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ABSTRACT

Portfolio credit derivatives that depend on default correlation

are increasingly widespread in the credit market. Valuing

such products often entails Monte Carlo simulation. How-

ever, for large portfolios, plain Monte Carlo simulation can

be slow. In this paper, we develop approximation methods

for pricing collateralized debt obligation (CDO) tranches in

the widely used factor copula approach. We also discuss

using the approximations as control variates to improve the

precision of Monte Carlo estimates. These approximation

methods and control variate techniques could be applied to

pricing other portfolio credit derivatives as well.

1 INTRODUCTION

A portfolio credit derivative is a contract tied to a portfolio

of defaultable assets, such as corporate bonds and credit

default swaps. Its payoff depends on the default experience

of the underlying assets. One of the most popular types of

portfolio credit products is the collateralized debt obligation

(CDO). In a traditional CDO, the arranger redistributes

credit losses on the underlying assets into several tranches

(equity, mezzanine, and senior) and issues notes backed

by each tranche. Tranches with lower seniority absorb

losses before those with higher seniority and earn a higher

coupon rate to compensate for the higher risk. See, e.g.,

Bruyere et al. (2006) and Schönbucher (2003) for general

background on these types of contracts.

Valuing portfolio credit derivatives requires a model

to describe the joint distribution of the default times of

the underlying assets in the portfolio. We assume the

risk-neutral default probability for each asset exists and

is, in effect, chosen by the market. In practice, the mar-

ginal default distribution of the time to default is typ-

ically implied from related market information, such as

spreads on corporate bonds or single-name default swaps

(see, e.g., Duffie and Singleton (2003)). The dependence

among the default times is usually specified by a cop-
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ula model. The most widely used mechanism is the

Gaussian copula model (Gupton, Finger, and Bhatia 1997;

Li 2000). As pointed out in many articles (see, for example,

Andersen, Sidenius, and Basu 2003), introducing a factor

structure to the correlation matrices can yield significant im-

provements in computing speed. The one-factor Gaussian

copula model has become the market standard for many

purposes.

Monte Carlo simulation is usually required in com-

puting prices or sensitivities of portfolio credit derivatives

in multifactor models. However, calculation through plain

Monte Carlo simulation can be slow. To address this diffi-

culty, a few techniques have been introduced to accelerate

computations for CDOs and other portfolio credit deriva-

tives by approximating the conditional portfolio loss distri-

bution. Andersen, Sidenius, and Basu (2003) approximate

all losses as multiples of a basic loss unit, which allows the

construction of the loss distribution through a recursive pro-

cedure. Hull and White (2004) develop a similar recursive

method that divides potential losses into buckets, computes

the probability of each bucket, and replaces the loss dis-

tribution in each bucket with its mean. Both methods are

based on factor reduction and introducing some coarseness

in loss levels.

In this paper, we develop an alternative approximation

approach. Our method uses exact calculation of the distri-

bution of the number of defaults, which is more tractable

than the loss distribution. We then use two distributions to

approximate the loss distribution conditional on the num-

ber of defaults, and thus construct an approximation of the

portfolio loss distribution. In the special case of a homo-

geneous portfolio, the approximation distribution replicates

the actual loss distribution. We give a detailed description

of our methods, and analyze the cases where these methods

are good and where they are not. We also show how to use

the approximation methods to construct effective control

variates that can be applied for variance reduction when the

approximation itself is not sufficiently accurate to replace

simulation.
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The rest of this paper is organized as follows. Section 2

provides background on CDOs and the Gaussian copula

model. Section 3 presents our approximation methods in

the case of independent default times, and Section 4 extends

our methods to the dependent default time case in the factor

Gaussian copula model. Section 5 discusses a control variate

technique for Monte Carlo simulation. Section 6 concludes

the paper.

2 PROBLEM DESCRIPTION

This section gives a brief description of the credit derivatives

we consider and reviews the popular Gaussian copula model

with factor structure.

2.1 Collateralized Debt Obligations

We consider credit derivatives tied to a portfolio of N

underlying assets subject to default, such as loans, bonds,

and single-name credit default swaps. The value of N could

vary from five to a few hundred. Each asset is associated

with a default time τi and a recovery rate ri, i = 1, . . . ,N.

