
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

ENABLING INDUSTRIAL SCALE SIMULATION / EMULATION MODELS

Michael Johnstone
Doug Creighton
Saeid Nahavandi

Intelligent Systems Research Lab
Deakin University

Pigdons Rd, Waurn Ponds
Victoria Australia
ABSTRACT

OLE Process Control (OPC) is an industry standard that
facilitates the communication between PCs and Program-
mable Logic Controllers (PLC). This communication al-
lows for the testing of control systems with an emulation
model. When models require faster and higher volume
communications, limitations within OPC prevent this. In
this paper an interface is developed to allow high speed
and high volume communications between a PC and PLC
enabling the emulation of larger and more complex control
systems and their models. By switching control of ele-
ments within the model between the model engine and the
control system it is possible to use the model to validate
the system design, test the real world control systems and
visualise real world operation.

1 INTRODUCTION

A 3D model coupled with Discrete Event Simulation
(DES) enables the creation of real world systems for visu-
alisation and analysis. With such powerful tools complex
systems can be modelled and a multitude of questions
asked about the system, questions ranging from analysis of
the system performance to “what if” scenarios. These
models can be made more valuable with the realisation that
they can be used to also test real world control systems.
Emulation, testing a control system via a computer model,
allows for the off line development of control programs
and testing of changes and numerous benefits detailed in
literature.
 In a complex system it may be desirable to test only
parts of the control system. Glinsky et al. (2004) in their
modelling of a hardware-in-the-loop system incrementally
moved elements from the model into the real world as they
become available. This same concept can be applied to
emulation models. Control of elements within the model
can be passed back and forth between the external control
10281-4244-1306-0/07/$25.00 ©2007 IEEE
system and the simulation engine, allowing testing of indi-
vidual parts of a control system or the entire control sys-
tem.
 Now with a 3D model of the system being controlled
by the real world control system a powerful visualisation
tool is available that can be used once the system is live.
Data from the control system can be used to drive the
model to represent what is occurring in the real world to
allow for monitoring of the system. The original model
created for validation of design or analysis can be used for
much more than just the original purpose.
 The paper is laid out as follows. Section 2 gives a re-
view of the previous work in emulation while section 3 de-
fines hybrid environment and how this was achieved. Sec-
tion 4 gives the results for testing carried out with the
interface defined in section 3, while section 5 gives a
summary of the work and suggests areas where this new
environment is suitable.

2 REVIEW OF PREVIOUS WORK IN
EMULATION

The objective of emulation, or soft-commissioning as it has
also been referred to as (Schludermann et al.
2000;Versteegt et al. 2002), is to connect actual real world
control systems to simulation models to test the operation
of those control systems (Schludermann et al. 2000;Schiess
2001;McGregor 2002). Successful emulation implementa-
tions have been achieved in varying fields, for example,
baggage handling systems (Rengelink et al. 2002) and ma-
terial delivery systems (Lebaron et al. 1998).
 Historically the testing of control systems was
achieved by connecting individual test or mock-up devices
to elements of the control system. This method of testing
required considerable time and resources and failed to test
the system as a whole (Whorter et al. 1997;Schludermann
et al. 2000). Due to this lack of adequate testing options

