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ABSTRACT

We develop and evaluate a two-level simulation procedure
that produces a confidence interval for tail conditional ex-
pectation, otherwise known as conditional tail expectation.
This risk measure is closely related to conditional value-at-
risk, expected shortfall, and worst conditional expectation.
The outer level of simulation generates risk factors and
the inner level estimates each expected loss conditional on
the risk factor. Our procedure uses the statistical theory
of empirical likelihood to construct a confidence interval,
and it uses tools from the ranking-and-selection literature
to make the simulation efficient.

1 INTRODUCTION

A fundamental task in risk management is to measure the risk
entailed by a decision, such as the choice of a portfolio. Let
V be a random variable representing the value resulting from
the decision, and FV be its distribution. A risk measure is a
functional T (FV ) of this distribution. For example, value at
risk VaRp may be defined as the negative of the p-quantile
of FV . In this paper, we are primarily interested in tail
conditional expectation:

T (FV ) = TCEp := E[−V |V ≤−VaRp].

Suppose that we wish to estimate T (FV ) by simulation,
but we are unable to sample from FV . For example, let V
be the gain experienced by a portfolio containing derivative
securities. We may have a model of underlying financial
markets that allows us to sample a risk factor Z (such
as a stock price) from its distribution FZ , yet be unable to
evaluate the portfolio’s gain V :=V (Z) because the function
V (·) is unknown when the prices of derivative securities
are unknown functions of the risk factor. However, we
may be able to represent V (Z) = E[X |Z] where X involves
the payoffs of derivative securities, which we can simulate
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conditional on the risk factor Z. In general, Z may be a vector.
Then we can estimate the risk measure T (FV ) by a two-level
simulation in which the outer level of simulation generates k
risk factors Z1,Z2, . . . ,Zk and the inner level estimates each
Vi :=V (Zi). For more on this framework and its significance
in risk management, see Lan, Nelson, and Staum (2007). A
subtlety in the financial context is that, while Z is sampled
from its real-world probability distribution, X is a discounted
payoff sampled from a risk-neutral distribution, which is
required to make V (Z) = E[X |Z]: see, for instance, Björk
(1998).

In reality, risk management simulations may deal with
thousands of complicated securities and non-trivial models.
However, for purposes of illustration, we will consider the
following example, which is also used in our experiments.
At time 0, we sell a put option with strike price K = 110
and maturity U = 1 year on a stock whose initial price
is S0 = 100. This stock’s price obeys the Black-Scholes
model with drift µ = 6% and σ = 15%. There is a money
market account with interest rate r = 6%. The initial price
for which we sell the put option is P0 = P(U,S0), which
is the Black-Scholes formula evaluated for maturity U and
stock price S0.

We are interested in TCEp at the p = 1% level at time
T = 1/52 years, or one week. The risk factor Z is a standard
normal random variable that determines the stock price at
time T :

ST = S0 exp
((

µ− σ2

2

)
T +σ

√
T Z
)

.

The payoff at maturity U , discounted to time T , from selling
the put for an initial price of P0 is

X = e−r(U−T ) (P0erU − (K−SU )+
)
,
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where

SU = ST exp
((

r− σ2

2

)
(U−T )+σ

√
U−T Z′

)
and Z′ is a standard normal random variable independent
of Z.

In this simple example, we can actually find the value

V = E[X |Z] = P0erT −P(U−T,ST ),

using the Black-Scholes formula evaluated for maturity
U − T and stock price ST . Furthermore, it is clear that
V is strictly decreasing in Z, so we can compute that
VaR0.01 ≈ 2.92 by evaluating V at Z = z0.01, the standard
normal first percentile. By numerical integration, we can
also compute TCE0.01 ≈ 3.39, which will help us to evaluate
the performance of our procedure, which does not compute
V by using the Black-Scholes formula, but rather estimates
it using inner-level simulation of payoffs at maturity.