Let τi = ∞ if the ith asset never defaults. For simplicity,

we assume all recovery rates are constant and all asset

notionals are 1. (In fact, differences in asset notionals

could be absorbed into differences in recovery rates.) For

convenience, we define τ = (τ1, . . . ,τN).
In a CDO, credit losses on a pool of defaultable assets are

tranched and passed to different investors. Lower seniority

tranches act as cushions against losses in higher seniority

tranches. In the usual structure of a CDO, a tranche absorbs

losses from an attachment point Sl to a detachment point

Su. The cashflows of this tranche are as follows. At dates

0 < T1 < .. . < Tm ≤ T , where T is the maturity date, the

tranche holder receives payment proportional to the notional

principal left in the tranche. If the ith asset defaults, it causes

a deterministic loss of li = 1−ri, called the loss given default

(LGD). Order the assets so that l1 ≤ ·· · ≤ lN . For simplicity,

we assume that the net default payments occur only at the

coupon dates T1, . . . ,Tm.

Let L(t) be the cumulative loss on the collateral portfolio

at time t ≤ T , i.e., L(t) = ∑N
i=1 li1(τi ≤ t). The cumulative

loss on the tranche at time t is

M(t) = (L(t)−Sl)
+ − (L(t)−Su)

+,

where the “+” means the positive part of the value.

The discounted payoff of a CDO tranche can be written

as the difference between a default payment leg and a

premium payment leg,

V (τ) = Vde f (τ)−Vpre(τ).
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To define the terms on right, let D(t) be the discount factor

for the interval from 0 to t. The discounted payoff of the

default payment leg is

Vde f (τ) =
m

∑
i=1

D(Ti)(M(Ti)−M(Ti−1)) ,

where T0 = 0. Ignoring the accrual factor for payment days,

the discounted payoff of the premium payment leg is

Vpre(τ) = c
m

∑
i=1

D(Ti)(Su −Sl −M(Ti)),

where the constant c is the spread or the coupon rate of

this tranche. Thus, the payoff of the CDO tranche can be

priced as

V (τ) = (1+ c)
m

∑
i=1

D(Ti)M(Ti)−
m−1

∑
i=1

D(Ti+1)M(Ti)

−c(Su −Sl)
m

∑
i=1

D(Ti). (1)

We observe that to compute E(V (τ)) we only need

the first moment of the cumulative loss on the tranche at

each date T1, . . . ,Tm. Therefore, we are able to replace

the problem of pricing a CDO tranche by a sequence of

subproblems that estimate

E(M(t)) = E((L(t)−Sl)
+)−E((L(t)−Su)

+) (2)

at t = T1, . . . ,Tm. We will mainly discuss the subproblem in

the rest of the paper. To calculate E(M(t)), we approximate

(or simulate) L(t).

2.2 The Gaussian Copula Model

The expectations in (1) and (2) are taken in the risk-neutral

measure, where the joint distribution of the default times,

f (t1, . . . , tN), has not yet been specified. The marginal

distribution of each τi is usually specified as follows:

Fi(t) = P(τi < t) ≡ 1− exp

(

−
∫ t

0
λi(s)ds

)

,

where P is the risk-neutral measure and λi is the corre-

sponding default hazard rate function. The function Fi(t) is

typically extracted from the market prices of credit default

swaps or bonds, and is assumed known for all t.

The Gaussian copula (Gupton et al. 1997; Li 2000) is

a widely used mechanism for specifying a joint distribu-

tion for the default times consistent with given marginals,

and will provide a useful and illustrative example. In the

Gaussian copula model, the dependence among τ1, . . . ,τN
7
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is determined by underlying jointly normal random vari-

ables W1, . . . ,WN . Each Wi has a standard normal distrib-

ution Φ, so Φ(Wi) is uniformly distributed on (0,1) and

τi = F−1
i (Φ(Wi)) has distribution Fi. However, W1, . . . ,WN

are correlated, with covariance matrix Σ, and this introduces

(and, indeed, completely characterizes) dependence among

the default times τ1, . . . ,τN . We will make the simplifying

assumption that Σ has full rank so that no asset has its

default time completely determined by those of the other

assets.