Johnstone, Creighton and Nahavandi
(Rengelink et al. 2002) stated that the quality of control
software was adversely affected, as was lead time to de-
liver a correctly functioning system. Auinger et al. (1999)
describes four methods for testing control systems using a
combination of simulation models and real world objects;
traditional testing where control and hardware are real,
emulation where control is real and hardware is simulated,
reality in the loop where the control is simulated and hard-
ware real and finally off-line testing where both control
and hardware are simulated. Versteegt et al. (2002) took
these methods further whereby the control logic in the
emulation test was simulated. To avoid a “credibility gap”
(McGregor 2002) with this approach, the actual software
program used in the control simulation is the software pro-
gram used to control the real hardware. This approach is
similar to that of a PLC simulator as used in McGregor et
al. (2001), and as it uses the actual control software, the
problems identified by Rengelink et al. (2002) in regard to
separate control programs for emulation and real world
control are negated.
 Emulation in this form has been used successfully
with real benefits to both integrators and customers (Le-
baron et al. 1998;Mueller 2001). Time and money can be
saved with the use of emulation, debugging controller logic
can found in the lab rather than on the shop floor, saving
on on-site install costs and lost production (Schiess 2001).
Re-implementing control logics is not required as you are
using the actual controller system (Lebaron et al.
1998;Vedapudi 2001). Other benefits include complete
control system testing, a training environment for staff, re-
duced installation risk (McGregor et al. 2001), increased
product quality and reliability, reduced testing time and
faster debug time (Whorter et al. 1997), and the ability to
test without disturbing production (Jacobs et al. 2005).
 Simulation and emulation models share a 3D represen-
tation of the system being modelled, are accurate and con-
sist of realistic modelling objects. However the differences
between the two define the role of emulation. Simulation
models test different solutions to achieve a desired result at
high speed while the aim of an emulation model is to test a
control system in real time (McGregor 2002). Emulation is
concerned with the control of a system and the interface to
the controlling system whereas a simulation models the
behaviour a system. In order to create the emulation model
two things need to be decided on, an interface to the con-
trol system from the simulation model and a communica-
tion protocol. (McGregor 2002) used OPC (OLE Process
Control) as the communication protocol and wrote an OPC
client to embed into the simulation model. Since then (Ja-
cobs et al. 2005) wrote directly to the PLC over a TCP/IP
network in order to preserve the real world configuration
of the control system. The time taken for communication
between the model and control system will differ for each
different communication methodology, (Lebaron et al.
1998) states the need to be careful with time difference be-
102
tween the two elements, ideally the faster the communica-
tion method the better, as this will allow for more data and
larger models to be emulated. The aspects of an emulation
model to take special interest in are the interface to the
control system and the frequency and volume of data trans-
ferred.
 Rengelink et al. (2002) modelled a baggage handling
system, BHS using a PLC as the control system. A serial
profibus connection was implemented between the PLC
and the 2D model and up to 70 conveyors were being con-
trolled at a time. The authors state that improvements need
to be made to the model visualisation, multiple threads to
share processor loads and the speed of data transfer, among
others, to improve on the overall abilities of the emulation
model.
 In the work by Jacobs et al. (2005), the MODBUS
protocol running over TCP/IP was used to connect the
simulator and the control system, a PLC. This provides a
medium for improved data transfer over serial profibus
mentioned previously. A section of memory was used as a
buffer between the two elements to reduce communication,
but volume of data was not mentioned. Data transfer oc-
curred within with a period 30 milliseconds and this period
was logged to later verify it was met. This period was
achieved with the use of multiple threads, communication,
simulation and animation threads. This emulation model
has the framework for improved data transfer, volume and
speed, via the use of Ethernet between the model and PLC
and makes use of threads to share processor load in order
to meet time deadlines. The model graphics are once again
2D, therefore taking similar ideas to a different simulator it
would be possible to have 3D model being controlled, via
Ethernet, by a PLC. The size of this model and the period
of data transfer would determine the size of the model able
to be emulated.
 Versteegt et al. (2002) developed an emulation model
of AGVs in an automated material handling system. Com-
munication in their model was based on a poll to the com-
munication buffer every 10msec to check for any changes
from the control system. The authors also found that by us-
ing asynchronous communication that they were able to
improve the performance of the emulation model. However
they are still unsure as to how well their particular imple-
mentation would scale for larger systems.

3 ENVIRONMENT OVERVIEW

In this section we will describe the various elements in the
environment using a Baggage Handling System (BHS) as
an example. In our environment we have the simulation
model running on a PC, a PLC acting as the control system
and the interface between the two. Time issues, sequences
and control strategies are also described.
9

Johnstone, Creighton and Nahavandi
3.1 Simulation Environment

The simulation environment is made up of elements such
as conveyors, automatic tag readers (ATR), explosives de-
tection systems (EDS) machines, etc, see Figure 1. These
elements are controlled via signals. To simulate a convey-
ors control you would typically use three signals, one input
signal to control the motor and two output signals, a pin
wheel to measure belt movement and a photo eye to detect
bags moving along the belt. A run time parameter is used
to define if the element is to be controlled by the simula-
tion engine or external PLC. When the element is con-
trolled by the PLC the simulation engine generates the out-
put signals and responds to the input signals. Based on the
output signals the PLC logics decide when to change the
input signal. When the element is controlled by the simula-
tion engine, the signal responses and generation are the
same however there are additional logics used to respond
to output signal changes to control the input signal, ie the

function performed by the PLC is simulated.

Figure 1: An image of a BHS showing EDS machines,
ATRs and conveyors.

