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ABSTRACT

A credit derivative is a path dependent contingent claim on
the aggregate loss in a portfolio of credit sensitive securities.
We estimate the value of a credit derivative by Monte
Carlo simulation of the affine point process that models the
loss. We consider two algorithms that exploit the direct
specification of the loss process in terms of an intensity.
One algorithm is based on the simulation of intensity paths.
Here discretization introduces bias into the results. The
other algorithm facilitates exact simulation of default times
and generates an unbiased estimator of the derivative price.
We implement the algorithms to value index and tranche
swaps, and we calibrate the loss process to quotes on the
CDX North America High Yield index.

1 INTRODUCTION

A credit derivative is a path dependent contingent claim on
the aggregate loss due to default in a portfolio of credit
sensitive securities such as loans, bonds or credit swaps.
The loss follows a stochastic point process that jumps at
a default by the magnitude of the loss. In this paper, we
show how to estimate the value of a credit derivative by
Monte Carlo simulation of the loss process. To illustrate
this approach, we implement the simulation based valuation
and market calibration for index and tranche swaps.

We adopt the top down approach described in Giesecke
and Goldberg (2005) and specify the loss process directly in
terms of an intensity that represents the conditional default
rate and a distribution of the loss magnitudes. We assume
that the intensity follows a mean-reverting square-root jump-
diffusion process whose jump term is the loss process itself.
Therefore past defaults and their recoveries influence fu-
ture loss dynamics: the loss process is self-affecting and
incorporates the negative dependence between default and
recovery rates that is observed in credit markets.

We discuss two simulation algorithms that exploit the
intensity based specification of the loss process. One algo-
91-4244-1306-0/07/$25.00 ©2007 IEEE
rithm is based on the time change theorem of Meyer (1971),
which implies that under mild conditions, a general point
process can be time-changed into a standard Poisson pro-
cess. The time change is given by the cumulative intensity
(the compensator). We use the converse of this result and
simulate default times by re-scaling Poisson arrivals. This
approach requires the generation of intensity paths, which
is time-consuming and introduces discretization bias. This
bias can be avoided with an exact algorithm that does not
require path simulation. The exact algorithm is based on
the observation that given a default time T k, the waiting
time to the next default is the first arrival time of a counting
process started at T k. The conditional distribution of the
waiting time can be explicitly calculated as a function of
the intensity at T k, and the waiting time can be sampled
directly from this distribution.

The algorithms are valid for the entire class of affine
point processes specified in Errais, Giesecke, and Goldberg
(2006). They can be adapted to simulate many other inten-
sity based top down models, including the specifications in
Arnsdorf and Halperin (2007), Brigo, Pallavicini, and Tor-
resetti (2006), Davis and Lo (2001), Ding, Giesecke, and
Tomecek (2006), Giesecke and Tomecek (2005), Longstaff
and Rajan (2006), Lopatin and Misirpashaev (2007) and
Tavella and Krekel (2006). In some situations simulation
is preferred to the (semi-) analytical, characteristic function
or PDE methods that are used in the top down model-
ing literature. For example, simulation facilitates the study
of instruments with complex path-dependent payoff pro-
files such as cash collateralized debt obligations, which are
difficult to analyze with other methods.

Duffie and Singleton (1998) and Duffie and Garleanu
(2001) use similar algorithms to simulate bottom up doubly
stochastic models of the individual portfolio constituents.
Using a direct specification of the portfolio loss, we avoid
the separate simulation of the different constituent models.
This leads to a significant reduction of the computational
effort in case we are interested only in derivatives on the
aggregate loss but not the constituents.
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This article is structured as follows. In Section 2
we recall the pricing of index and tranche swaps from
Errais, Giesecke, and Goldberg (2006). The loss process
is specified in Section 3. In Section 4 we discuss the
re-scaling algorithm. The exact algorithm is analyzed in
Section 5. Implementation details are explained in Section
6. In Section 7 we consider the calibration to market index
and tranche spreads. Section 8 concludes.

2 FAIR INDEX AND TRANCHE SPREADS

Uncertainty is modeled by a complete probability space
(Ω,F ,P), where P is a pricing measure with respect to a
constant risk-free rate of interest r > 0. Consider a portfolio
of n credit sensitive positions. The default process N counts
the number of defaults. It has a jump of size 1 at each
default time and is otherwise constant. The loss process
L records the cumulative financial loss due to default. It
jumps by the magnitude of the loss at each default and is
otherwise constant. These processes are adapted to a right
continuous and complete filtration F = (Ft)t≥0 that models
the evolution of investor information.