2.3 Factor Models

In practice, the correlations determined by Σ are often

specified through a factor model of the form

Wi = ai1Z1 + · · ·+aidZd +biεi, i = 1, . . . ,N,

or, in matrix-vector form,

W = AZ+Bε, (3)

in which

• Z1, . . . ,Zd , d < N, are systematic risk factors, nor-

malized to be independent standard normals;

• εi, i = 1, . . . ,N, are idiosyncratic risks associated

with the individuals assets, N(0,1) distributed and

independent of each other and of Z1, . . . ,Zd ;

• ai1, . . . ,aid are the factor loadings for the ith asset,

and ∑d
k=1 a2

ik ≤ 1;

• bi =
√

1−∑d
k=1 a2

ik, so that Wi is also N(0,1) dis-

tributed.

The correlation matrix of W implied by (3) is AA⊤ +B2;

so, for consistency, we require that this matrix equal Σ.

One of the most important features of factor models is

that W1, . . . ,WN become conditionally independent by fixing

the factors Z1, . . . ,Zd .

3 APPROXIMATION METHODS WITH

INDEPENDENT DEFAULT TIMES

The value of a CDO tranche is completely determined by the

distribution of cumulative portfolio loss. This distribution is

discrete with a finite number of possible values. However,

the number of possibilities is still quite large and could

grow exponentially when the number of assets increases.

To find a good discretization of the loss distribution might

be very challenging. However, it is much easier to get the

distribution of the number of defaults in the portfolio. In

particular, when all underlying names are independent, the

probability of exactly n defaults can be determined recur-
978
sively (as in Andersen et al. 2003, Hull and White 2004,

and Chen and Glasserman 2006).

In this section, instead of constructing the portfolio

loss distribution directly, we consider approximating the

loss distribution given the number of defaults in the pool.

Through this approach, we develop approximation methods

for valuing CDO tranches, and we present some numerical

examples. We begin by considering the case of independent

default times, a restriction in force throughout this section.

3.1 Notation and Basic Computation

We consider a single tranche CDO with N underlying names

with loss l1 ≤ ·· · ≤ lN . We are interested in the problem of

estimating

E(M(t)) = E((L(t)−Sl)
+)−E((L(t)−Su)

+)

for a given time t.

We use p1, . . ., pN to denote the default probabilities

F1(t), . . ., FN(t), and sort them in ascending order p(1) ≤
. . . ≤ p(N). A simple and fast recursive algorithm allows

calculation of the default probabilities. Let Yi(t) = I(τi < t),
i.e., the indicator that the ith asset defaults before t. Then

Yi(t) = 1 with probability pi and is otherwise 0. To explain

our algorithm, we introduce a Markov chain (indexed by i

with t fixed)

Xi(t) =
i

∑
j=1

Yj(t), i = 0,1, . . . ,N,

that counts the number of defaults as we go through the

number of underlying assets. That this process is indeed

Markov follows from the independence of the default indi-

cators Yj. The chain is absorbed at time N into any of the

states {0,1, . . . ,N}. Define

Pk(n; t) = P(Xk(t) = n);

this is the probability of n defaults in the first k assets

before time t. Then the probability mass function of the loss

distribution PN(n; t) can be obtained recursively following

the rule

Pk+1(n; t) = pk+1Pk(n−1; t)+(1− pk+1)Pk(n; t),

with P0(0; t) = 1 and let Pk(n; t) = 0 if n > k. This recur-

sive method is a special case of the method introduced in

Andersen et al. (2003), corresponding to all assets having

the same LGD.

Suppose the number of defaults in the portfolio is n,

which could be any value between 0 and N. Let L(t|n)
denote the total loss in the portfolio at time t given exactly



Chen and Glasserman
n credit defaults in the pool. Because l1 ≤ l2 ≤ ·· · ≤ lN ,

n

∑
i=1

li ≤ L(t|n) ≤
N

∑
i=N−n+1

li.