Our goal is efficient computation of a confidence in-
terval for TCEp whose coverage probability can be proved
to be at least nominal asymptotically and which is good at
realistic sample sizes. See Lan, Nelson, and Staum (2007)
for a discussion of how to construct an asymptotically valid
confidence interval for two-level simulations, in which there
is an interaction between the statistical uncertainty gener-
ated by the outer and inner levels of simulation. Here we
use empirical likelihood (Owen 2001) to handle uncertainty
at the outer level and the central limit theorem to handle
uncertainty at the inner level. Two-level simulations can be
extremely computationally expensive: given the available
computational budget, they may produce very wide confi-
dence intervals. To produce a narrower confidence interval
given a fixed computational budget, our procedure uses
screening with common random numbers and restarting,
and it allocates different numbers of payoffs to different
risk factors. The dominant computational cost in these
two-level simulations is in the generation of payoffs. We
simplify the analysis by ignoring other computational costs
and making the total number of payoffs, over all risk factors,
equal to a computational budget C.

2 PROCEDURE

This section presents a fixed-budget two-level simulation
procedure for generating a confidence interval for TCEp.
It is adaptive in the sense that it learns, from a first phase
of simulation, a good number of risk factors k and good
numbers of payoffs N1,N2, . . . ,Nk to generate conditional on
each risk factor. For ease of presentation, we first consider
a procedure in which k is fixed and only N1,N2, . . . ,Nk are
learned. The adaptive procedure is built from this simpler
fixed-k procedure: its first phase uses k0 risk factors to
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learn a good value of k, and its second phase is the fixed-k
procedure with this value of k.

At the inner level, both procedures have a first stage in
which n0 payoffs are generated for every risk factor, using
common random numbers. After the first stage, screening
eliminates risk factors which are not likely to belong to
the left tail, and sample sizes N1,N2, . . . ,Nk are chosen; the
sample size Ni is 0 if risk factor Zi has been screened out.
The budget constraint used in choosing these sample sizes
is kn0 + ∑

k
i=1 Ni ≤C. The first-stage data are discarded, a

process called “restarting.” In the second stage, Ni payoffs
are generated conditional on the risk factor Zi for each
i = 1,2, . . . ,k using independent sampling, and a confidence
interval is formed.

In Lan, Nelson, and Staum (2007), we described a
framework for two-level simulation that generates a two-
sided confidence interval [L̂,Û ] with confidence level 1−α

where α can be decomposed as α = αo +αi, representing
errors due to the outer and inner levels of simulation, re-
spectively. Here we further decompose αi = αs +αlo +αhi,
where αs is error due to screening and αlo and αhi are er-
rors respectively associated with lower and upper confidence
limits for inner-level simulation.

The procedures rely on empirical likelihood to account
for statistical uncertainty at the outer level, that is, for
the fact that V1,V2, . . . ,Vk is only a sample from the true
distribution FV of portfolio values at time horizon T . The
construction of an outer-level confidence interval for TCEp
based on empirical likelihood is discussed by Baysal and
Staum (2007). Here we review a few essential facts for
understanding the operation of empirical likelihood in our
two-level simulation procedures.

Empirical likelihood involves assigning a vector w of
weights to the vector V = (V1,V2, . . . ,Vk) of portfolio values.
This weight vector w must belong to the set S of vectors
that satisfy

w ≥ 0,
k

∑
i=1

wi = 1,

∃l 3
l

∑
i=1

wi = p, and

k

∏
i=1

wi ≥ ck−k,

where c is a critical value derived from a chi-squared dis-
tribution. The number l is a function of w. Because TCEp
involves an average over the left tail containing probability
p, we also define a transformed weight vector w′, another
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function of w:

w
′
i :=

{
−wi

p , i = 1,2, . . . , l
0, otherwise.

