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ABSTRACT

Recently developed dual techniques allow us to evaluate

a given sub-optimal dynamic portfolio policy by using the

policy to construct an upper bound on the optimal value

function. Moreover, when the policy is in fact optimal,

the upper bound coincides with the optimal value function.

Since it is easy to construct a lower bound by simulating

the given policy, we may use the distance from the lower

bound to the upper bound to assess the quality of the

policy. One of the difficulties that arises when computing

the upper bound, however, is that we need to know the sub-

optimal policy’s value function and its partial derivatives

with respect to all state variables. If these quantities are not

available analytically, then an alternative upper bound can

still be computed but it is less satisfying from a theoretical

perspective. In this paper we show how path-wise Monte-

Carlo estimators together with the cross-path regression

approach can be used used to estimate the sub-optimal

value function and its derivatives, thereby enabling us to

compute the more theoretically satisfying upper bound on

the optimal value function.

1 INTRODUCTION

Haugh, Kogan and Wang (2006, hereafter HKW) recently

developed a dual-based technique for the evaluation of sub-

optimal dynamic portfolio policies in a multi-dimensional

diffusion setting in the presence of portfolio constraints and

incomplete markets. The idea behind this technique, which

is based on the earlier theoretical work of Xu (1990), Shreve

and Xu (1992a, 1992b), Cvitanic and Karatzas (1992) and

others, is to use the given sub-optimal policy to construct

a fictitious market that is complete and unconstrained. By

choosing the fictitious market in an appropriate manner,

it can be shown that the optimal value function in the

fictitious market provides an upper bound on the optimal

value function in the original constrained and incomplete

market. Since the standard martingale methods of Cox and
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Huang (1989) and Karatzas, Lehocky and Shreve (1987)

can then be used to compute the optimal value function

in the fictitious market, HKW’s approach allows us to go

from a sub-optimal policy to an upper bound on the optimal

value function.

Since it is easy to construct a lower bound by simply

simulating the given policy, we may use the duality gap, i.e.

the distance from the lower bound to the upper bound, to

assess the quality of the portfolio policy. While HKW show

that the duality gap will be zero if the sub-optimal policy is

indeed optimal, the computation of the upper bound requires

knowledge of the sub-optimal policy’s value function and

its derivatives with respect to any state variables in the

system. For the numerical examples that HKW considered,

this knowledge was unavailable and so they computed an

alternative upper bound instead. This alternative upper

bound proved to perform very well in that it was close to

the optimal value function when the sub-optimal policy that

generated it was also close to optimal. However, it suffered

from some theoretical setbacks. In particular, even when

the alternative upper bound was generated by the optimal

policy itself, it was no longer guaranteed to coincide with

the optimal value function.

Haugh and Jain (2007) studied the dual approach in

further detail and, for certain classes of portfolio strategies,

solved analytically for the corresponding value functions and

their derivatives. They therefore succeeded in constructing

the more theoretically satisfying upper bound originally

proposed by HKW. However, when analytic solutions for

the suboptimal value function are unavailable, the question

remains as to whether or not the more theoretically satisfying

upper bound can be computed. In this paper, we answer

this question in the affirmative. In particular, we show

how path-wise estimators and cross-path regressions may

be successively used for estimating the sub-optimal policy’s

value function and its derivatives.

The remainder of this paper is organized as follows.

In Section 2 we review the dual approach for evaluating

sub-optimal strategies and explain why the suboptimal value
13
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function and its derivatives are required for computing the

more theoretically satisfying upper bound. In Section 3

we show how path-wise Monte-Carlo estimators and cross-

path regressions can be used to estimate these quantities.

Numerical results are presented in Section 4 and we conclude

in Section 5.

2 THE DUAL APPROACH TO

PORTFOLIO EVALUATION

In this section we briefly review HKW’s dual-based tech-

nique for computing an upper bound on the optimal value

function. Beginning with a sub-optimal strategy, we will

see how this strategy can be used to define a fictitious

market where the portfolio optimization problem is eas-

ily solved. Due to space constraints, we will not concern

ourselves with too many technical details here and instead

refer the reader to HKW (2007) for a more thorough de-

scription of the dual-based evaluation technique, and to

Karatzas and Shreve (1997) for the theoretical foundations

of the fictitious-market based duality approach to portfolio

optimization.