When n = 0 or N, L(t|n) = 0 or ∑N
i=1 li with probability 1.

When n = 1,

L(t|n) = li, w.p.
pi

1− pi

∏N
j=1(1− p j)

PN(1; t)
.

Therefore, E(M(t)|n) is easily computed when n = 0, 1,

or N. Indeed, E(M(t)|0) = 0 and E(M(t)|N) = Su − Sl .

What we are interested in is the distribution of L(t|n) when

1 < n < N.

For convenience, we use nl and nu to denote the minimal

and maximal values of n which make Sl ≤ L(t|n) ≤ Su. It

is not hard to see that

nl = min
n
{

n

∑
i=1

lN−i ≥ Sl}, nu = max
n

{
n

∑
i=1

li ≤ Su}.

We use Ln
min, Ln

max, Ln
mod to denote the minimum, maximum,

and mode of L(t|n), i.e.,

Ln
min =

n

∑
i=1

li, Ln
max =

N

∑
i=N−n+1

li, Ln
mod ≈

N

∑
i=N−n+1

l(i),

where the last is an approximation of the real mode. Recall

that p(1) ≤ ·· · ≤ p(N), and this is the ordering of the l(i)
used in the last expression.

In this section, we will use different distributions to

approximate the distribution of L(t|n). Once we have the

approximate distribution, we are able to compute M(t)
analytically.

3.2 Homogeneous Approximation

The most straightforward approximation is the homogeneous

approximation, i.e., we use a homogeneous portfolio, where

each asset has LGD of l̄ = ∑N
i=1 li/N, to approximate the

real portfolio. Under this approximation, Ln
min = Ln

mod =
Ln

max = nl̄, and then the conditional loss on the tranche is

deterministic,

M(t|n) = (nl̄ −Sl)
+ − (nl̄ −Su)

+.

The expected tranche loss is given by

E(M(t)) =
N−1

∑
n=1

M(t|n)PN(n; t)+(Su −Sl)PN(N; t).
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The value of the CDO tranche in the homogeneous portfolio

could then be calculated analytically, and is a good approx-

imation of the desired tranche value in the real portfolio.

3.3 Approximation with Triangular Distribution

A simple way to incorporate additional information about the

conditional loss distribution is to use a triangular distribution

with endpoints Ln
min and Ln

max and mode Ln
mod; i.e., the

distribution with density

fn(x) =















2(x−Ln
min)

(Ln
max−Ln

min
)(Ln

mod
−Ln

min
) , Ln

min ≤ x ≤ Ln
mod;

2(Ln
max−x)

(Ln
max−Ln

min
)(Ln

max−Ln
mod

) , Ln
mod < x ≤ Ln

max;

0, otherwise.

With this approximation, we are able to get the close form of

E(M(t)|n). The possible expected values of M(t) conditional

on different n can be calculated by Proposition 1.

Proposition 1 If L(t|n) (1 < n < N) has density fn, then

the value of E((L(t|n)−S)+) for a given S is

• (Ln
min +Ln

mod +Ln
max)/3−S, if Ln

min ≥ S;

•
(S−Ln

min)3

3(Ln
max−Ln

min
)(Ln

mod
−Ln

min
) +(Ln

min + Ln
mod + Ln

max)/3−

S, if Ln
min < S < Ln

mod;

• (Ln
max−Su)3

3(Ln
max−Ln

min
)(Lm

max−Ln
mod

) , if Ln
mod ≤ S < Ln

max;

• 0, if Ln
max ≤ S.

Recall that E(M(t)|n) = E((L(t|n)− Sl)
+)− E((L(t|n)−

Su)
+), and thus it is straightforward to find a closed form

expression for E(M(t)|n) according to the locations of Ln
min,

Ln
mod, and Ln

max. Furthermore, the expected value of M(t)
is given by

E(M(t)) =
N−1

∑
n=1

E(M(t)|n)PN(n; t)+(Su −Sl)PN(N; t).

3.4 Approximation with Binomial Distribution

The conditional loss distribution of L(t|n) is discrete with

possible values lying between Ln
min and Ln

max and mode

Ln
mod. We therefore consider a binomial approximation to

L(t|n). For the approximation, we suppose there are K +1

possible outcomes of L(t|n) in [Ln
min,L

n
max] and the success

probability of q. A success means an increase of loss ∆l.