A portfolio credit derivative is a contingent claim on
N or L. It allows investors to trade default insurance on
the portfolio. An index swap is based on a portfolio whose
n constituent single name swaps have common notional 1,
common maturity date T and common premium payment
dates (tm). The default leg of an index swap is a stream of
payments that cover portfolio losses as they occur. Its value
at time 0 is given by the discounted cumulative losses

D(T ) = E
[∫ T

0
e−rtdLt

]
. (1)

The premium leg of an index swap is a stream of payments
at dates (tm). The cash flow at tm is a fraction S of the
total notional on the names that have survived until tm.
Neglecting premium accruals, the value at time 0 of the
premium leg is given by

P(T,S) = SE
[
∑
m

e−rtmcm(n−Ntm)
]

(2)

where cm is the appropriate day count fraction for the period
m. The fair index swap spread S is the solution S = S(T )
to the equation D(T ) = P(T,S).

Investors interested in narrower risk profiles invest in
contracts based on a tranche of the index specified by a
lower attachment point K ∈ [0,1] and an upper attachment
point K ∈ (K,1]. The product of the difference K = K−K
and the portfolio notional n is the tranche notional.

The default leg of a tranche swap is a stream of payments
that cover portfolio losses as they occur, given that the
cumulative losses are larger than Kn but do not exceed Kn.
9

The cumulative payments at time t, denoted Ut , are

Ut = (Lt −Kn)+− (Lt −Kn)+.

The value of these payments at time 0 is

D(K,K,T ) = E
[∫ T

0
e−rtdUt

]
. (3)

This formula is analogous to formula (1) for the value of
an index swap default leg. The latter can be viewed as the
default leg of a tranche swap for which K = 0 and K = 1.

The premium leg of a tranche swap has two parts. The
first part is an upfront payment, which is expressed as a
fraction F of the tranche notional Kn. The second part is a
stream of payments at dates (tm). For a tranche with K < 1,
the cash flow at tm is a fraction S of the difference between
the tranche notional and the tranche loss at tm. Neglecting
accruals, the value of the premium leg is given by

P(K,K,T,F,S) = FKn+SE
[
∑
m

e−rtm cm(Kn−Utm)
]
. (4)

For a fixed upfront payment rate F , the fair tranche spread S
is the solution S = S(K,K,T,F) to the equation D(K,K,T ) =
P(K,K,T,F,S). Similarly, for a fixed tranche spread S, the
fair tranche upfront rate F is the solution F = F(K,K,T,S)
to the equation D(K,K,T ) = P(K,K,T,F,S). To assess the
mark-to-market or fair spread/upfront rate of an index or
tranche we model the default and loss point processes.

3 DEFAULT AND LOSS PROCESSES

The default process N is a submartingale in the filtration
F. The Doob-Meyer theorem guarantees that N can be
decomposed into the sum of a non-decreasing predictable
process A starting at 0 and an F-martingale. We assume
that A is absolutely continuous with respect to Lebesgue
measure with non-negative, F-adapted intensity process λ .
Intuitively, λt is the Ft -conditional event arrival rate at
time t. In a portfolio of n names, N is stopped at n so the
intensity jumps to 0 at the nth default.

We directly specify the intensity. We assume that λ

is driven by three sources of randomness: the timing of
events, the loss at events and a standard Brownian motion W
that evolves independently of L and is adapted to F. More
precisely, on the event {Nt < n} the process λ satisfies the
stochastic differential equation

dλt = κ(c−λt)dt +σ

√
λtdWt +δdLt (5)

with λ0 > 0. At an event, the loss process L jumps and so
does the intensity. The jump size is the product of the loss
and the sensitivity parameter δ ≥ 0. Each loss is drawn
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Figure 1: Sample paths of the intensity (5) and the loss
process generated with the re-scaling algorithm described
in Section 4. A jump in the intensity represents the impact
of a default. The jump size is the product of the loss
at default and the sensitivity parameter δ = 1. The loss at
default is drawn from an independent uniform distribution on
{0.4,0.6,0.8,1}. The reversion rate κ = 5 and the reversion
level c = λ0 = 0.7. The volatility σ = 0.2 controls the
diffusive fluctuation of the intensity between events. The
portfolio contains n = 100 names.

independently of previous losses as well as N and W from a
distribution ν on (0,1]. After the event the intensity reverts
back to the level c exponentially in mean at a rate κ ≥ 0,
with diffusive fluctuations that are driven by the Brownian
motion W . The parameter σ ≥ 0 describes the diffusive
volatility of the intensity. If 2κc≥ σ2, then λt > 0 almost
surely. Sample paths of the loss process and the intensity
are in Figure 1. The product formula shows that equation
(5) has solution

λt = c+(λ0− c)e−κt +σ

∫ t

0
e−κ(t−s)

√
λsdWs

+δ

∫ t

0
e−κ(t−s)dLs.

