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ABSTRACT

We consider the problem of pricing American options when

the volatility of the underlying asset price is stochastic. No

specific stochastic volatility model is assumed for the sto-

chastic process. We propose a simulation-based approach to

pricing such options. Iteratively, the method determines the

optimal exercise boundary and the associated price function

for a general stochastic volatility model. Given an initial

guess of the optimal exercise boundary, the Retrospective

Approximation (RA) technique is used to calculate the as-

sociated value function. Using this function, the exercise

boundary is improved and the process repeated till conver-

gence. This method is a simulation based variant of the

exercise-policy improvement scheme developed in Chock-

alingam and Muthuraman (2007). An illustration of the

method is provided when using the Heston (1993) model to

represent the dynamics of the volatility, together with com-

parisons against existing methods to validate our numerical

results.

1 INTRODUCTION

Options are contracts that give the holder the right to sell

(put) or buy (call) an underlying asset at a pre-determined

strike price. A European option allows the holder to exercise

the option only on a pre-determined future date known as

the expiration date, while an American option allows the

holder to exercise the option at any point in time until the

expiration date. The problem of pricing options play a

central role in financial literature due to their extensive use

in financial markets.

Black and Scholes (1973) derive a closed-form solution

for the price of a European option. No such solution exists,

however, for American options, due to the possibility of early

exercise. Researchers have turned to numerical techniques

to price American options. The methods proposed by Cox,

Ross, and Rubinstein (1979), Kim (1990), Jacka (1991),

Carr, Jarrow, and Myneni (1992), Huang, Subrahmanyam,
9921-4244-1306-0/07/$25.00 ©2007 IEEE
and Yu (1996) and Ju (1998) are some examples. Tilley

(1993), Broadie and Glasserman (1997) and Longstaff and

Schwartz (2001) are examples of methods that use Monte

Carlo (MC) simulation to price an option.

Models under the Black-Scholes setting assume that the

volatility of the underlying asset price is constant. Rubinstein

(1994) provides empirical evidence using implied volatilities

obtained from index options on the S&P 500 that suggests

otherwise. Implied volatilities for in- and out-of-the-money

options are higher than at-the-money options. Assuming

a constant volatility in the Black-Scholes calculations will

therefore lead to options far in-the-money or out-of-the-

money being mispriced. Furthermore, Scott (1987) and the

references therein give evidence that the volatility of the

underlying asset price is not constant and changes over

time. Therefore, models assuming that the volatility of the

underlying asset price is constant are inadequate for pricing

options.

This shortcoming of the Black-Scholes model can be

circumvented by letting the volatility of the underlying

asset price be stochastic as well. Based on Engle (1982),

some researchers model volatility as an ARCH process.

Using diffusion processes to model volatility is a more

popular choice. Hull and White (1987) assume that the

volatility follows a lognormal process and obtain a power

series approximation representing the price of the option. A

mean-reverting Ornstein-Uhlenbeck (OU) process is used to

model volatility in Scott (1987). The solution of the resulting

integral of the Black-Scholes equation over the distribution

function of the volatility, obtained via MC simulation, is

the price of the option. Stein and Stein (1991) also model

volatility as a mean-reverting OU process and derive a

conditional distribution for the underlying asset price. The

option price is obtained by solving an integral expression,

using this distribution, representing the expected payoff.

Heston (1993) uses a square-root process to describe the

dynamics of the volatility and derives a closed-form solution

for the price of the option.
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The above-mentioned papers consider the problem of

pricing a European option when volatility is stochastic. Rel-

atively little attention, however, has been paid to the problem

of pricing an American option when volatility is stochastic.

Existing numerical techniques, such as Clarke and Parrott

(1999), Oosterlee (2003) and Ikonen and Toivanen (2004),

convert the option pricing problem into a linear comple-

mentarity problem (LCP), and solve the LCP to obtain the

price. Zvan, Forsyth, and Vetzal (1998) discretize the aris-

ing Partial Differential Equation (PDE) and solve for the

option by using penalty methods. Simulation techniques for

pricing high-dimensional American options, such as those

proposed by Andersen and Broadie (2004) and Broadie

and Glasserman (2004), can be adapted to price options

when the volatility is stochastic. The simulation-regression

method used by Longstaff and Schwartz (2001) can also be

modified to price such options.

Existing methods for solving the American option prob-

lem do not solve explicitly for the optimal exercise boundary.

The method we propose in this paper is an adaptation of the

exercise-policy improvement scheme developed in Chock-

alingam and Muthuraman (2007), and solves for both the

optimal exercise boundary (or policy) and the associated

price function simultaneously. Beginning with an initial

guess of the exercise policy, the optimal exercise policy and

price function are obtained iteratively.