3.1.1 Threads

As it takes time to exchange data between the model and
the PLC the model can operate in 2 distinct ways. Firstly
by pausing and waiting for completion of the data ex-
change or secondly, allowing a separate process to handle
the data exchange while the model continues processing.
The former option does not provide the control delay nor-
mally seen in the real world, mentioned previously, and re-
quires the simulation to run faster than real time to make
up for the delay in waiting for the data exchange to com-
plete. The latter allows the simulation to run at a constant
rate and provides the control delay. Threads are used to
make the data exchange asynchronous.
103
 The simulation has a main application thread that uses
worker threads to exchange date with the PLC. At every
desired time interval a read or write is sent by the main
thread to a worker and polls for the workers completion.
The worker thread communicates with the PLC and upon
completion provides the data to the main thread where the
data is acted upon. Currently there is a limitation set in the
simulation software that does not allow a worker thread to
update elements within the model.

3.1.2 Time

The simulation model is required to run in real time as this
is what the PLC is running in. So to slow down the simula-
tion clock a PID controller was used. The controller adjusts
simulation update rate, the rate at which graphics are up-
dated. The smaller this value the slower this simulation
runs.

3.2 Control Environment

A PLC forms the main component of a BHS control sys-
tem. Usually more than one PLC is used for a variety of
reasons such as redundancy and load. PLCs run ladder
logic programs that modify outputs based on the inputs.
Continuing with our example of a conveyor, the inputs
would be signals from the photo eye and pin wheel, out-
puts would be the signal to the motor.
 PLC execution is sequential. It runs programs, re-
freshed inputs and outputs and responds to external com-
mands. This loop is executed as quickly as possible. One
loop is called the cycle time. Cycle time defines the time it
will take the PLC to respond to changed input conditions
and also determines the time taken to reply to external
commands. The cycle time must be lower than that of the
cycle time required by the pin wheel, 25ms, or else the
PLC will miss pin wheel events and not correctly track
conveyor movement.

3.3 The Interface

The interface is depictured in Figure 2. Here a PC, con-
nected via Ethernet to the control system, is running the
model. The PLC is running a ladder logic program to con-
trol the elements in the real world that have been modelled
on the PC. The model connects to the PLC to exchange
data, eg writes photo eye and pin wheel information and
reads motor information. The model updates the simulation
according to the information read from the PLC. The PC
and the PLC are connected via Ethernet. The first protocol
tested between the two was OPC and subsequently another
protocol was tested due to the performance of OPC.
0

Johnstone, Creighton and Nahavandi
Figure 2: Model to PLC Interface

3.3.1 Communication Protocols

OPC is made up of an OPC Server and Client. The OPC
server software was provided by the PLC manufacturer.
The server communicates with the PLC over Ethernet and
provides a software interface for clients to connect to in
order to read or write data to or from the PLC. The server
software can also provide access to a PLC simulator in
place of a real PLC. The OPC client software was written
and embedded into the model, see Figure 3. As the model
ran, the client would send/receive data from the OPC
server.

Figure 3: OPC communications overview

 Initially a PLC Simulator was used with OPC. When a
signal was changed by the PLC the OPC server would
cause an event within the client, and the model would up-
date as appropriate. To send data to the PLC the client ini-
tially used a synchronous write command. Here the simula-
tion would pause as it waited for the write command to
receive a write successful response from the OPC server.
 When a simple model containing several elements was
run, the model ran slower than real time due to this syn-
chronous data exchange. The PLC simulator was replaced
by a real PLC and the model run, again the model could
not run at real time. The write command was changed to an
asynchronous command and the simulation run. The simu-
lation was able to run at real time however there was a de-
lay between the PLC changing a signal and that change be-
ing reflected in the model. This delay was due to an update
rate parameter built into OPC that defined the smallest
time interval which a signal could be updated. This mini-

PC

EtherNet

PLC
1031
mum value of the update rate was 100ms, therefore OPC
could not accommodate a pin wheel signal that changes
every 25ms.
 A final test of OPC was to increase the number of
elements in the model. As more elements were added to
the model the OPC server started to lag. It was found that
the OPC server would write data to the PLC one signal at a
time. Therefore as the model increased the OPC server
would queue the writing of signals to the PLC.
 As the PLC had Ethernet capabilities, investigation
into communicating directly with it was carried out via the
use of a TCP or UDP socket, where we could hopefully
write faster than OPCs 100ms and in greater volume. The
protocol used to communicate over sockets by the PLC is
FINS, which was the communication protocol used be-
tween the OPC server and the PLC. FINS allows for indi-
vidual or bulk read/writes to/from the PLC, so where the
OPC server would write to ten consecutive inputs ten indi-
vidual times, with FINS it could be done with one write
command if the five items to be written were in consecu-
tive in memory locations., this is show in Figure 4.
 The FINS protocol over a socket provides the ability
to update many signals quickly if they are consecutive in
the PLC memory, It was possible to read or write 1024
signals within 3.5ms.

Figure 4: Pictorially showing the reduction in communica-
tion using FINS versus OPC.

