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ABSTRACT 

OLE Process Control (OPC) is an industry standard that 
facilitates the communication between PCs and Program-
mable Logic Controllers (PLC). This communication al-
lows for the testing of control systems with an emulation 
model. When models require faster and higher volume 
communications, limitations within OPC prevent this. In 
this paper an interface is developed to allow high speed 
and high volume communications between a PC and PLC 
enabling the emulation of larger and more complex control 
systems and their models. By switching control of ele-
ments within the model between the model engine and the 
control system it is possible to use the model to validate 
the system design, test the real world control systems and 
visualise real world operation. 

1 INTRODUCTION

A 3D model coupled with Discrete Event Simulation 
(DES) enables the creation of real world systems for visu-
alisation and analysis. With such powerful tools complex 
systems can be modelled and a multitude of questions 
asked about the system, questions ranging from analysis of 
the system performance to “what if” scenarios. These 
models can be made more valuable with the realisation that 
they can be used to also test real world control systems. 
Emulation, testing a control system via a computer model, 
allows for the off line development of control programs 
and testing of changes and numerous benefits detailed in 
literature.  
 In a complex system it may be desirable to test only 
parts of the control system.  Glinsky et al. (2004) in their 
modelling of a hardware-in-the-loop system incrementally 
moved elements from the model into the real world as they 
become available.  This same concept can be applied to 
emulation models.  Control of elements within the model 
can be passed back and forth between the external control 
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system and the simulation engine, allowing testing of indi-
vidual parts of a control system or the entire control sys-
tem.  
 Now with a 3D model of the system being controlled 
by the real world control system a powerful visualisation 
tool is available that can be used once the system is live. 
Data from the control system can be used to drive the 
model to represent what is occurring in the real world to 
allow for monitoring of the system. The original model 
created for validation of design or analysis can be used for 
much more than just the original purpose. 
 The paper is laid out as follows. Section 2 gives a re-
view of the previous work in emulation while section 3 de-
fines hybrid environment and how this was achieved. Sec-
tion 4 gives the results for testing carried out with the 
interface defined in section 3, while section 5 gives a 
summary of the work and suggests areas where this new 
environment is suitable. 