The paper is structured as follows. Section 2 describes

the option pricing problem in detail. The method used to

obtain the optimal exercise policy is discussed in Section 3.

An integral part of obtaining these policies is the determina-

tion of the value function associated with a particular policy.

We use MC simulation to calculate these value functions.

The details of obtaining the value functions are explained

in Section 4. We present numerical results in Section 5 and

conclude in Section 6.

2 PROBLEM FORMULATION

Consider an American put option written on an underlying

asset that is traded in a Black-Scholes market with a constant

risk-free interest rate r. The asset price Xt at time t is given

by

dXt = µXtdt +σtXtdWt , (1)

σt = f (Yt) and (2)

dYt = θ1(Yt)dt +θ2(Yt)dẐt , (3)

where µ is the constant mean rate of return and σt = f (Yt)
represents the volatility of the underlying asset price by

way of a non-stochastic function f : R → R+. Equation

(3) describes the dynamics of the process Y , where θ1,θ2 :

R → R+ are non-stochastic functions. In Equations (1) and

(3), Wt and Ẑt are two one-dimensional Wiener processes
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with constant correlation ρ ∈ [−1,1], i.e., dWtdẐt = ρdt.

Hence, Ẑt can be written as a linear combination of Wt and

an independent Wiener process Zt such that Ẑt = ρWt +
√

1−ρ2Zt .

Letting x denote the price of the underlying asset at

time t, a put option with strike price K and maturity time

T written on this asset pays max{0,K − x} ≡ (K − x)+ at

any time t ∈ [0,T ]. The price of this option at a certain

t, x and y is denoted by p(t,x,y), where y represents the

value of the process Y at time t. Our primary interest lies

in determining the price function p. Similar to the constant

volatility case, the price of the option at a particular t, x

and y is given by

p(t,x,y) = sup
τ∈Π

E
Q[e−r(τ−t)(K −Xτ)

+], (4)

where E
Q refers to the expectation taken with respect to the

martingale measure Q and Π represents the set of stopping

times after t. It should be noted that unlike the constant

volatility case, Q is not unique, as the market we have just

described is an incomplete one, as a result of volatility of not

being a traded asset. There are two sources of randomness,

namely Wt and Ẑt , but only one underlying asset, leading to

market incompleteness. The difficulty in pricing American

options arises from the fact that the optimal stopping time

τ∗ = supτ∈Π is not known a priori.

Analogous to the constant volatility case, there exists

an optimal exercise boundary (or policy) that determines

the price of the option. This policy is a surface, x = b(t,y),
b : R+ ×R → R+, and dictates how an investor should

behave. If x > b(t,y), the investor should hold the option,

and exercise it otherwise. Given this policy, determining τ∗

becomes trivial, as the optimal stopping time is also defined

as

τ∗ = inf
τ∈Π

Xτ ≤ b(τ,y). (5)

Essentially, τ∗ is the first time that the process describing the

underlying asset price strikes the exercise boundary b. Thus,

given b, the optimal stopping time τ∗ can be determined,

which in turn allows us to determine the option price. The

method we propose uses this fact to calculate the price

function p.

We now list some properties, which will be used in

later sections;

b(T,y) = K, (6)

lim
x↓b

px(t,x,y) = −1 and (7)

p(t,x,y) ≥ (K − x)+, (8)

where subscripts refer to derivatives. Equation (6) simply

states that at time T , the value of the boundary is K, since

no further action is possible after T . If the asset price is
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less than K, the option should be exercised immediately

and be allowed to expire worthless otherwise. Equation

(7) describes the behavior of p near b. The final equation,

Equation (8), states that at all times, the price of an American

option should be no less than the value of the immediate

payoff, for there would be no reason to hold the option

otherwise.

3 EXERCISE POLICY IMPROVEMENT

Consider the use of an arbitrary exercise policy bn. With such

a policy, the investor should hold the option if x > bn(t,y)
and hold it otherwise. We call the price function obtained

using this policy, pn, the value function, so as to avoid

confusion with the price function obtained using the optimal

exercise policy, p. The price function can therefore be

viewed as the ‘best’ value function, i.e., the supremum of

all value functions over all possible exercise policies. Now,

if bn(t,y) < b(t,y) for all t and y, it is shown in Chockalingam

and Muthuraman (2007) that pn violates Equations (7) and

(8). As a result of this violation, it is possible to pick a

new exercise policy bn+1(t,y) > b(t,y) that is associated

with a price function pn+1 > pn. There are several choices

of bn+1 that assures of policy improvement, but all such

choices do not guarantee convergence. It turns out that

picking the exercise policy to be the set of furthest points

where pn
x(t,x,y) < −1, i.e.,

bn+1(t,y) =

{

sup
bn(t,y),∞)

x | pn
x(t,x,y) < −1

}

, (9)

guarantees us of policy improvement and monotone con-

vergence. Policy improvement will not be possible once

Equation (7) is satisfied. At this point, the method con-

verges to the optimal exercise policy b. The value function

associated with this policy is the price function p.