We assume there are N risky assets and a single risk-

free asset available in the economy. The time t vector of

risky asset prices is denoted by Pt = (P
(1)
t , . . . ,P

(N)
t ) and

the instantaneously risk-free rate of return is denoted by rt .

Security price dynamics are driven by the M-dimensional

vector of state variables, Xt , so that

rt = r(Xt)

dPt = Pt [µP(Xt)dt +ΣPdBt ] (1)

dXt = µX (Xt)dt +ΣX dBt

where X0 = 0, Bt = (B1t , ...,BNt) is a vector of N independent

Brownian motions, µP and µX are N and M dimensional

drift vectors, and ΣP and ΣX are constant diffusion matrices

of dimensions N by N and M by N, respectively. We can

then define a process, ηt , as

ηt = Σ−1
Pt (µPt − rt).

In a market without portfolio constraints, ηt corresponds

to the market price of risk process. See Duffie (1996) for

further details.

A portfolio consists of positions in the N risky assets

and the risk-free cash account. We denote the proportional

holdings of the risky assets in the total portfolio value by

θt = (θ1t , . . . ,θNt). The proportion in the risk-free asset is

then given by (1−θ T
t 1) where 1 is the unit vector of length

N. The value of the portfolio, Wt , then has the following
1014
dynamics

dWt

Wt

=

[
(1−θ T

t 1)rt +θ T
t µP(Xt)

]
dt +θ T

t ΣPdBt . (2)

We assume that the proportional holdings in the portfolio

are restricted to lie in a closed convex set, K, that contains

the zero vector. In particular, we assume that

θt ∈ K. (3)

The investor’s dynamic portfolio optimization problem

is to solve for the value function V0 at t = 0 where

V0 ≡ sup
θt

E0[U(WT )] (4)

subject to constraints (1), (2) and (3).

The duality approach of HKW for analyzing the quality

of a suboptimal strategy was to use the strategy to construct

a lower and upper bound on the true value function. If the

difference between the two bounds is large, i.e. the duality

gap is wide, then it suggested that the suboptimal policy

was not close to the optimal solution. If the duality gap

is small, then (i) we know that the suboptimal strategy is

close to optimal and (ii) we know approximately the optimal

value function.

Starting with the portfolio optimization problem above,

we can define a fictitious problem based on a different com-

plete financial market and without the portfolio constraints.

First we define the support function of K, δ (·) : R
N →N∪∞,

by setting

δ (ν) = sup
x∈K

(−ν⊤x). (5)

The effective domain of the support function is given by

K̃ = {ν ∈ K : δ (ν) < ∞}.

Because the constraint set K is convex and contains zero,

the support function is continuous and bounded from below

on its effective domain K̃. We then define the set D of

adapted R
N valued processes to be

D =

{
νt ,0 ≤ t ≤ T : νt ∈ K̃,

E0

[∫ T

0
δ (νt)dt

]
+E0

[∫ T

0
‖νt‖

2 dt

]
< ∞

}
.(6)

For each process ν in D, we define a fictitious market

M(ν). In this market, one can trade the N stocks and the

risk-free cash account. The diffusion matrix of stock returns

in M(ν) is the same as in the original market. However,

the risk-free rate and the vector of expected stock returns
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are different. In particular, the risk-free rate process and

the market price of risk in the fictitious market are defined

respectively by

r
(ν)
t = rt +δ (νt) (7a)

η
(ν)
t = ηt +Σ−1

P νt (7b)

where δ (ν) is the support function defined in (5). We

assume that η
(ν)
t is square-integrable. Following Cox and

Huang (1989), the state-price density process π
(ν)
t in the

fictitious market is given by

π
(ν)
t = exp

(
−

∫ t

0
r
(ν)
s ds−

1

2

∫ t

0
η

(ν)
s

⊤
η

(ν)
s ds

−
∫ t

0
η

(ν)
s

⊤
dBs

)
(8)

and the vector of expected returns is given by

µ
(ν)
Pt = r

(ν)
t +ΣP η

(ν)
t .