3.3.2 Sequence of Events

As we are interested in the status of signals over time the
model must be continually reading and writing data to and
from the PLC. To achieve this the model loops through the
following sequence. The loop has a period of 10ms to
match PLC cycle time.
 The model sequence:

1. Determine what data is to be sent
2. Use thread to send it
3. Use thread to read data from PLC
4. Sleep for a typical amount of time and then start

to poll the read thread for completion.
5. Upon completion take action
6. Sleep for remainder of cycle time

Johnstone, Creighton and Nahavandi
3.4 Control

By varying the employed control strategy differing envi-
ronments are achieved. When all control is handled by the
simulation engine we have a simulation model where the
normal analyses can be performed and “what if” questions
answered. This is the first and often the only purpose given
to a detailed model of a system.
 When control is passed to the PLC we have an emula-
tion model where the controller logic can be verified off-
line using data input from the simulation model.
 If the write commands are disabled in the simulation
model and control is still with the PLC we have a visuali-
sation model where we can determine actions to take based
on data received from the PLC. In this instance additional
steps have to be performed in the model like creating bags
when the PLC detects them as opposed to using previous
methods.

4 TESTING

The interface was tested by reading and writing from the
simulation model to the PLC and capturing the packets us-
ing packet capturing software. The packet capture records
the transmission times of the packets, enabling the re-
sponse time of the PLC to be determined.
Conclusion
The benefits of using an industry standard for communica-
tion between a PC and a PLC are clear. OPC provides this
standard, enabling the one PC software application to
communicate with multiple PLC brands provided the PLC
company has an OPC server to suit. However when at-
tempting to emulate a higher number of connections to the
PLC or emulate at high speed problems are encountered.
By communicating from PC to PLC directly faster and
higher volume communications can be achieved. The inter-
face developed enables high speed communication allow-
ing emulation of larger models.

Read Time 1024 Signals

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001

Read Sequence Number

T
im

e
 m

s

Figure 5 shows the time it took the PLC to respond to
5000 read commands that requested the status of 1024 sig-
nals. The average time was 3.03ms ± 5us. Similar times
were recorded for writing to the PLC. These results com-
pare favorably with past response times in literature, Ja-
cobs et al. (2005) has a requirement for a 30ms cycle time,
10
while Versteegt et al. (2002) were polling a communica-
tions buffer every 10ms.
 The testing confirms that it possible to read from the
control system enough information to run a large model. If
we were to read the status of the 3 signals used in conveyor
control as described in section 3.1 then we would be able
to interrogate the status of 340 conveyors. The data re-
quested from the PLC is required to be contiguous with the
memory structure of the PLC so it can be quickly obtained
with one read command, or not spaced at either ends of the
PLC structure so that the entire memory structure is re-
quired to be read. In the case where the data required is not
contiguous it is up to the PC program to isolate the re-
quired data from the response packet from the PLC.

5 CONCLUSION

The benefits of using an industry standard for communica-
tion between a PC and a PLC are clear. OPC provides this
standard, enabling the one PC software application to
communicate with multiple PLC brands provided the PLC
company has an OPC server to suit. However when at-
tempting to emulate a higher number of connections to the
PLC or emulate at high speed problems are encountered.
By communicating from PC to PLC directly faster and
higher volume communications can be achieved. The inter-
face developed enables high speed communication allow-
ing emulation of larger models.

Read Time 1024 Signals

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001

Read Sequence Number

T
im

e
 m

s

Figure 5 PLC time to respond to a read command request-
ing 1024 signals

 With the ability to read data from a PLC at high speed
it is possible to drive a model purely to visualise what is
occurring in the real world. This application would enable
a model that was used during the design process to prove
ideas and answer “what if” questions and also used to test
and develop control systems, to be used as monitoring tool
during production.
 Further work in this area would be to test against more
PLC manufacturers to test that high speeds can be achieved
with them also.
32

Johnstone, Creighton and Nahavandi
ACKNOWLEDGMENTS

This work was funded by the Australian Research Council.

REFERENCES

Auinger, F., M. Vorderwinkler and G. Buchtela 1999. In-
terface Driven Domain-Independent Modeling
Architecture For "Soft-Commissioning" And "Re-
ality in the Loop". In Proceedings of the 1999
Winter Simulation Conference. 798-805. Squaw
Peak, Phoenix.

Glinsky, E. and G. Wainer 2004. Modeling and Simulation
of Hardware/Software Systems with Cd++. In
Proceedings of the 2004 Winter Simulation Con-
ference. 198-205. Washington DC.