The arrival intensity depends on the loss process L
itself. It follows that L is self-affecting. This property
captures the feedback effects of a default. Moreover, the
intensity and the recovery rate are negatively correlated.
Both event feedback (contagion) and negative dependence
between default and recovery rates are empirically well
documented phenomena, see Jorion and Zhang (2006) and
Altman et al. (2005), respectively.

The model (5) nests several classical models. If σ = 0,
then L is a compound Hawkes (1971) process stopped at the
nth arrival, which is a stopped linear birth process if κ = 0.
If δ = 0, then L is a stopped compound point process that is
doubly stochastic. This means that conditional on a path of
W , L is a stopped inhomogeneous Poisson process. Up to
96
the nth event, the intensity follows a Feller (1951) diffusion,
which in finance is also known as a Cox, Ingersoll, and
Ross (1985) process.

The intensity model (5) can be generalized to multiple
dimensions, to include coefficients that are deterministic
functions of time, and to include additional jump terms.
The associated point process belongs to the family of affine
point processes. Errais, Giesecke, and Goldberg (2006)
show that the conditional characteristic function of an affine
point process is exponentially affine in the intensity, with
coefficient functions satisfying a system of Riccati ordinary
differential equations. A call option E[(Lt −K)+] on the
loss can then be valued numerically by Fourier inversion.
Call values for different strikes K and maturities t determine
the fair spread on a tranche.

In this article we estimate index and tranche spreads by
evaluating the expectations (1)-(4) using Monte Carlo simu-
lation of the default and loss point processes. A replication
consists of the sequence (T k, `k) of ordered default times
0 = T 0 < T 1 < T 2 < .. . on [0,T ] and loss magnitudes `k.
The associated default and loss process paths are given by
the sums Nt = ∑

n
k=1 1(T k ≤ t) and Lt = ∑

n
k=1 `k1(T k ≤ t).

Below we describe alternative approaches to generate a
replication. Each approach exploits the specification of the
loss process through the intensity (5).

4 TIME CHANGE

Since the default process N has intensity λ , the compensator
At =

∫ t
0 λsds is continuous. The intensity λt is strictly

positive on the event {Nt < n} and jumps to 0 at the nth
default. Therefore, A is strictly increasing on {Nt < n} and
constant on {Nt ≥ n}. Let A∞ = limt→∞ At . For s ∈ [0,A∞),
define A−1

s = inf{t : At > s}. The process A−1 is continuous
and strictly increasing. It follows that each A−1

s is a finite
F-stopping time. The time change theorem of Meyer (1971)
implies that the process NA−1 is a standard Poisson process
on [0,A∞) in the right continuous, time-changed filtration
G generated by the stopping time sigma-fields FA−1

s
for

s ∈ [0,A∞). Therefore, with T k denoting the kth default
time, the random variables

Sk = AT k =
∫ T k

0
λsds, k = 1,2, . . . ,n (6)

are the arrival times of a standard G-Poisson process in
[0,A∞). The inter-arrival times Sk−Sk−1 are mutually inde-
pendent, standard exponential random variables. Conversely
(see Giesecke and Tomecek 2005), the kth default time is
the hitting time of A to the random level Sk: almost surely,

T k = A−1
Sk = inf

{
t :