Let πV be a permuation of {1,2, . . . ,k} such that VπV 1 ≤
VπV 2 ≤ ·· · ≤VπV k . If the vector V = (V1,V2, . . . ,Vk) of true
portfolio values were known, the natural point estimator of
TCEp would be ∑

k
i=1 w′iVπVi .

The use of empirical likelihood influences the way
screening is done in our procedures. Given w, to estimate
∑

k
i=1 w′iVπVi via inner-level simulation, we seek to identify

which l risk factors belong to the left tail, that is, have indices
πV 1,πV 2, . . . ,πV l . We do not need to know the ranking of
risk factors within the left tail, nor outside the left tail.
However, the empirical likelihood method of constructing a
confidence interval involves optimization over w ∈S , and
different weight vectors have different values of l. From
the properties of the set S , we can deduce that all w ∈S
have l ≤ lmax, where

lmax := max

{
l : kk

( p
l

)l
(

1− p
k− l

)(k−l)

≥ c

}
.

Screening eliminates all risk factors except those in
a set I, which we want to contain {πV 1,πV 2, . . . ,πV lmax}
with probability at least 1−αs. We wish to eliminate
those risk factors such that at least lmax other risk factors
yield larger losses. The number of pairwise comparisons
between {πV 1,πV 2, . . . ,πV lmax} and all other risk factors is
lmax(k− lmax). Therefore, for each ordered pair (i, j) we do
a hypothesis test that Vi ≥Vj at level αs/((k− lmax)lmax). If
the test is true, then we say Zi is “beaten” by Z j. For each
i = 1,2, . . . ,k, let Xi1,Xi2, . . . ,Xin0 be an i.i.d. sample drawn
from the conditional distribution of X given Zi, and let X̄i(n0)
be its sample average. For each i, j = 1,2, . . . ,k, let S2

i j(n0)
be the sample variance of Xi1−X j1,Xi2−X j2, . . . ,Xin0−X jn0 .
We screen out all risk factors which are beaten at least lmax
times:

I =

{
i : ∑

i6= j
1
{

X̄i(n0) > X̄ j(n0)+d
Si j(n0)√

n0

}
< lmax

}

where 1{·} is an indicator function and

d = tn0−1,1−αs/((k−lmax)lmax)

is the 1−αs/((k− lmax)lmax) quantile of the t-distribution
with n0−1 degrees of freedom. Computing I could require
as many as k(k−1)/2 comparisons. However, it is generally
unnecessary to do all of them: it is possible to screen out
many risk factors with only one comparison each. The
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procedure in the next section is set up to take advantage of
this opportunity.

2.1 A Procedure with Fixed Number of Risk Factors k

The procedure has the following steps:

1. Risk Factor Generation:
Generate risk factors Z1,Z2, . . . ,Zk independently
from the distribution FZ .

2. First Stage Sampling:
Sample payoffs Xi j, j = 1,2, . . . ,n0, conditionally
on Zi with common random numbers, for each
i = 1,2, . . . ,k.

3. Screening:
Initialize I←{1,2, . . . ,k}.
For each i = 1,2, . . . ,k, compute the sample average
X̄i(n0) of Xi1,Xi2, . . . ,Xin0 .
Sort to produce a permutation π0 of {1,2, . . . ,k}
such that X̄π0i(n0) is nondecreasing in i.
For each i = k,k−1, . . . , lmax +1, do:

(a) Initialize j← 1, b← 0, and g← 1.

(b) Do while j ≤ k and g = 1:

i. Compute the sample variance S2
π0iπ0 j

(n0)
of Xπ0i1−Xπ0 j1,Xπ0i2−Xπ0 j2, . . . ,Xπ0in0−
Xπ0 jn0 .

ii. Set b ← b + 1{X̄π0i(n0) > X̄π0 j(n0) +
dSπ0iπ0 j(n0)/

√
n0}.

iii. If b≥ lmax, set I← I \{i} and g← 0.
iv. Set j← j +1.