The dynamic portfolio choice problem in the fictitious

market without position constraints can be equivalently for-

mulated in a static form:

V (ν) ≡ sup
{WT }

E0 [U(WT )] subject to

E0

[
π

(ν)
T WT

]
≤W0. (P(ν)) (9)

Due to its static nature, the problem (P(ν)) is easy to solve.

For example, when the utility function is of the CRRA type

with relative risk aversion γ so that U (W ) = W 1−γ/(1−γ),
the corresponding value function in the fictitious market is

given explicitly by

V
(ν)
0 =

W
1−γ
0

1− γ
E0

[
π

(ν)
T

γ−1
γ

]γ

. (10)

Moreover, it is straightforward to show that the solution

to (P(ν)) provides an upper bound on the optimal value func-

tion in the original portfolio optimization problem. While

one can pick any fictitious market from the admissible set

D to compute an upper bound, HKW showed how a given

suboptimal strategy, θ̃t , may be used to select a particular

ν̂t ∈D. If the suboptimal strategy is in fact optimal, then the

lower bound associated with the suboptimal strategy will

equal the associated upper bound, thereby demonstrating

its optimality.

Given an approximation to the optimal portfolio policy

θ̃t , one can compute the corresponding approximation to the

value function, Ṽt , defined as the conditional expectation of
101
the utility of terminal wealth, under the portfolio policy θ̃t .

HKW then define η̃t as

η̃t :=−Wt

(
∂WW Ṽt

∂WṼt

)
Σ⊤

P θ̃t −
(

∂W Ṽt

)−1

Σ⊤
X

(
∂WXṼt

)
(11)

where ∂W denotes the partial derivative with respect to

W , and ∂WX and ∂WW are corresponding second partial

derivatives. We then define ν̃t as a solution to (7b). This

definition of η̃t (see HKW for the motivation behind this

definition) links the sub-optimal strategy, θ̃t , to an upper

bound on the optimal value function for the original portfolio

optimization problem.

In the special but important case of a CRRA utility

function the expression for η̃t simplifies. In particular,

for a given trading strategy, θ̃t , and CRRA utility, the

corresponding value function is of the following form

Ṽt = g(t,Xt)
W

1−γ
t

1− γ
(12)

for some function, g(·, ·).
Hence, the market price of risk process in the dual

problem simplifies to

η̃t = γΣ⊤
P θ̃t −

Σ⊤
t

Ṽt

(
∂Ṽt

∂Xt

)

= γΣ⊤
P θ̃t −

Σ⊤
X

g(t,Xt)

(
∂g(t,Xt)

∂Xt

)
(13)

where γ is the coefficient of relative risk aversion. Note

that one only needs to compute the first derivative of the

value function with respect to the state variables, Xt , to

evaluate the second term in (13). This simplifies numerical

implementation, since it is easier to estimate first-order than

second-order partial derivatives of the value function. For

general strategies we don’t have an analytical solution for

the value function and its derivatives. In the remainder of

this paper we will use the phrases θ -Term and g-Term when

referring to the first and second terms, respectively, on the

right-hand-side of (13).

Obviously, η̃t is a candidate for the market price of

risk in the fictitious market. However, there is no guarantee

that η̃t and the corresponding process, ν̃t , belong to the

feasible set D defined by (6). In fact, for many important

classes of problems the support function δ (νt) may be

infinite for some values of its argument. We therefore look

for a price-of-risk process η̂t ∈ D that is “close” to η̃t

by formulating a simple quadratic optimization problem.