∫ t

0
λsds > Sk

}
.
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To simulate L by re-scaling of Poisson arrivals we
need to generate a trajectory of the intensity λ . If δ > 0,
the intensity is updated at an event so the path must be
generated piece-wise between arrivals. From equation (5),
the kth inter-arrival intensity h follows the Feller diffusion

dht = κ(c−ht)dt +σ
√

htdWt (7)

started at h0 = λT k−1 . The condition 2κc ≥ σ2 guarantees
that ht > 0 almost surely. In case σ = 0, h is deterministic.
If σ > 0, Euler discretization of the SDE (7) can be used
to approximate the path on a discrete-time grid [0 = t0 <
t1 < · · · < tM = t] with equal spacing ∆t. This scheme is
easy to implement, but the probability of getting a negative
value for hti is strictly positive. An alternative is to sample
directly from the transition law of hti given hti−1 . As shown
by Cox, Ingersoll, and Ross (1985), up to a scale factor, the
distribution of hs given ht is non-central chi-squared. For
x ≥ 0, y,σ > 0 and 0 ≤ t < s, the density g(x;y,s− t)dx =
P[hs ∈ dx |ht = y] is given by

g(x;y,s) = ae−(ax+by)
(

ax
by

) q
2

Iq(2
√

axby) (8)

where Iq is the modified Bessel function of the first kind
of order q = 2κc/σ2−1 and

a = 2κ/(σ2(1− exp(−κs))) (9)
b = aexp(−κs). (10)

The following re-scaling algorithm generates the kth
default time and loss and the intensity at the kth default given
the previous default time T k−1(ω) and intensity λT k−1(ω):

1. Draw a standard uniform variate U(ω).
2. Generate a path h(ω) of the inter-arrival intensity

with h0(ω) = λT k−1(ω) and set

T k(ω) =T k−1(ω)

+ inf
{

t :
∫ t

0
hs(ω)ds >− logU(ω)

}
.

3. Draw `k(ω) from the distribution ν on (0,1].
4. Set λT k(ω) = hT k−T k−1(ω)+ `k(ω).

Figure 1 shows a sample path of the loss process and
the intensity generated with the re-scaling algorithm, and
Figure 2 shows the associated path of the compensator,
Poisson arrivals and default times. Step (ii) is implemented
as follows. The inter-arrival intensity values hti(ω) on the
discrete-time grid with spacing ∆t = 1/365 are generated
by sampling from the chi-squared density using the method
described in Section 3.1 of Broadie and Kaya (2006). The
9

0 2 4 6 8 10

0

1

2

3

4

5

6

7

Time

C
om

pe
ns

at
or

T1(ω) T2(ω) T3(ω) T4(ω) T5(ω) T6(ω)

S1(ω)

S2(ω)

S3(ω)

S4(ω)

S5(ω)

S6(ω)

Figure 2: Sample paths of the compensator A, standard
Poisson arrival times Sk and default times T k associated
with the intensity and loss process paths shown in Figure 1.
The compensator path indicates the response of the intensity
to events.

corresponding values of the integrated inter-arrival intensity
are given by the running sums of the terms hti(ω)(ti− ti−1).
The inter-arrival time T k(ω)−T k−1(ω) is the first grid time
point ti at which the running sum exceeds − logU(ω). If T
is the horizon, we stop if ti > T −T k−1(ω). Then T k−1(ω)
is the last default time in [0,T ]. The simulation environment
is described in Section 6.

5 EXACT SIMULATION

Unless the diffusive volatility σ = 0, the simulation of the
intensity path is computationally intensive and introduces
discretization bias. It can be avoided by observing that given
FT k−1 , the waiting time T k−T k−1 to the next default is the
first arrival time of a doubly stochastic counting process with
intensity h, started at T k−1 with h0 = λT k−1 . The doubly
stochastic property and the strong Markov property of the
inter-arrival intensity h imply that the conditional survival
function of the waiting time is given by

P[T k−T k−1 > t |FT k−1 ] = p(t;λT k−1) (11)

where for t ≥ 0 and y > 0,

p(t;y) = E
[
e−

∫ t
0 hsds ∣∣h0 = y

]
.

We observe that p(t;y) is the price at time 0 of a zero
coupon bond maturing at time t if the short term interest
rate follows the process h and the initial short rate is h0 = y.
But h is governed by the Feller diffusion (7), so

p(t;y) = eα(t)+β (t)y. (12)
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For σ = 0, the inter-arrival intensity h is deterministic and the
coefficient functions can be obtained by a simple integration.
For σ > 0 the coefficient functions are given by

α(t) =
κc
σ2

(
κt−2log

cosh(− 1
2 γt + atanh(−κ/γ))

cosh(atanh(−κ/γ))

)
β (t) =

1
σ2

(
κ + γ tanh(−1

2
γt + atanh(−κ/γ))

)
where γ =

√
κ2 +2σ2; see Cox, Ingersoll, and Ross (1985).