2 REVIEW OF PREVIOUS WORK IN 
EMULATION  

The objective of emulation, or soft-commissioning as it has 
also been referred to as (Schludermann et al. 
2000;Versteegt et al. 2002), is to connect actual real world 
control systems to simulation models to test the operation 
of those control systems (Schludermann et al. 2000;Schiess 
2001;McGregor 2002). Successful emulation implementa-
tions have been achieved in varying fields,  for example,  
baggage handling systems (Rengelink et al. 2002) and ma-
terial delivery systems (Lebaron et al. 1998).  
 Historically the testing of control systems was 
achieved by connecting individual test or mock-up devices 
to elements of the control system. This method of testing 
required considerable time and resources and failed to test 
the system as a whole (Whorter et al. 1997;Schludermann 
et al. 2000). Due to this lack of adequate testing options 
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(Rengelink et al. 2002) stated that the quality of control 
software was adversely affected, as was lead time to de-
liver a correctly functioning system. Auinger et al. (1999) 
describes four methods for testing control systems using a 
combination of simulation models and real world objects; 
traditional testing where control and hardware are real, 
emulation where control is real and hardware is simulated, 
reality in the loop where the control is simulated and hard-
ware real and finally off-line testing where both control 
and hardware are simulated. Versteegt et al. (2002) took 
these methods further whereby the control logic in the 
emulation test was simulated. To avoid a “credibility gap” 
(McGregor 2002) with this approach, the actual software 
program used in the control simulation is the software pro-
gram used to control the real hardware. This approach is 
similar to that of a PLC simulator as used in McGregor et 
al. (2001), and as it uses the actual control software, the 
problems identified by Rengelink et al. (2002) in regard to 
separate control programs for emulation and real world 
control are negated.  
 Emulation in this form has been used successfully 
with real benefits to both integrators and customers (Le-
baron et al. 1998;Mueller 2001). Time and money can be 
saved with the use of emulation, debugging controller logic 
can found in the lab rather than on the shop floor, saving 
on on-site install costs and lost production (Schiess 2001). 
Re-implementing control logics is not required as you are 
using the actual controller system (Lebaron et al. 
1998;Vedapudi 2001). Other benefits include complete 
control system testing, a training environment for staff, re-
duced installation risk (McGregor et al. 2001), increased 
product quality and reliability, reduced testing time and 
faster debug time (Whorter et al. 1997), and the ability to 
test without disturbing production (Jacobs et al. 2005).  
 Simulation and emulation models share a 3D represen-
tation of the system being modelled, are accurate and con-
sist of realistic modelling objects. However the differences 
between the two define the role of emulation. Simulation 
models test different solutions to achieve a desired result at 
high speed while the aim of an emulation model is to test a 
control system in real time (McGregor 2002). Emulation is 
concerned with the control of a system and the interface to 
the controlling system whereas a simulation models the 
behaviour a system. In order to create the emulation model 
two things need to be decided on, an interface to the con-
trol system from the simulation model and a communica-
tion protocol. (McGregor 2002) used OPC (OLE Process 
Control) as the communication protocol and wrote an OPC 
client to embed into the simulation model. Since then (Ja-
cobs et al. 2005) wrote directly to the PLC over a TCP/IP 
network in order to preserve the real world configuration 
of the control system. The time taken for communication 
between the model and control system will differ for each 
different communication methodology, (Lebaron et al. 
1998) states the need to be careful with time difference be-
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tween the two elements, ideally the faster the communica-
tion method the better, as this will allow for more data and 
larger models to be emulated. The aspects of an emulation 
model to take special interest in are the interface to the 
control system and the frequency and volume of data trans-
ferred.  
 Rengelink et al. (2002) modelled a baggage handling 
system, BHS using a PLC as the control system. A serial 
profibus connection was implemented between the PLC 
and the 2D model and up to 70 conveyors were being con-
trolled at a time. The authors state that improvements need 
to be made to the model visualisation, multiple threads to 
share processor loads and the speed of data transfer, among 
others, to improve on the overall abilities of the emulation 
model.  
 In the work by Jacobs et al. (2005), the MODBUS 
protocol running over TCP/IP was used to connect the 
simulator and the control system, a PLC. This provides a 
medium for improved data transfer over serial profibus 
mentioned previously. A section of memory was used as a 
buffer between the two elements to reduce communication, 
but volume of data was not mentioned. Data transfer oc-
curred within with a period 30 milliseconds and this period 
was logged to later verify it was met. This period was 
achieved with the use of multiple threads, communication, 
simulation and animation threads. This emulation model 
has the framework for improved data transfer, volume and 
speed, via the use of Ethernet between the model and PLC 
and makes use of threads to share processor load in order 
to meet time deadlines. The model graphics are once again 
2D, therefore taking similar ideas to a different simulator it 
would be possible to have 3D model being controlled, via 
Ethernet, by a PLC. The size of this model and the period 
of data transfer would determine the size of the model able 
to be emulated. 
 Versteegt et al. (2002) developed an emulation model 
of AGVs in an automated material handling system. Com-
munication in their model was based on a poll to the com-
munication buffer every 10msec to check for any changes 
from the control system. The authors also found that by us-
ing asynchronous communication that they were able to 
improve the performance of the emulation model. However 
they are still unsure as to how well their particular imple-
mentation would scale for larger systems. 

3 ENVIRONMENT OVERVIEW 

In this section we will describe the various elements in the 
environment using a Baggage Handling System (BHS) as 
an example. In our environment we have the simulation 
model running on a PC, a PLC acting as the control system 
and the interface between the two. Time issues, sequences 
and control strategies are also described.   
9
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3.1 Simulation Environment 

The simulation environment is made up of elements such 
as conveyors, automatic tag readers (ATR), explosives de-
tection systems (EDS) machines, etc, see Figure 1. These 
elements are controlled via signals. To simulate a convey-
ors control you would typically use three signals, one input 
signal to control the motor and two output signals, a pin 
wheel to measure belt movement and a photo eye to detect 
bags moving along the belt. A run time parameter is used 
to define if the element is to be controlled by the simula-
tion engine or external PLC. When the element is con-
trolled by the PLC the simulation engine generates the out-
put signals and responds to the input signals. Based on the 
output signals the PLC logics decide when to change the 
input signal. When the element is controlled by the simula-
tion engine, the signal responses and generation are the 
same however there are additional logics used to respond 
to output signal changes to control the input signal, ie the 

function performed by the PLC is simulated. 

Figure 1: An image of a BHS showing EDS machines, 
ATRs and conveyors. 