Depending on the portfolio constraints, this problem may

be solved analytically. Otherwise, we solve it numerically

at each discretization point on each simulated path of the

underlying stochastic differential equations (SDE’s). The
5
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lower bound is then computed by simulating the given

portfolio strategy. The same simulated paths of the SDE’s

are then used to estimate the upper bound given by (10). At

each discretization point on each simulated path we solve

a quadratic optimization problem to find the appropriate

η̂t ∈D. See HKW for further details. We use a simple Euler

scheme when simulating the underlying SDE’s. See Kloeden

and Platen (1992) for more sophisticated techniques.

In their numerical experiments, HKW did not have

an analytic expression available for the g-Term so they

were unable to compute the theoretical upper bound that

they proposed. Instead, they used only the θ -Term to

compute their upper bounds. While Haugh and Jain (2007)

were able to compute both terms analytically for certain

classes of portfolio strategies, this is not possible in general.

Approximating the g-Term is therefore of interest and is the

focus of this paper. In particular, we will show how path-

wise Monte Carlo estimators and cross-path regressions can

be used to estimate the g-Term.

3 PATH-WISE ESTIMATORS AND

CROSS-PATH REGRESSIONS

We assume now a particular form for the dynamics that

our security prices satisfy. These are the same dynamics

assumed by HKW and Haugh and Jain (2007). We have

rt = r

dPt = Pt [(µ0 +Xt µ1)dt +ΣPdBP
t ]

dXt = −kXtdt +ΣX dBP
t . (14)

The first equation gives the risk free rate which is assumed

constant in our numerical results. The second equation

specifies the dynamics of the three traded risky securities.

The diffusion matrix ΣX is of size 1 by 4 and coincides with

the last row of matrix ΣP. The vectors µ0 and µ1 define

the drift vector for the risky securities. The third equation

specifies the dynamics of the state variable, Xt , whose initial

value is set to zero in all of the numerical examples.

We now derive the path-wise estimator for the sub-

optimal value function and its derivatives. (Glasserman

(2003) is a good source and contains many financial appli-

cations of path-wise estimators.) We then briefly describe

the cross-path regression approach for evaluating this esti-

mator.

3.1 The Path-Wise Estimator

Let θt = θ(Xt) denote the given sub-optimal policy that

depends explicitly on the state variable(s), Xt . We wish to

estimate its corresponding value function, Vt , and its first

derivative, ∂Vt

∂Xt
. The main idea behind the path-wise estima-

tor is the interchange of the differentiation and expectation
101
operators so that

d

dXt

Et [h(Xt)] = Et

[
d

dXt

h(Xt)

]
(15)

where h(·) is a generic function. The expression d
dXt

h(Xt)

is the path-wise derivative of h(Xt) with respect to the state

variable, Xt . While some technical conditions are required in

order to justify the above interchange of differentiation and

expectation, they do not present a problem in our application

in this paper.

In the case of CRRA utility, we can write

Vt = Eθ
t

[
U(WT )

]
= Eθ

t

[
W

1−γ
T

1− γ

]
(16)

where we use the Eθ
t [·] notation to acknowledge the de-

pendence of the terminal wealth, WT , on the strategy, θ .

Interchanging the expectation and differential operator in

order to compute the first derivative, we obtain

∂Vt

∂Xt

=
1

1− γ
Eθ

t

[
∂W

1−γ
T

∂Xt

]
. (17)

Applying Itô’s Lemma to log(Wt) and using (2) we obtain

WT = Wt exp

(∫ T

t

(
(1−θ⊤

s 1)r +θ⊤
s (µ0 + µ1Xs)

−(θ⊤
s ΣPΣ⊤

P θs)/2
)

ds+
∫ T

t
θ⊤

s ΣP dBP
s

)
(18)

so that

∂W
1−γ
T

∂Xt

= (1− γ)W
1−γ
T

∂

∂Xt

(∫ T

t

(
(1−θ⊤

s 1)r

+ θ⊤
s (µ0 + µ1Xs)−θ⊤

s ΣPΣ⊤
P θs)/2

)
ds

+
∫ T

t
θ⊤

s ΣP dBP
s

)