Given the conditional survival function p(t;y) and an
intensity value λT k−1 we can simulate the inter-arrival time
T k −T k−1 by the inverse method. Conditional on T k, we
must then generate the intensity λT k in order to simulate the
next inter-arrival time T k+1−T k. This means we need to
sample from the conditional distribution of hτ given h0 and τ ,
where τ is the first arrival time of a doubly stochastic count-
ing process with intensity h. Consider the corresponding
conditional density c(x;y, t)dx = P[hτ ∈ dx |h0 = y,τ = t].
For x≥ 0, y > 0 and t ≥ 0, by Bayes’ rule we have

c(x;y, t) =
q(x, t;y)
−∂t p(t;y)

(13)

where q(x, t;y)dxdt = P[hτ ∈ dx,τ ∈ dt |h0 = y] is the joint
conditional density of (hτ ,τ), and −∂t p(t;y)dt = P[τ ∈
dt |h0 = y] is the conditional density of τ . By Bayes’ rule
and the doubly stochastic property of τ , we get

q(x, t;y) = xg(x;y, t)E
[
e−

∫ t
0 hsds ∣∣h0 = y,ht = x

]
(14)

where g(x;y, t) is the non-central chi-squared density (8).
The conditional expectation on the right hand side of equa-
tion (14) can be calculated explicitly if h follows a Feller
diffusion; see Broadie and Kaya (2006) for a formula. We
sample from c(x;y, t) by the inverse method.

The following exact algorithm generates the kth default
time and loss and the intensity at the kth default given the
previous default time T k−1(ω) and intensity λT k−1(ω):

1. Draw a standard uniform variate U(ω) and set

T k(ω) =T k−1(ω)

+ inf
{

t : p(t;λT k−1(ω))≤U(ω)
}
.

2. If σ > 0, draw hT k−T k−1(ω) from the conditional
density c(x;λT k−1(ω),T k(ω)− T k−1(ω)) where
c(x;y,s) is given by equation (13).

3. Draw `k(ω) from the distribution ν on (0,1].
4. Set λT k(ω) = hT k−T k−1(ω)+ `k(ω).

Figure 3 shows a path of the loss process generated
with the exact algorithm, along with the corresponding
971
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Figure 3: Sample path of the loss process generated with
the exact algorithm, along with the corresponding intensity
values just before and at the default times. The difference
between the intensity values just before and at an event
is equal to the financial loss at the event. The parameter
values are those used to generate Figures 1 and 2.

intensity values just before and at the default times. Step
(i) is implemented as follows. Given the horizon T , we
first evaluate p(T − T k−1(ω);λT k−1(ω)). If this value is
larger than U(ω) we stop. In this case T k−1(ω) is the
last default time in [0,T ]. Otherwise, we numerically solve
p(t;λT k−1(ω))−U(ω) = 0 for t ∈ [0,T −T k−1(ω)] using
Brent’s method, which combines root bracketing, bisection
and inverse quadratic interpolation; see Chapter 4 in Brent
(1973). The solution is equal to T k(ω)−T k−1(ω).

The exact algorithm extends to the class of self-affecting
intensity models for which the conditional inter-arrival time
distribution p(t;y) can be calculated and the conditional
distribution of the inter-arrival intensity h is known. For
example, the inter-arrival intensity h could follow a general
affine jump diffusion, in which case p(t;y) retains the ex-
ponentially affine form (12); see Duffie, Pan, and Singleton
(2000). Another example is a quadratic diffusion model, in
which log p(t;y) is a quadratic function of y; see Leippold
and Wu (2002). The price of this generality is that, except
for special cases, the ordinary differential equations that
govern the coefficients do not admit closed form solutions
and the conditional distribution of h is known only through
its characteristic function. In this situation Steps (i) and (ii)
are computationally intensive.

6 IMPLEMENTATION

The simulation experiments in this paper were performed on
a desktop PC with an AMD Athlon 1.00 GHz processor and
960 MB of RAM, running Windows XP Professional. The
codes were written in C++ and a Windows .NET application
was built. The compiler used was Microsoft Visual C++
.NET version 7.1.3088. For random number generation, the
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evaluation of special functions and Brent’s method we used
the code provided in the GNU Scientific Library. Table
1 compares the performance of the two algorithms in this
environment.

