creation
- Modular method for Petri net design
- Easy to input and output files

Analysis

<Supported distributions>
- Continuous distribution
- Discrete distribution
- User defined distribution

<Invariant analysis>
- Transition and Place invariant

<Structural analysis>
- Deadlock, reachability analysis

S
I

M
U
L
A
T
I
O
N

Results

<statistical representation>
- table representation
- graph representation

<visualization>
- 2D based animation: token game ani-
mation
- 3D based animation

Extra - functions like workflow management
10
4 XPNML BASED PETRI NET DESIGN TOOL

Currently a new JAVA based Petri net design is being de-
veloped. The model will be fully compatible with xPNML
structure and will meet all the requirements mentioned in
section 3.
 The new tool is being developed by modifying Petri
Net Kernel (PNK) which is a JAVA based open source.
<http://www2.informatik.hu berlin.de/to
p/pnk/>. Figure 13 shows a snapshot of implementa-
tion stages for the tool. The tool allows creation of Petri
net models and their export in xPNML format. The XML
based interface allows visualization and modification of
the structure of Petri net model. The final xPNML file can
then be stored and used to visualize the changed Petri net
in the JAVA based tool.
 Currently, the tool supports xPNML based import, ex-
port and model creation. The tool also verifies the xPNML
syntax and displays any error messages. In addition, the
general xPNML based editor is developed based on Simple
API for XML (SAX) technology. The tool is currently be-
ing modified to enable modular concept and simulation for
stochastic Petri nets.
Figure 12: xPNML meta model
69

 and Banerjee
Lee, Sharda

5 DISCUSSION AND FUTURE WORK

An xPNML based file format for sharing and modeling of
Petri net model is developed. The format overcomes the
limitations associated with PNML format and extends the
structure to incorporate stochastic and simulation infor-
mation. The xPNML meta model has a schema for spe-
cific modules. With these modules, we can easily
generate complex Petri net models for specific problems.
As compared to PNML, xPNML does not need to make
and fix standard for type definition documents.
Currently a JAVA based xPNML tool is being developed,
which will import and export xPNML based Petri net
models. In addition, the model allows for checking of
XML syntax and displays the Petri net structure. The
1

model will be extended to simulate and analyze Petri net
properties such as deadlocks and conflicts.

The current JAVA based xPNML tool can be ex-
tended for 3D visualization purposes. The transition fir-
ings in the Petri net can be mapped with 3D operations in
a virtual environment. JAVA 3D can be a useful tool for
such implementation.

The current approach has been tested for stochastic
Petri nets and can be applied to colored Petri net models,
which will increase the complexity of the model. Cur-
rently, there are only a few tools that support colored Petri
nets.
Figure 13: Snapshots of xPNML based Petri net simulator
070

Lee, Sharda and Banerjee
REFERENCES

Al-Jaar, R. Y., and A. A. Desrochers. 1990. Petri nets in
automation and manufacturing. Advances in Automa-
tion and Robotics 2: 153.

Baccelli, F., Balbo, G., et al. 1994. Annotated bibliogra-
phy on stochastic Petri nets. Performance Evaluation
of Parallel and Distributed Systems - Solution Meth-
ods, O.J. Boxma and G.M. Koole, eds., CWI tract 105
& 106, Amsterdam, CWI 105: 25-44.

Billington, J., Christensen, S., et al. 2003. The Petri Net
Markup Language: Concepts, Technology, and
Tools. Eindhoven, Netherlands. Available via <
http://www2.informatik.hu berlin.de/
top/pnml/about.html> [accessed April 2,
2007].

Chung-Hsien, K., Han-Pang, H., et al. 2005. Separation
model design of manufacturing systems using the dis-
tributed agent-oriented Petri net. International Jour-
nal of Computer Integrated Manufacturing 18(2-3):
146-57.

Jensen, K. 1997. Coloured Petri Nets. Basic Concepts,
Analysis Methods and Practical Use. 2nd ed., Sprin-
ger-Verlag.

Kindler, E. 2006. Concepts, Status, and Future Directions,
Entwurf Komplexer Automatisierungssysteme, 35-55,
Germany. Available via.
<http://wwwcs.unipaderborn.de/cs/kin
dler/Publikationen/copies/PNML-
EKA06.pdf > [accessed June 22, 2007].

Murata, T. 1989. Petri nets: Properties, analysis and ap-
plications. Proceedings of the IEEE 77(4): 541-80.

Zhou, M., and K. Venkatesh. 1999. Modeling, Simula-
tion, and Control of Flexible Manufacturing Sys-
tems—A Petri Net Approach, World Scientific Pub-
lishing Company.

Weber, M., and E. Kindler. 2002. The Petri Net Markup
Language. Petri Net Technology for Communication
Based Systems. Available via <
http://www2.informatik.hu berlin.de/
top/pnml/about.html> [accessed April 2,
2007].

AUTHOR BIOGRAPHIES

HYUNSOO LEE is an Doctoral student in department of
Industrial and Systems engineering at Texas A&M Uni-
versity. He received his master’s degree from POSTECH,
Korea, and worked as a CAX/PLM consultant in
SAMSUNG for 5 years. His research interests are in
manufacturing simulation for lean manufacturing, artifi-
cial intelligent systems application and virtual manufac-
turing systems. His web page can be found via
<http://ise.tamu.edu/varl>.
107
BIKRAM SHARDA is an Doctoral student in depart-
ment of Industrial and Systems engineering at Texas
A&M University. His research interests are in the appli-
cation of Petri nets and Bayesian methods for uncertainty
representation in manufacturing systems. His web page
can be found via <http://ise.tamu.edu/varl>.

AMARNATH BANERJEE is an associate professor in
the department of Industrial and Systems Engineering at
Texas A&M University. He is an associate editor for the
International Journal of Services, Operations and Infor-
matics. His research interests are in virtual manufacturing,
simulation, image processing, real-time video processing,
augmented reality and human behavior modeling. His
web page can be found via
<http://ise.tamu.edu>.
1