We can therefore express the value function’s first derivative

with respect to Xt as

∂Vt

∂Xt

= Eθ
t

[
W

1−γ
T

∂

∂Xt

(∫ T

t
((1−θ⊤

s 1)r

+θ⊤
s (µ0 + µ1Xs))ds−

1

2

∫ T

t
(θ⊤

s ΣPΣ⊤
P θs)ds

+
∫ T

t
θ⊤

s ΣP dBP
s

)]

In our numerical experiments we simulate the asset

return dynamics over a discrete time grid, i.e. we use
6
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a standard Euler scheme to simulate the SDE’s. We let

0 = t0 < t1 < ... < tm = T be a partition of the time interval

[0,T ] into m equal segments of length △t so that ti = iT/m

for i = 0,1, ...,m. If the current value of t is t = ti, then the

discretized integral inside the differential operator can be

expressed as
∫ T

ti

((1−θs
⊤1)r +θs

⊤(µ0 + µ1Xs))ds

−
1

2

∫ T

ti

(θs
⊤ΣPΣT

Pθs)ds+
∫ T

ti

θs
⊤ΣPdBP

s

=
m−1

∑
j=i

((1−θ j
⊤1)r +θ j

⊤(µ0 + µ1X j))△t (19)

−
1

2

m−1

∑
j=i

(θ j
⊤ΣPΣ⊤

P θ j)△t +
m−1

∑
j=i

θ j
⊤ΣPZ j+1

√
△t

where the Z j’s form a sequence of IID standard normal

random variables. We can easily solve the SDE describing

the dynamics of Xt to obtain

Xt = exp(−k(t − s))

(
Xs +

∫ t

s
exp(k(u− s)) ΣX dBP

u

)
.

For j > i, we therefore obtain

∂Xt j

∂Xti

= exp(−k(t j − ti)) = exp(−k( j− i)△t) (20)

and, by the chain rule,

∂θ j

∂Xi

=
∂θ j

∂X j

∂X j

∂Xi

. (21)

Applying (20) and (21) to differentiate (19) yields

∂

∂Xti

(
m−1

∑
j=i

((1−θ j
⊤1)r +θ j

⊤(µ0 + µ1X j))△t

−
1

2

m−1

∑
j=i

(θ j
⊤ΣPΣ⊤

P θ⊤
j )△t +

m−1

∑
j=i

θ j
⊤ΣPZ j+1

√
△t

)

=
m−1

∑
j=i

(
(−

∂θ⊤
j

∂X j

1exp(−k( j− i)△t))r

+
∂θ⊤

j

∂X j

exp(−k( j− i)△t)(µ0 + µ1X j)

)
△t

+

(
m−1

∑
j=i

θ⊤
j µ1 exp(−k( j− i)△t)

)
△t

−
1

2

m−1

∑
j=i

(
2θ T

j exp(−k( j− i)△t)ΣPΣ⊤
P

∂θ j

∂X j

)
△t

+
m−1

∑
j=i

(
∂θ⊤

j

∂X j

exp(−k( j− i)△t)ΣPZ j+1

√
△t

)

=: PW. (22)
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Hence the first derivative of the policy’s value function

can be expressed as

∂Vti

∂Xti

= Eθ
ti

[
W

1−γ
T PW

]
(23)

To compute the g-Term in (13) we need the ratio of g(t,Xt)
and its first derivative with respect to the state variable,

Xt . This ratio is estimated by estimating the numerator

and denominator separately. Equations (12), (16) and (23)

imply we can estimate these quantities using

g(ti,Xti) = Eθ
ti

[
W

1−γ
T

W
1−γ

ti

]
(24)

∂g(ti,Xti)

∂Xti

= Eθ
ti

[
W

1−γ
T

W
1−γ

ti

PW (1− γ)

]
. (25)

Because we need to estimate these quantities at all

discretization points, ti, and at all realizations of the state

variable, Xti , we need an efficient method for computing

these estimates. This leads to the use of the cross-path

regression approach which we now briefly discuss.