Table 1: Comparison of simulation algorithms. The ta-
ble shows the estimated spread on a 5 year index swap
with n = 100 names (basis points), the 95% confidence
intervals estimated by bootstrapping (basis points) and
the calculation time (seconds). The parameter values are
r = 0.05,δ = 1,κ = 5,c = λ0 = 0.7,σ = 0.2, and the loss at
default is drawn from an independent uniform distribution
on {0.4,0.6,0.8,1.0}. 100,000 replications were generated.

Algorithm Spread 95% CI Time
Re-scaling 58.02 [57.79, 58.25] 54.17

Exact 58.18 [57.94, 58.41] 27.15

7 CALIBRATION

We calibrate the intensity model (5) and the distribution
ν of the loss at default to market index and tranche
spreads/upfront rates on the CDX North America High
Yield index observed on 5/11/2007. The data were ob-
tained from Morgan Stanley. The CDX.NA.HY index has
n = 100 names. The attachment points are 0,10,15,25,35
and 100 percent. The [0,10] and [10,15] tranches are quoted
in terms of a percentage upfront fee. The other tranches
are quoted in terms of a running spread. We do not use the
[35,100] (super senior) tranche in the calibration.

We assume ν is uniform on {`1, `2}with 0 < `1 < `2 < 1.
Consistent with market practice, we set the expected loss
at default

∫
zdν(z) = 0.6. With this condition ν is specified

by one parameter, `1 say. The intensity λ is specified by the
parameters λ0,c,κ,σ and δ . The risk-free rate r = 0.05.

We fit the parameter vector θ = (λ0,c,κ,σ ,δ , `1) to
the CDX.NA.HY market data. Using adaptive simulated
annealing, we numerically solve the optimization problem

min
θ∈Θ

∑
i

(
MarketMid(i)−Model(i,θ )

MarketAsk(i)−MarketBid(i)

)2

subject to 2κc≥ σ
2

where Θ = [0,5]3 × [0,1]× [0,5]× [0.2,0.6] and the sum
ranges over the data points. The market mid quote Market-
Mid is the arithmetic average of the observed MarketAsk
and MarketBid quotes. The model value Model is a function
of θ ; see Sections 2 and 3.

We analyze two model specifications: a model Mod 1
which is unrestricted and a restricted model Mod 2 for which
the diffusive volatility σ = 0. In Mod 2, the loss process L
is a stopped compound Hawkes process with deterministic
inter-arrival intensity.
9
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Figure 4: Loss distribution for different horizons implied
by the index and tranche spreads on the 5Y CDX.NA.HY
index observed on 5/11/2007. We simulate the loss process
from the model Mod 1 with parameters set to the calibrated
values given in Table 3 and then use kernel smoothing to
non-parametrically estimate the loss distribution. The mass
in the tail of the distribution increases with the horizon.

We begin by calibrating to quotes for a single matu-
rity. The data and results are summarized in Table 2. Both
specifications fit the data well; the unrestricted model (av-
erage absolute percentage error AAPE 1.47%) does better
than the restricted model (AAPE 2.24%). The calibrated
parameter values for the two models are very similar, see
Table 3, and so are the implied loss distributions. Figure 4
shows the loss distribution for different horizons implied by
the unrestricted model with parameters set to the calibrated
values in Table 3.

Table 2: Calibration data and results. The CDX.NA.HY
5Y market quotes are observed on 5/11/2007. They are
in basis points except for the [0,10] and [10,15] tranches,
which are quoted in terms of a percentage upfront fee.
100,000 replications were generated. The values in column
Mod 1 refer to spreads generated by the unrestricted model
while the values in column Mod 2 refer to model spreads
when σ = 0. We report the minimum value of the objective
function MinObj and the average absolute percentage error
AAPE.

MarketBid MarketAsk Mod 1 Mod 2
0-10 70.50% 70.75% 71.11% 71.48%

10-15 34.25% 34.50% 32.85% 32.74%
15-25 316.00 319.00 316.80 311.43
25-35 79.00 81.00 81.47 77.34
Index 262.85 263.10 263.46 262.97

MinObj 41.63 60.41
AAPE 1.47% 2.24%

To assess the stability of the calibrations over time we
re-calibrate both specifications at different dates starting at
72
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Table 3: Initial and calibrated parameter values for the un-
restricted model Mod 1 and the restricted model Mod 2. We
ran several calibrations with different initial values. The
setting we report here had the lowest objective function
value for model Mod 1.