3.1.1 Threads

As it takes time to exchange data between the model and 
the PLC the model can operate in 2 distinct ways. Firstly 
by pausing and waiting for completion of the data ex-
change or secondly, allowing a separate process to handle 
the data exchange while the model continues processing. 
The former option does not provide the control delay nor-
mally seen in the real world, mentioned previously, and re-
quires the simulation to run faster than real time to make 
up for the delay in waiting for the data exchange to com-
plete. The latter allows the simulation to run at a constant 
rate and provides the control delay.  Threads are used to 
make the data exchange asynchronous. 
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 The simulation has a main application thread that uses 
worker threads to exchange date with the PLC. At every 
desired time interval a read or write is sent by the main 
thread to a worker and polls for the workers completion. 
The worker thread communicates with the PLC and upon 
completion provides the data to the main thread where the 
data is acted upon. Currently there is a limitation set in the 
simulation software that does not allow a worker thread to 
update elements within the model. 

3.1.2 Time

The simulation model is required to run in real time as this 
is what the PLC is running in. So to slow down the simula-
tion clock a PID controller was used. The controller adjusts 
simulation update rate, the rate at which graphics are up-
dated. The smaller this value the slower this simulation 
runs. 

3.2 Control Environment 

A PLC forms the main component of a BHS control sys-
tem. Usually more than one PLC is used for a variety of 
reasons such as redundancy and load. PLCs run ladder 
logic programs that modify outputs based on the inputs. 
Continuing with our example of a conveyor, the inputs 
would be signals from the photo eye and pin wheel, out-
puts would be the signal to the motor. 
 PLC execution is sequential. It runs programs, re-
freshed inputs and outputs and responds to external com-
mands. This loop is executed as quickly as possible. One 
loop is called the cycle time. Cycle time defines the time it 
will take the PLC to respond to changed input conditions 
and also determines the time taken to reply to external 
commands. The cycle time must be lower than that of the 
cycle time required by the pin wheel, 25ms, or else the 
PLC will miss pin wheel events and not correctly track 
conveyor movement. 

3.3 The Interface 

The interface is depictured in Figure 2. Here a PC, con-
nected via Ethernet to the control system, is running the 
model. The PLC is running a ladder logic program to con-
trol the elements in the real world that have been modelled 
on the PC. The model connects to the PLC to exchange 
data, eg writes photo eye and pin wheel information and 
reads motor information. The model updates the simulation 
according to the information read from the PLC. The PC 
and the PLC are connected via Ethernet. The first protocol 
tested between the two was OPC and subsequently another 
protocol was tested due to the performance of OPC. 
0
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Figure 2: Model to PLC Interface 

3.3.1 Communication Protocols 

OPC is made up of an OPC Server and Client. The OPC 
server software was provided by the PLC manufacturer. 
The server communicates with the PLC over Ethernet and 
provides a software interface for clients to connect to in 
order to read or write data to or from the PLC. The server 
software can also provide access to a PLC simulator in 
place of a real PLC. The OPC client software was written 
and embedded into the model, see Figure 3. As the model 
ran, the client would send/receive data from the OPC 
server. 

Figure 3: OPC communications overview 

 Initially a PLC Simulator was used with OPC. When a 
signal was changed by the PLC the OPC server would 
cause an event within the client, and the model would up-
date as appropriate. To send data to the PLC the client ini-
tially used a synchronous write command. Here the simula-
tion would pause as it waited for the write command to 
receive a write successful response from the OPC server.  
 When a simple model containing several elements was 
run, the model ran slower than real time due to this syn-
chronous data exchange. The PLC simulator was replaced 
by a real PLC and the model run, again the model could 
not run at real time. The write command was changed to an 
asynchronous command and the simulation run. The simu-
lation was able to run at real time however there was a de-
lay between the PLC changing a signal and that change be-
ing reflected in the model. This delay was due to an update 
rate parameter built into OPC that defined the smallest 
time interval which a signal could be updated. This mini-

PC

EtherNet

PLC
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mum value of the update rate was 100ms, therefore OPC 
could not accommodate a pin wheel signal that changes 
every 25ms.   
 A final test of OPC was to increase the number of 
elements in the model. As more elements were added to 
the model the OPC server started to lag. It was found that 
the OPC server would write data to the PLC one signal at a 
time. Therefore as the model increased the OPC server 
would queue the writing of signals to the PLC. 
 As the PLC had Ethernet capabilities, investigation 
into communicating directly with it was carried out via the 
use of a TCP or UDP socket, where we could hopefully 
write faster than OPCs 100ms and in greater volume. The 
protocol used to communicate over sockets by the PLC is 
FINS, which was the communication protocol used be-
tween the OPC server and the PLC. FINS allows for indi-
vidual or bulk read/writes to/from the PLC, so where the 
OPC server would write to ten consecutive inputs ten indi-
vidual times, with FINS it could be done with one write 
command if the five items to be written were in consecu-
tive in memory locations., this is show in Figure 4.  
 The FINS protocol over a socket provides the ability 
to update many signals quickly if they are consecutive in 
the PLC memory, It was possible to read or write 1024 
signals within 3.5ms. 