4. Restarting and Second Stage Sampling:
For each i∈ I, compute the sample variance S2

i (n0)
of Xi1,Xi2, . . . ,Xin0 .
Discard all payoffs from Step 2.
For each i ∈ I, set

Ni←
(C− kn0)S2

i (n0)
∑ j∈I S2

j(n0)
.

Sample payoffs Xi j, j = 1,2, . . . ,Ni, conditionally
on Zi and independently for each i ∈ I.

5. Constructing the Confidence Interval:
For each i ∈ I, compute the sample average X̄i(Ni)
and sample variance S2

i (Ni) of Xi1,Xi2, . . . ,XiNi .
Sort to produce a permutation πL of I such that
X̄πLi(NπLi)+ zloSπLi(NπLi)/

√
NπLi is nondecreasing

in i, where zlo is the (1−αlo)1/|I| quantile of the
standard normal distribution.
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The lower confidence limit is

L̂ = min
w∈S

lmax

∑
i=1

w′i

(
X̄πLi(NπLi)+ zlo

SπLi(NπLi)√
NπLi

)
.

(1)

Sort to produce a permutation π1 of I such that
X̄π1i(Nπ1i) is nondecreasing in i.
Sort to produce a permutation πS of I such that
S2

πSi
(NπSi)/NπSi is nonincreasing in i.

The upper confidence limit is

Û = max
w∈S

lmax

∑
i=1

w′iX̄π1i(Nπ1i)+ zhiB (2)

where zhi is the 1−αhi quantile of the standard
normal distribution and

B := max
w∈S

√√√√lmax

∑
i=1

(w′i)2
S2

πSi
(NπSi)

NπSi

is computed by using the Newton method to solve
its KKT conditions (see Bazaraa et al. 2005).

An algorithm for the optimizations in Equations (1)–(2) is
given in Baysal and Staum (2007).

2.2 An Adaptive Procedure

In the first phase of this procedure, k0 risk factors are
generated. The first phase collects information used to
choose the number of risk factors k for the second phase.
In the following, we append k0 or k, or n0 or Ni, to quantities
computed on the basis of k0 or k risk factors, or from n0
or Ni payoffs. The choice of k is based on the following
conjectures:

1. The width of the outer-level empirical likelihood
confidence interval with k risk factors will be ap-
proximately Eo(k0)/

√
k, where

Eo(k0) =
√

k0

(
max

w∈S (k0)

k0

∑
i=1

w′iX̄π0i(n0)

− min
w∈S (k0)

k0

∑
i=1

w′iX̄π0i(n0)

)
,

so that Eo(k0)/
√

k0 is the width of the outer-level
empirical likelihood confidence interval with k0
risk factors.

2. The fraction of risk factors that survive screening
does not depend on the number of risk factors:
|I(k)|/k ≈ |I(k0)|/k0.
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3. The average variance of the payoff conditional
on risk factors that survive screening does
not depend on the number of risk factors:
∑i∈I(k) S2

i (n0)/|I(k)| ≈ ∑i∈I(k0) S2
i (n0)/|I(k0)|.

4. After the second stage, the sample variance will
be approximately the same as it was after the first
stage, S2

i (Ni) ≈ S2
i (n0), and therefore the number

of payoffs chosen for each risk factor that survives
screening will be approximately proportional to the
conditional standard deviation: Si(Ni)/

√
Ni will be

approximately constant over i. Based on the choice
of Ni and the above conjectures,

Si(Ni)√
Ni
≈

√
1
k0

∑ j∈I(k0) S2
j(n0)

C/k−n0
.

Given this, we can guess the width of the two-level confi-
dence interval with k risk factors. First,

L̂ = min
w∈S (k)

lmax

∑
i=1

w′i

(
X̄π1i(Nπ1i)+ zlo

Sπ1i(Nπ1i)√
Nπ1i

)

≈ min
w∈S (k)

lmax

∑
i=1

w′iX̄π1i(Nπ1i)+

√
z̄lo(k)∑ j∈I(k0) S2

j(n0)

k0(C/k−n0)

where

z̄lo(k) := z(1−αlo)k0/(k|I(k0)|) ≈ z(1−αlo)1/|I(k)| = zlo.