3.2 The Cross-Path Regression Approach

The cross-path regression technique was introduced by

Longstaff and Schwartz (2001) and Tsitsiklis and Van Roy

(2001) in the context of pricing high-dimensional American

options. Their approach was to simulate a large number of

sample paths of the underlying state variables and use the

standard dynamic programming approach of value iteration

to estimate the option value at each time point on each

simulated path. Rather than directly estimating the option

value, they estimated the continuation value, i.e. the value

of the option conditional on it not being exercised at the

current time period. The key technique in the cross-path

regression approach was to estimate all of the continuation

values at a given time period through a single linear re-

gression that utilized the cross-sectional information in the

simulated paths.

Brandt et al (2005) extended this idea to dynamic

portfolio optimization problems with incomplete markets.

Haugh, Kogan and Wu (2006) considered the same

problem but with the added complication of imposing

no-borrowing constraints. In this paper we will use

the same cross-path regression approach to estimate

each of the quantities in (24) and (25). Due to space

constraints we will only outline the details of our algorithm:

The Cross-Path Regression Algorithm

1. Simulate N paths of the state variable, Xt , and the

security prices, Pt , at the time points 0 < t1 < .. . <
tm = T .
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2. For i = 1, . . . ,m, compute the trading strategy, θti ,

and the corresponding wealth, Wti , on each path at

time ti. The corresponding value function at time

T satisfies VT = W
1−γ
T /(1− γ).

3. For i = (m−1), . . . ,1, estimate Eθ
ti

[
(WT /Wti)

1−γ
]

and Eθ
ti

[
(WT /Wti)

1−γ PW (1− γ)
]

on each

path by regressing (WT /Wti)
1−γ and

(WT /Wti)
1−γ PW (1− γ), respectively, on Xti

and some higher powers of Xti .

The estimated regressions at time ti can now be used to

estimate the ratio
∂gti

∂Xti
/gti that we need for the g-Term on

the right-hand side of (13). Note also that because linear

regressions can be performed very quickly, the computa-

tional requirements for the cross-path regression algorithm

are not particularly demanding.

4 NUMERICAL RESULTS

We now apply the cross-path simulation algorithm to three

different portfolio strategies, namely the static, generalized

buy-and-hold (GBH) and myopic portfolio strategies. Se-

curity price and state dynamics follow (14) with parameters

taken from HKW. In particular, the parameter set we use in

this paper (see Table 1) coincides with Parameter Set #2 in

HKW which was taken, in turn, from Lynch (2001). This

parametrization assumes the three risky securities are in fact

size-sorted portfolios with the term spread (the difference

in yields between 20-year and 1-month Treasury securities)

as the state variable. All our results assume a horizon of

T = 5 years, and an Euler scheme with 100 time periods

per year was used for simulating the underlying SDE’s. At

each time step t, we used {1,Xt , . . . ,X
m
t } as the dependent

variables in each of the two linear regressions required to

estimate the numerator and denominator of the g-Term. We

generally took m equal to 5 or 6.

Table 1: Calibrated model parameters.

k µ0 µ1 ΣP

1.671 0.081 0.046 0.186 0.000 0.000 0.000

0.110 0.070 0.227 0.082 0.000 0.000

0.130 0.086 0.251 0.139 0.069 0.000

0.000 0.000 -0.017 0.149 0.058 1.725

4.1 The Static and GBH Trading Strategies

We first consider the static and GBH strategies because

analytic solutions for the g-Term are available (see Haugh

and Jain 2007) in those cases. This means we can compute

the estimation error directly for these strategies.

The static trading strategy is the well-known constant

proportion trading strategy that, at time t, invests a fixed
101
proportion of the available wealth, Wt , in each of the risky

securities. It satisfies

θ static
t = arg maxθ (µT

0 − r)θ −
1

2
γθ T ΣPΣT

Pθ , (26)

so θ static
t = θ st is a constant vector that does not vary with

time. It solves the investor’s dynamic portfolio optimization

problem when the instantaneous first and second moments

of security returns are assumed to equal to their long-term

averages.