As in any numerical method, the infinite state space

has to be bounded and discretized. We consider the space

[0, T̂ ]× [0,K]× [−Ŷ1,Ŷ2], where T̂ ,Ŷ1,Ŷ2 ∈ R+ are chosen

large enough so as to encompass times and volatilities of

interest to us. The asset-price axis is bounded at K since

K is a guaranteed upper bound for the optimal exercise

policy. Now, the time axis, asset-price axis and volatility

axis are discretized into d, c and l pieces yielding grid

steps δt = T̂
d

, δx = K
c

and δy = Ŷ1+Ŷ2
l

respectively. For

j = 0, . . . ,d, s = 0, . . . ,c and r = 0, . . . , l, the price of the

option at node ( j,s,r) obtained using the policy bn is denoted

by pn(t j,xs,yr). Note that td = T̂ , xc = K, y0 = −Ŷ1 and

yl = Ŷ2.

To procedure is begun with an initial guess of the exer-

cise policy b0. The only condition placed on this guess is that

it is less than b0(t,y) < b(t,y). While the perpetual bound-

ary is a guaranteed lower bound for the exercise boundary in
994
the case of constant volatility, no such analogue exists in the

stochastic volatility case. Nonetheless, a b0(t,y) < b(t,y)
guarantees that p0

x < 1 at the boundary b0. This test can be

used to confirm that b0(t,y) < b(t,y), or else a restart with

another guess can be made. Now, using b0, p0(td−1,xs,yr)
is obtained for all s and r. The MC simulation used to

obtain this is discussed in the next section. For each s and

r, the first derivative, p0
x is then calculated, and the new

policy, b1(td−1,yr), chosen according to Equation (9) for all

r. The new value function, p1(td−1,xs,yr), is determined

and the process repeated until convergence to within a preset

tolerance. The method steps back in time to td−2, and the

process starts anew, with b0 again. This is done repeatedly

till time t0, at which point calculations terminate, leaving

us with b and p. The convergence of this procedure to the

option price, is provided in Chockalingam and Muthuraman

(2007) for the Heston (1993), Hull and White (1987), Stein

and Stein (1991) and Scott (1987) models.

4 PRICE FUNCTION DETERMINATION

Given an exercise policy bn, the associated value function

pn has to be determined so that Equation (9) can be used to

obtain a new policy bn+1. We use the Retrospective Approx-

imation (RA) technique proposed by Chen and Schmeiser

(2001) to determine these value functions.

Consider the policy bn, i.e., the exercise policy used

during iteration n. At node (t j,xs,yr), if xs ≤ bn(t j,yr), we

have pn(t j,xs,yr) = (K − xs)
+. If, however, xs > bn(t j,yr),

the value of the option at this node is determined by MC

simulation. First, the space [t j, T̂ ] is further discretized into

k uniform pieces, where k is a fixed constant determined

beforehand. Each of these times is denoted by th
j , where

h = 0, . . . ,k, with t0
j = t j, tk

j = T̂ and a grid step of δh =
T̂−t j

k
.

Intermediate values of the exercise policy from t j to T̂ have

to be obtained by interpolation for all r. Now, mn sample

paths of the asset price have to be generated, starting from the

node (t j,xs,yr). The RA technique is used to control sample

path generation. The number of sample paths to be used

during iteration n depends on the number of sample paths

used during iteration n−1. During earlier iterations, lesser

accuracy is required. As the iteration number increases,

however, greater accuracy is needed, so as to allow the

method to converge to the optimal exercise policy. Thus,

the number of sample paths used during each iteration grow

according to a pre-specified rule, namely mn = amn−1, where

a > 1 is also a fixed constant determined beforehand.

Sample-path generation is dependent on the specific

stochastic volatility model chosen. For illustrative purposes,

we consider the Heston (1993) model. Under this model,
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Equations (1) - (3) become

dXt = rXtdt +σtXtdWt , (10)

σt =
√

Yt and (11)

dYt = (κ(m′−Yt)−ΛYt)dt +υ
√

YtdẐt , (12)

where κ refers to the rate at which the process Y reverts

to its mean value of m′ and υ refers to the volatility of

the process, with κ,m′,υ ∈ R+. In Equation (12), the Λ
term refers to the volatility risk premium which arises as a

result of market incompleteness. Thus, in Equation (10), µ
is replaced by r. Recall from Section 2 that the probability

mesure Q is not unique. In fact, choosing Q is equivalent

to choosing Λ. For simplicity, we assume that Λ ∈ R is a

constant.