We use the binomial distribution with parameters q and K

to approximate the conditional loss distribution, yielding

the probability mass function is

P(L(t|n) = Ln
min + i∆l) =

K!

i!(K − i)!
qk(1−q)K−i.
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A reasonable choice for ∆l is the smallest difference

between two LGDs. We then let K = ⌈(Ln
max −Ln

min)/∆l⌉
and reset ∆l = (Ln

max −Ln
min)/K to make sure that Ln

max is

also the maximal outcome in our binomial distribution. The

mass function of the binomial distribution is maximized at

⌊(K +1)q⌋, so we choose q as

q =
(Ln

mod −Ln
min)

(K +1)∆l
=

n(Ln
mod −Ln

min)

(K +1)(Ln
max −Ln

min)
.

Set K = 0 and q = 0 if Ln
max = Ln

min.

After selecting q and K, the conditional expected loss

on the tranche at t is approximated by

E(M(t)|n) =
K

∑
i=0

E(M(t)|L(t|n),n)P(L(t|n) = Ln
min + i∆l)

and

E(M(t)) =
N−1

∑
i=1

E(M(t)|n)PN(n; t)+(Su −Sl)PN(N; t).

3.5 Remarks

We can expect that when the underlying portfolio is close

to homogeneous, the three approximation methods should

work very well. In fact, when the portfolio is homogenous,

the triangular approximation and binomial approximation

reduce to the homogeneous approximation, and all methods

give the exact tranche value. However, if the underlying

assets have quite different LGDs, these methods might have

significant error.

The complexity of the computation in the triangular

and binomial approximation methods is always O(N2).

3.6 Numerical Examples

We illustrate the approximation methods discussed so far

with some numerical results. In these examples, we suppose

a continuously compounded interest rate of r = 5%. We

will look at the 0−3%, 3%−7%, 7%−10%, 10%−15%,

and 15%−30% CDO tranches. Each CDO has a portfolio

of 200 underlying assets and a maturity of 5 years. The

coupon rate of each tranche is 3% and is paid quarterly. All

Monte Carlo simulation results are based on 105 replications.

These parameters will be used in subsequent sections as

well.

In our test examples, the underlying assets consist of

four groups. The assets in groups 1, 2, 3, and 4 have hazard

rates of 0.02, 0.025, 0.03, and 0.04 respectively. In CDO

C1, the assets in groups 1 to 4 have LGDs of 0.63, 0.64,

0.66 and 0.67, respectively. In CDO C2, the assets have

LGDs of 0.5, 0.6, 0.7 and 0.8. The results are displayed

in Tables 1 and 2.
980
Table 1: Numerical Results for CDO C1

Tranche MC Homog. Triangular Binomial

0−3%
168.83

168.59 169.00 169.67
(0.05)

3−7%
110.93

110.00 112.52 114.51
(0.11)

7−10%
15.01

14.43 15.59 17.40
(0.06)

10−15%
-4.21

-4.29 -4.14 -4.02
(0.01)

15−30%
-15.82689

-15.82691 -15.82685 -15.82701
(0.00005)

Table 2: Numerical Results for CDO C2

Tranche MC Homog. Triangular Binomial

0−3%
170.04

168.59 179.62 174.69
(0.05)

3−7%
116.31

110.00 158.52 138.69
(0.11)

7−10%
18.66

14.43 29.99 38.70
(0.07)

10−15%
-3.57

-4.29 -1.72 3.56
(0.02)

15−30%
-15.8265

-15.8269 -15.8189 -15.7862
(0.0002)

The computation of each of the three approximations

is practically instantaneous. The approximation methods

work well when the LGDs are close to each other (CDO

C1), but not when the LGDs vary widely (CDO C2). The

performance of the binomial approximation depends highly

on the choice of K and q.