Figure 4: Pictorially showing the reduction in communica-
tion using FINS versus OPC. 

3.3.2 Sequence of Events 

As we are interested in the status of signals over time the 
model must be continually reading and writing data to and 
from the PLC. To achieve this the model loops through the 
following sequence. The loop has a period of 10ms to 
match PLC cycle time. 
 The model sequence: 

1. Determine what data is to be sent 
2. Use thread to send it 
3. Use thread to read data from PLC 
4. Sleep for a typical amount of time and then start 

to poll the read thread for completion. 
5. Upon completion take action 
6. Sleep for remainder of cycle time 
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3.4 Control 

By varying the employed control strategy differing envi-
ronments are achieved. When all control is handled by the 
simulation engine we have a simulation model where the 
normal analyses can be performed and “what if” questions 
answered. This is the first and often the only purpose given 
to a detailed model of a system. 
 When control is passed to the PLC we have an emula-
tion model where the controller logic can be verified off-
line using data input from the simulation model.  
 If the write commands are disabled in the simulation 
model and control is still with the PLC we have a visuali-
sation model where we can determine actions to take based 
on data received from the PLC. In this instance additional 
steps have to be performed in the model like creating bags 
when the PLC detects them as opposed to using previous 
methods. 

4 TESTING

The interface was tested by reading and writing from the 
simulation model to the PLC and capturing the packets us-
ing packet capturing software. The packet capture records 
the transmission times of the packets, enabling the re-
sponse time of the PLC to be determined.  
Conclusion 
The benefits of using an industry standard for communica-
tion between a PC and a PLC are clear. OPC provides this 
standard, enabling the one PC software application to 
communicate with multiple PLC brands provided the PLC 
company has an OPC server to suit. However when at-
tempting to emulate a higher number of connections to the 
PLC or emulate at high speed problems are encountered. 
By communicating from PC to PLC directly faster and 
higher volume communications can be achieved. The inter-
face developed enables high speed communication allow-
ing emulation of larger models.  
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Figure 5 shows the time it took the PLC to respond to 
5000 read commands that requested the status of 1024 sig-
nals. The average time was 3.03ms ± 5us. Similar times 
were recorded for writing to the PLC. These results com-
pare favorably with past response times in literature, Ja-
cobs et al. (2005) has a requirement for a 30ms cycle time, 
10
while  Versteegt et al. (2002) were polling a communica-
tions buffer every 10ms.  
 The testing confirms that it possible to read from the 
control system enough information to run a large model. If 
we were to read the status of the 3 signals used in conveyor 
control as described in section 3.1 then we would be able 
to interrogate the status of 340 conveyors. The data re-
quested from the PLC is required to be contiguous with the 
memory structure of the PLC so it can be quickly obtained 
with one read command, or not spaced at either ends of the 
PLC structure so that the entire memory structure is re-
quired to be read. In the case where the data required is not 
contiguous it is up to the PC program to isolate the re-
quired data from the response packet from the PLC. 

5 CONCLUSION 

The benefits of using an industry standard for communica-
tion between a PC and a PLC are clear. OPC provides this 
standard, enabling the one PC software application to 
communicate with multiple PLC brands provided the PLC 
company has an OPC server to suit. However when at-
tempting to emulate a higher number of connections to the 
PLC or emulate at high speed problems are encountered. 
By communicating from PC to PLC directly faster and 
higher volume communications can be achieved. The inter-
face developed enables high speed communication allow-
ing emulation of larger models.  
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Figure 5 PLC time to respond to a read command request-
ing 1024 signals 

 With the ability to read data from a PLC at high speed 
it is possible to drive a model purely to visualise what is 
occurring in the real world. This application would enable 
a model that was used during the design process to prove 
ideas and answer “what if” questions and also used to test 
and develop control systems, to be used as monitoring tool 
during production.  
 Further work in this area would be to test against more 
PLC manufacturers to test that high speeds can be achieved 
with them also.  
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