We now explain how a single observation of the asset

price is obtained. Generating a sample path is a straight-

forward extension. By Equations (10) - (12), we have

X
th
j

= X
th−1
j

(1+ rδh +
√

Y
th
j
δhN and (13)

Y
th
j

= Y
th−1
j

(1− (κ −Λ)δh)

+κm′δh +υ
√

Y
th−1
j

Ẑ, (14)

where N and Ẑ are two N(0,1) random variables with

correlation ρ . To obtain Ẑ, first, two independent

N(0,1) random variables, N and Z, are generated. Then,

Ẑ = ρN +
√

1−ρ2Z. Now, substituting values into Equa-

tion (14) yields Y
th
j
, which is in turn used in Equation (13)

with N to yield X
th
j
. Repeating this process provides a com-

plete sample path from t j to T̂ . Note that in Equation (13),

Xt0
j
= xs and in Equation (14), Yt0

j
= yr, when the sample

path is started from node (t j,xs,yr).
Now say mn sample paths have been generated, indexed

by i, such that i = 1, . . . ,mn. For each path i, the first

time, τi, that the path strikes the policy bn between t j and

T̂ , along with the value of the policy at that time, bn
i ,

is recorded. The value of the option along that path is

then pn,i(t j,xs,yr) = e−r(τi−t j)(K − bn
i ). Finally, when the

value of the option along all mn paths has been calculated,

the value of the option at the node (t j,xs,yr) is given by

pn(t j,xs,yr) = ∑
mn
i=1 pn,i(t j,xs,yr)/mn.

5 AN ILLUSTRATIVE EXAMPLE

We provide an numerical example to demonstrate the validity

of the method for the stochastic volatility model proposed

by Heston (1993). We compare results obtained using

the simulation method against results obtained using the

finite difference method proposed in Chockalingam and

Muthuraman (2007). Table 1 describes the model parameters
995
used for the example. Tables 2 and 3 list the algorithm

parameters used for the simulation-based method and the

finite-difference method.

Table 1: Model parameters

Model Parameters Values

K 10

T 0.25 years

r 0.1

κ 5

m′ 0.16

υ 0.9

ρ 0.1

Λ 0

Table 2: Simulation (Sim) parameters

Simulation Parameters Values

Ŷ1 0

Ŷ2 1

T̂ 0.25

c 80

l 32

d 16

k 250

a 1.5

m0 100

ε 0.05

Table 3: Finite difference (FD) parameters

FD parameters Values

X̂ 20

Ŷ1 0

Ŷ2 1

T̂ 0.25

c 80

l 32

d 16

The algorithm needs to be given a guess of the boundary

before computations can take place. We set the initial guess

of the boundary to be b0(t,y) = 1. Table 4 provides a

comparison of option prices obtained using the simulation-

based method and the finite-difference method for 5 different

asset prices as 5 different volatilities.

As the table demonstrates, option prices obtained using

the simulation-based method are comparable to option prices

obtained using the finite-difference scheme. As with any

simulation technique, greater accuracy can be obtained by

increasing the number of sample paths used, or in this case,

by either increasing the initial number of sample paths or

the retrospective approximation parameter.
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Table 4: Comparison of option prices

Stock price, x

8 9 10 11 12

y = 0.25

Sim 2.127 1.347 0.796 0.446 0.235

FD 2.074 1.325 0.785 0.440 0.238

y = 0.375

Sim 2.175 1.448 0.928 0.573 0.343

FD 2.149 1.448 0.928 0.572 0.344

y = 0.5

Sim 2.229 1.548 1.047 0.687 0.446

FD 2.225 1.558 1.052 0.691 0.446

y = 0.625

Sim 2.288 1.638 1.150 0.787 0.543

FD 2.299 1.657 1.163 0.800 0.543

y = 0.75

Sim 2.339 1.724 1.243 0.883 0.630

FD 2.367 1.747 1.262 0.898 0.633

6 CONCLUSION

When the volatility of an asset is assumed to be constant,

pricing an American option written on that asset is not trivial.

The volatility of an asset, however, is not constant. As such,

we have considered the problem of pricing an American

option written on an underlying asset whose volatility is

stochastic. A simulation-based method similar in spirit to

the finite-difference scheme proposed in Chockalingam and

Muthuraman (2007) is used to calculate both the optimal

exercise policy and the price function. An example was

provided to illustrate the validity of results obtained using

this method.

It is clear that there is further scope for improvement.

The effects of the simulation parameters, such as the rate at

which the number of sample paths should increase, have not

been studied. A better of understanding of these parameters

in this context could lead to rules being devised according to

which these parameters should be chosen. The method we

have described pertains to the one asset case. Another area

for development would be to extend the algorithm to price

multidimensional options, i.e., options written on multiple

underlying assets.
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