4 THE APPROXIMATION METHODS WITH

DEPENDENT DEFAULT TIMES

We now return to the general case in which the default

times are linked through the Gaussian copula model. In

this setting, τ1, . . . ,τN are conditionally independent, given

the common factors Z1, . . . ,Zd . Therefore, we are able to

avoid some computation by applying the approximations

after sampling the factors.
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4.1 The Conditional Approximations

In a factor Gaussian copula model, the default times are

given by τi = F−1
i (Φ(Wi)), i = 1, . . . ,N, and the Wi admit

the representation in (3). Conditioning on the factors yields

FZ
i (t) ≡ P(τi ≤ t|Z)

= P(F−1
i (Φ(Wi)) ≤ t|Z)

= P(biεi ≤ Fi(t)−
d

∑
k=1

aikZk)

= Φ(Fi(t)−
d

∑
k=1

aikZk). (4)

Conditional on the factors Z, the underlying assets in

the portfolio become independent, so we can apply the

approximation methods discussed in Section 3, but with

Fi(t) replaced by FZ
i (t).

4.2 Numerical Examples

Now we consider CDOs C3 and C4, based on modifying

CDOs C1 and C2, respectively. The only difference is that

the underlying assets in CDOs C3 and C4 are correlated

through a one-factor Gaussian copula model. The factor

loading for groups 1–4 in the portfolio of CDOs C3 and C4

are 0.2, 0.3, 0.4, and 0.5 respectively. We use a one-factor

model for simplicity.

We combine the approximations with numerical inte-

gration over the factor in these examples; the computing

time of the approximation method is about one percent

of the time for Monte Carlo simulation. The results are

displayed in Tables 3 and 4.

Table 3: Numerical Results for CDO C3

Tranche MC Homog. Triangular Binomial

0−3% 144.8 (0.1) 144.7 144.7 144.6

3−7% 90.0 (0.3) 89.2 90.5 91.5

7−10% 29.6 (0.2) 28.9 29.7 30.7

10−15% 17.7 (0.2) 17.0 17.9 9.2

15−30% -6.4 (0.1) -7.0 -6.6 -15.5

We can see a similar pattern as in the independent

case. The approximation methods work well only when

the underlying assets have similar LGDs. The performance

of the homogeneous approximation is much more stable

than the other two methods. When the underlying portfolio

is close to homogeneous, the triangular approximation is

better than the homogeneous approximation, but is worse

when the underlying portfolio is no longer “homogeneous”.

Both work much better than the binomial approximation.
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Table 4: Numerical Results for CDO C4

Tranche MC Homog. Triangular Binomial

0−3% 144.6 (0.1) 144.7 150.2 143.0

3−7% 92.5 (0.3) 89.2 116.3 104.3

7−10% 32.0 (0.2) 28.9 51.6 41.8

10−15% 21.0 (0.2) 17.0 33.2 27.1

15−30% -3.6 (0.2) -7.0 -2.7 -10.2

5 CONTROL VARIATE METHOD FOR

MONTE CARLO SIMULATION

The approximation methods we discuss in previous sections

work well only when the underlying portfolio is close to

homogeneous. In more general cases, it would be difficult to

determine the magnitude of the approximation error. More-

over, in multifactor models, simulation becomes necessary

and applying approximation methods has no advantage (and

could even be worse than plain Monte Carlo). Improving

simulation accuracy becomes the key problem we need to

solve.

One way to improve the simulation accuracy is to apply

the control variate technique, one of the most effective vari-

ance reduction techniques. Recall that in the homogeneous

portfolio case, we are able to calculate the tranche value

analytically. Using a homogeneous portfolio, where each

asset has LGD of l̄ = ∑N
i=1 li/N, to approximate the real

portfolio, we are able to calculate the tranche value on the

approximate portfolio. The value of the new tranche is then

an attractive control variate for the desired tranche value.