λ0 c κ σ δ `1
Initial 2.50 2.50 2.50 0.50 2.50 0.40

Mod 1 0.70 1.61 2.62 0.62 2.99 0.24
Mod 2 0.75 1.60 2.58 0.00 2.94 0.24
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Figure 5: Parameter stability: calibrated parameter values
for the unrestricted model Mod 1 at different calibration
dates.

5/11/2007. The initial values at a given date after 5/11 are
set to the optimal values obtained at the previous calibration
date. Figure 5 (Figure 6) shows the calibrated parameter
values for the unrestricted model Mod 1 (the restricted model
Mod 2) for the different dates. The calibrated parameter
values for the unrestricted model are more stable than the
values for the restricted model. Table 4 (Table 5) gives
the calibration errors. In each calibration, the unrestricted
model leads to a lower average absolute percentage error
than the restricted model.

Table 4: Comparison of the calibrations of the unrestricted
model Mod 1 at the different calibration dates. The calibrated
parameter values are shown in Figure 5.

Date 05/11 05/14 05/15 05/16 05/17
MinObj 41.63 58.66 46.78 46.24 58.24

AAPE 1.47% 1.70% 1.26% 1.32% 1.35%

Finally we examine the fit to quotes for several ma-
turities, all observed on 5/11/2007. We get 5 additional
data points per additional maturity. We calibrate simulta-
neously to 5 and 7 year CDX.NA.HY index and tranche
spreads. The data and results are shown in Table 6. The
calibrated parameter values are given in Table 7. For both
model specifications the average absolute percentage error
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Figure 6: Parameter stability: calibrated parameter values
for the restricted model Mod 2 at different calibration dates.

Table 5: Comparison of the calibrations of the restricted
model Mod 2 at the different calibration dates. The calibrated
parameter values are shown in Figure 6.

Date 05/11 05/14 05/15 05/16 05/17
MinObj 60.41 73.43 54.29 43.88 65.23

AAPE 2.24% 2.04% 1.57% 1.45% 1.92%

increases somewhat, but the fits are still very reasonable.
The unrestricted model (AAPE 2.35%) outperforms the
restricted model (AAPE 3.30%).

8 CONCLUSION

We describe two algorithms to simulate a loss point process
that is specified in terms of an intensity. The re-scaling
algorithm requires the simulation of intensity paths. Path
simulation is time-consuming and introduces bias into the
results. The exact algorithm avoids path simulation and
generates an unbiased estimate of the derivative price. While
the exact algorithm requires much less time per replication
than the re-scaling algorithm, speed may still be an issue for
some applications. An example is model calibration, which
requires a large number of price evaluations at different
parameters values. The bottleneck in the exact algorithm is
the numerical evaluation of the inverse of the conditional
distribution of the inter-arrival time. At present we are
investigating a thinning algorithm that avoids this step.
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Table 6: Extended calibration: data and results. The
CDX.NA.HY 5Y and 7Y market quotes are observed on
5/11/2007. They are in basis points except for the 0-10
and 10-15 percent tranches, which are quoted in terms of
a percentage upfront fee. The first 5 rows are for the 5Y
index while rows 5-10 are for the 7 Y index. 100,000
replications were generated. The values in column Mod 1
refer to spreads generated by the unrestricted model while
the values in column Mod 2 refer to model spreads when
σ = 0. We report the minimum value of the objective
function MinObj and the average absolute percentage error
AAPE.

MarketBid MarketAsk Mod 1 Mod 2
0-10 70.50% 70.75% 71.69% 72.00%

10-15 34.25% 34.50% 33.44% 33.47%
15-25 316.00 319.00 316.13 309.93
25-35 79.00 81.00 78.45 72.79
Index 262.85 263.10 263.94 262.75
0-10 80.13% 80.38% 81.23% 81.49%

10-15 55.50% 55.75% 55.17% 55.40%
15-25 582.00 587.00 580.25 584.63
25-35 180.00 183.00 206.41 207.98
Index 307.50 307.75 307.53 308.91

MinObj 136.12 192.82
AAPE 2.35% 3.30%

Table 7: Extended calibration: initial and calibrated pa-
rameter values for the unrestricted model Mod 1 and the
restricted model Mod 2. We used the same initial values
as in the basic calibration.

λ0 c κ σ δ `1
Initial 2.50 2.50 2.50 0.50 2.50 0.40

Mod 1 0.13 1.77 2.10 0.69 2.44 0.25
Mod 2 0.12 1.76 1.96 0.00 2.32 0.24
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