Jacobs, P. H. M., A. Verbraeck and W. Rengelink 2005.
Emulation with Dsol. In Proceedings of the 2005
Winter Simulation Conference. 1453-1462. Or-
lando, FL.

Lebaron, H. T. and K. Thompson 1998. Emulation of a
Material Delivery System. In Proceedings of the
1998 Winter Simulation Conference. 1055-1060.
Washington DC.

McGregor, I. 2002. The Relationship between Simulation
and Emulation. In Proceedings of the 2002 Winter
Simulation Conference. 1683-1688. San Diego,
CA.

McGregor, I. and R. A. J. Walters 2001. "Emulation Over-
view." Via
http://www.automod.de/media/doc/Mcgregor.pdf
[accessed June 8, 2007]

Mueller, G. 2001. Using Emulation to Reduce Commis-
sioning Costs on a High Speed Bottling Line. In
Proceedings of the 2001 Winter Simulation Con-
ference. 1461-1462. Arlington, Va.

Rengelink, W. and Y. A. Saanen 2002. Improving the
Quality of Controls and Reducing Costs for on-
Site Adjustments with Emulation: An Example of
Emulation in Baggage Handling. In Proceedings
of the 2002 Winter Simulation Conference. 1689-
1694. San Diego, CA.

Schiess, C. 2001. Emulation: Debug It in the Lab - Not on
the Floor. In Proceedings of the 2001 Winter
Simulation Conference. 1463-1465. Arlington,
Va.

Schludermann, H., T. Kirchmair and M. Vorderwinkler
2000. Soft-Commissioning: Hardware-in-the-
Loop-Based Verification of Controller Software.
In Proceedings of the 2000 Winter Simulation
Conference. 893-899. Orlando, FL

Vedapudi, S. 2001. "Using Mcm to Do Emulation of a Car
Assembly Line." Via
http://www.automod.de/media/doc/Vedapudi.pdf
[accessed June 8, 2007]
103
Versteegt, C. and A. Verbraeck 2002. The Extended Use of
Simulation in Evaluating Real-Time Control Sys-
tems of Avgs and Automated Material Handling
Systems. In Proceedings of the 2002 Winter Simu-
lation Conference. 1659-1666. San Diego, CA.

Whorter, S. M., B. Baker and G. Malan 1997. Simulation
System for Control Software Validation. In 1997
SCS Simulation Multiconference, Atlanta.

AUTHOR BIOGRAPHIES

MICHAEL P. JOHNSTONE is a PhD. Candidate at De-
akin University. His research focuses on the use of discrete
event simulation to analyse complex networks. He received
a BE (Honours) in Engineering at Deakin University. Mi-
chael has several years working in IT and as a simulation
consultant. His email address is <mpjoh@deakin.edu.au>.

DOUGLAS C. CREIGHTON is a researcher in the
School of Engineering and Technology at Deakin Univer-
sity. The industrial focus of his work has been made possi-
ble through a collaborative research program between De-
akin University and Ford Motor Company, called FAST.
His research interests are discrete event simulation, intelli-
gent agent technology, simulation optimisation techniques,
and the design and modelling of manufacturing systems.
He received a BE (Honours) in Systems Engineering and a
BSc in Physics from the Australian National University,
where he attended as a National Undergraduate Scholar.
Doug Creighton also has several years of engineering and
computing experience, working with the Australian De-
partment of Defence and in Federal Parliament House, and
more recently as a simulation consultant. His e-mail ad-
dress is <dcreight@deakin.edu.au>.

SAEID NAHAVANDI received BSc (Hons), MSc and a
PhD in Automation and control from Durham University
(UK). Professor Nahavandi holds the title of Alfred Deakin
Professor, Chair of Engineering and is the leader for the
Intelligent Systems research Lab. at Deakin University
(Australia). He won the title of Young Engineer of the
Year for his novel intelligent robotic end effector in 1996
and has published over 300 peer reviewed papers in vari-
ous International Journals and Conference and is the re-
cipient of six international awards in Engineering. His re-
search interests include modeling of complex systems,
simulation based optimization, robotics, haptics and aug-
mented reality. Professor Nahavandi is the Associate Edi-
tor - IEEE Systems Journal, Editorial Consultant Board
member – International Journal of Advanced Robotic Sys-
tems, Editor (South Pacific region) - International Journal
of Intelligent Automation and Soft Computing, Editorial
Board member - International Journal of Computational
Intelligence. He is a Fellow of Engineers Australia
3

Johnstone, Creighton and Nahavandi
(FIEAust) and IET (FIET) and Senior Member of IEEE
(SMIEEE).
1034