The GBH trading strategy was introduced in Haugh

and Jain (2007). It is defined as the optimal trading strategy

where the terminal wealth depends only on the terminal

security prices. In particular, it is the optimal trading strategy

resulting in a non-path-dependent wealth. It may be shown

(see Haugh and Jain 2007) that the trading strategy that

replicates the optimal GBH terminal wealth is a function

of time only, and that it does not depend on the path of the

state variable, Xt .

Because the static and GBH trading strategies are state-

variable independent we have

∂θ j

∂X j

= 0

at all times t. The path-wise estimator of (22) therefore

reduces to

PW =
m−1

∑
j=i

(
θ j

⊤µ1 exp(−k( j− i)△t)

)
△t

where θ j
⊤ = θ st for the static strategy, and is time dependent

but state-variable independent, for the GBH strategy.

In order to study the performance of the cross-path

regression approach we compute two types of errors for

each time, ti:

Error1 :=
1

N

N

∑
j=1

∣∣∣ f̂ (X j
ti
)− f (X j

ti
)
∣∣∣

f (X j
ti
)

(27)

Error2 :=

√√√√√∑N
j=1

(
1− f̂ (X j

ti
)/ f (X j

ti
)

)2

N
(28)

where N is the number of sample paths, f (·) represents

the function we wish to estimate and f̂ (·) is the cross-path

regression estimator of function f (·). Table 2 displays Error1

and Error2 for the θ -Term and g-Term. Recall that Haugh

and Jain (2007) obtained analytic solutions for the g-Term

in the case of the static and GBH strategies. We assume

the coefficient of relative risk aversion satisfies γ = 1.5 and

that N = 1 million paths Xt and Pt were simulated. The
8
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errors were estimated at the mid-point of the time horizon,

i.e., where ti = 2.5 years so that i = 250.

Table 2: Cross-path regression errors

Error1 Error2

g(Xti) 0.0011 0.0018

∂g(Xti)

∂Xti

0.0013 0.0017

∂g(Xti)

∂Xti

/g(Xti) 0.0014 0.0020

We see that in each case the estimated errors are less

than 0.2% suggesting that the regression-based estimators

are very accurate. We now examine the quality of the upper

bound when we use these regression-based estimates of the

g-Term.

Table 3 displays the upper bound on the optimal value

function that is generated using the static and GBH strategies,

respectively. In each case we estimate the upper bound using

both the regression-based estimate as well as the analytic

solution for the g-Term. We also include the upper bound

for the static strategy that was estimated by HKW using

only the θ -Term from (13), as well as the true optimal value

function, which can be computed in this case. Approximate

95% confidence intervals are in parentheses.

We see that the upper bounds obtained using the regres-

sion approach are almost identical to those obtained from

the analytical solution and so we can conclude, at least for

this model and the static and GBH strategies, that the cross-

path regression algorithm works very well. While using

the g-Term to compute the upper bound does not produce

a significant improvement to the upper bound in absolute

terms, it does produce a significant relative improvement

when compared to the optimal value function.

Table 3: Regression-based upper bounds: Static and GBH

strategies

γ = 1.5 γ = 3 γ = 5

UBHKW
Static 9.20 5.09 3.47

( 9.15, 9.24) ( 5.04, 5.14) ( 3.42, 3.53 )

UB
Analytic
Static 9.14 5.00 3.38

(9.10, 9.19) (4.95, 5.05) (3.33 , 3.43)

UB
Regression
Static 9.14 5.00 3.38

(9.10, 9.19) (4.95, 5.05) (3.33 , 3.43)

UB
Analytic
GBH 9.19 5.02 3.38

(9.14, 9.24) ( 4.94 , 5.10) ( 3.30 , 3.47)

UB
Regression
GBH 9.19 5.02 3.38

(9.14, 9.24) ( 4.94 , 5.10) ( 3.30 , 3.47)

VOptimal 9.02 4.92 3.33
101
4.2 The Myopic Trading Strategy

We now consider the myopic trading strategy which is

defined in the same way as the static policy, except the

instantaneous moments of asset returns are fixed at their

current values, as opposed to their long-run average values.