Explicitly, we define the control variate as

V̂ (τ) = (1+ c)
m

∑
i=1

D(Ti)M̂(Ti)−
m−1

∑
i=1

D(Ti+1)M̂(Ti)

−c(Su −Sl)
m

∑
i=1

D(Ti),

where M̂(t) = (nl̄ −Sl)
+ − (nl̄ −Su)

+, given that there are

n defaults before t. In our control variate method, we use

V (τ)− β̂ (V̂ (τ)−E(V̂ (τ)) as an unbiased estimator of the

desired tranche value. The optimal coefficient β is given,

as usual, by

β =
Cov(V (τ),V̂ (τ))

Var(V̂ (τ))
;

we use the sample estimate β̂ calculated from the simulated

replications. The exact value of E(V̂ (τ)) can be calculated

in the independent case or in a one-factor model. In multi-

factor models, we replace it with its conditional expectation

E(V̂ (τ)|Z), since V̂ (τ)−E(V̂ (τ)|Z) has expectation zero.
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We use CDOs C1, C2, C3, and C4 as examples to

illustrate our control variate method. In all of the exam-

ples, the control variate method reduces the standard error

significantly (especially in the correlated assets case), and

has almost the same computing time as plain Monte Carlo

simulation.

Table 5: Numerical Results for CDO C1

Tranche Plain MC Control Variate

0−3% 168.83 (0.05) 168.832 (0.001)

3−7% 110.9 (0.1) 110.884 (0.003)

7−10% 15.01 (0.06) 14.972 (0.002)

10−15% -4.21 (0.01) -4.2138 (0.0006)

15−30% -15.82689 (5E-5) -15.826882 (8E-6)

Table 6: Numerical Results for CDO C2

Tranche Plain MC Control Variate

0−3% 170.04 (0.05) 170.050 (0.008)

3−7% 116.3 (0.1) 116.25 (0.02)

7−10% 18.66 (0.07) 18.63 (0.01)

10−15% -3.57 (0.02) -3.579 (0.005)

15−30% -15.8265 (0.0002) -15.8264 (0.0001)

Table 7: Numerical Results for CDO C3

Tranche MC Plain MC Control Variate

0−3% 144.8 (0.1) 144.650 (0.002)

3−7% 90.0 (0.3) 89.621 (0.002)

7−10% 29.5 (0.2) 29.331 (0.002)

10−15% 17.7 (0.2) 17.553 (0.002)

15−30% -6.4 (0.1) -6.627 (0.002)

Table 8: Numerical Results for CDO C4

Tranche Plain MC Control Variate

0−3% 144.6 (0.1) 144.43 (0.01)

3−7% 92.5 (0.3) 92.08 (0.02)

7−10% 32.0 (0.2) 31.80 (0.01)

10−15% 21.0 (0.2) 20.83 (0.02)

15−30% -3.6 (0.2) -3.81 (0.02)

6 CONCLUDING REMARKS

In this paper, we have proposed approximation methods for

pricing CDO tranches. These methods construct the loss dis-

tribution by approximating the conditional loss distribution

given the number of defaults, and recursively calculating

the exact distribution of the number of defaults. We tested

three approximations to the conditional loss distribution;
9

the methods work well when the loss given default is nearly

constant across assets in the portfolio, but not when these

losses vary widely. Topics for further investigation include

improving the specification of the conditional distributions

and extending the methods to handle sensitivities.

We have also developed a variance reduction technique

by using an approximate tranche value as a control variate.

Our examples indicate that this method is fast and can

significantly improve simulation precision.

A PROOF OF PROPOSITION 1

Proof When Ln
max ≤ S, we obviously have E((L(t|n)−

S)+) = 0. When Ln
min ≥ S,

E((L(t|n)−S)+) = E(L(t|n))−S =
Ln

min +Ln
mod +Ln

max

3
−S.

When Ln
min < S < Ln

mod,

E((L(t|n)−S)+) =
∫ Ln

max

S
(x−S) f (x)dx

=
∫ Ln

max

Ln
min

(x−S) f (x)dx−
∫ S

Ln
mod

(x−S) f (x)dx

=
(S−Ln

min)
3

3(Ln
max −Ln

min)(L
n
mod −Ln

min)
+

Ln
min +Ln

mod +Ln
max

3
−S.

When Ln
mod < S < Ln

max,

E((L(t|n)−S)+) =
∫ Ln

max

S
(x−S) f (x)dx

=
(Ln

max −Su)
3

3(Ln
max −Ln

min)(L
m
max −Ln

mod)
.
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