In particular, the optimizing agent solves

θ
myopic
t = arg maxθ (µT

Pt − r)θ −
1

2
γθ T ΣPΣT

Pθ , (29)

subject to θ ∈ K.

In the absence of portfolio constraints, the myopic

portfolio strategy satisfies

θ
myopic
t =

(ΣPΣ⊤
P )−1(µ⊤

Pt − r)

γ
(30)

and so it’s derivative with respect to the state variable, Xt ,

is given by

∂θ myopic
j

∂X j

=
(ΣPΣT

P)−1µ1

γ
. (31)

The path-wise estimator can therefore be computed explicitly

using (22). Because an analytic expression for the g-Term

is unavailable in this case, we assess the performance of

the cross-path regression estimator by comparing the cor-

responding upper bound with the upper bound obtained by

HKW who only used the θ -Term.

The results are displayed in Table 4 where again we

report the optimal value function for comparison purposes.

We see once again that using the regression based estimator

of the g-Term produces a significant relative improvement

to the quality of the upper bound. While not the focus of

this paper, it is worth noting that although all three sub-

optimal strategies produce comparable upper bounds their

corresponding lower bounds can vary significantly. This is

not always the case. See HKW and Haugh and Jain (2007)

for further examples.

Table 4: Regression-based upper bounds: Myopic strategy

γ = 1.5 γ = 3 γ = 5

UBHKW
Myopic 9.20 5.09 3.47

(9.15, 9.24) (5.04, 5.14) (3.42, 3.53)

UB
Regression
Myopic 9.13 4.99 3.37

(9.09, 9.17) (4.94, 5.04) (3.32, 3.42)

VOptimal 9.02 4.92 3.33

We also mention at this point that it is no accident that

the myopic and static upper bounds from HKW coincide.

This occurs only in the case of unconstrained markets and

when only the θ -Term is used to construct the upper bound.

See HKW for further details.
9
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5 CONCLUSIONS AND FURTHER RESEARCH

In this paper we have shown how path-wise Monte-Carlo

estimators and the cross-path regression approach could

be used for estimating a given sub-optimal policy’s value

function and its derivatives. In particular, we have shown

how the second term on the right-hand-side of (13) might

be successfully estimated. This enabled us to compute the

upper bound on the optimal value function that was originally

proposed by HKW. We saw that our estimation algorithm

was able to produce upper bounds that were comparable to

the upper bounds that utilized the analytic expression, when

it was available, for the second term. In the case of the

myopic strategy, we succeeded in improving HKW’s upper

bound that utilized only the θ -Term. While the improvement

was quite small in magnitude, it was still significant given

how close the HKW bound was to the optimal solution.

In conclusion, our results suggest that it should often be

possible to estimate the theoretical upper bound originally

proposed by HKW for generic sub-optimal strategies, even

when the corresponding second term on the right-hand-side

of (13) is not available analytically.

There are several possible directions for future research.

First, we would like to extend the work to the case where

portfolio constraints such as no-borrowing or no short-sales

are imposed. These constraints are considered in HKW and

in Haugh and Jain (2007). The simulation algorithm of this

paper should easily carry over to constrained problems and

so this extension should be very straightforward.

Second, we would like to apply this algorithm to other

classes of sub-optimal strategies such as the strategies result-

ing from approximate dynamic programming (ADP) tech-

niques. (See for example, Brandt et al 2005 and Haugh,

Kogan and Wu 2006.)

Finally, it would be of interest to find a problem where

the upper bound generated by the first term only is signif-

icantly inferior to the upper bound generated by the first

and second terms taken together. While we do not know of

such a problem, it would serve to highlight the significance

of being able to accurately estimate the second term.

REFERENCES

Brandt, M.W., A. Goyal, P. Santa-Clara, and J.R. Stroud.

2005. A Simulation Approach to Dynamic Portfolio

Choice with an Application to Learning About Return

Predictability. Review of Financial Studies 18: 831-873.

Cox, J., and C.-F. Huang. 1989. Optimal Consumption and

Portfolio Policies When Asset Prices Follow a Diffusion

Process. Journal of Economic Theory 49:33-83.
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