Next,

Û = max
w∈S (k)

lmax

∑
i=1

w′iX̄π1i(Nπ1i)

+zhi max
w∈S (k)

√√√√lmax

∑
i=1

(w′i)2
S2

πSi
(NπSi)

NπSi

≈ max
w∈S (k)

lmax

∑
i=1

w′iX̄π1i(Nπ1i)

+zhi

√
1
k0

∑ j∈I(k0) S2
j(n0)

C/k−n0
max

w∈S (k)

√√√√lmax

∑
i=1

(w′i)2.

Using the assumption that the outer-level confidence width
with k risk factors

max
w∈S

lmax

∑
i=1

w′iX̄π1i(Nπ1i)− min
w∈S

lmax

∑
i=1

w′i X̄π1i(Nπ1i)≈
Eo(k0)√

k
,

we can approximate the overall width Û− L̂ by

Eo(k0)/
√

k (3)

2
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+

√
∑ j∈I(k0) S2

j(n0)

k0(C/k−n0)

z̄lo(k)+ zhi max
w∈S (k)

√√√√lmax

∑
i=1

(w′i)2

 .

We choose k to minimize Equation (3), using the golden
section method (see Bazaraa et al. 2005) within the interval
of [d2/pe ,bC/n0c].

The adaptive procedure has the following steps:

1. First Phase Risk Factor Generation:
Generate risk factors Z1,Z2, . . . ,Zk0 independently
from the distribution FZ .

2. First Phase, First Stage Sampling:
Sample payoffs Xi j, j = 1,2, . . . n0, conditionally
on Zi with common random numbers, for each
i = 1,2, . . . ,k0.

3. Choose Number of Risk Factors:
Compute I(k0) as in Step 3 of Section 2.1, but do
not eliminate the risk factors that are not in I(k0).
Compute k that minimizes Equation (3).

4. Second Phase Risk Factor Generation:
If k > k0, generate risk factors Zk0+1,Zk0+2, . . . ,Zk
independently from the distribution FZ .
If k < k0, eliminate risk factors Zk+1,Zk+2, . . . ,Zk0 .

5. Second Phase, First Stage Sampling:
Sample payoffs Xi j, j = 1,2, . . . ,n0, conditionally
on Zi with common random numbers, for each
i = k0 +1,k0 +2 . . . ,k.

6. Second Stage:
Perform Steps 3–5 of Section 2.1.

3 EXPERIMENTS

We tested our procedures on the problem of producing a 90%
confidence interval for TCE0.01 in the example of the option
described in Section 1. The number of payoffs generated
for each risk factor in the first stage was n0 = 80 in our
two-stage procedures. The error α = 10% was decomposed
into αo = 5%, αs = 1%, αlo = 2.5%, and αhi = 1.5%.

For purposes of comparison, we also tested two other
procedures. The four procedures we tested are:

1. The efficient fixed-k procedure described in
Section 2.1.

2. The adaptive procedure of Section 2.2.
3. The plain procedure, which is similar to the

efficient procedure, except that it does not use any
efficiency techniques. It is a one-stage procedure
that does not use screening (and therefore uses
only independent sampling, not common random
numbers), and it samples C/k payoffs for each risk
factor.

4. The rudimentary procedure uses the same sam-
pling scheme as the plain procedure, and then forms
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a confidence interval without taking any account
of inner-level statistical uncertainty. It treats the
vector of sample averages X̄ as if it were the vector
of true values V, and constructs the confidence in-
terval described by Baysal and Staum (2007) based
on the work of Manistre and Hancock (2005).

In Figure 1, we show the fraction of confidence in-
tervals that covered the true value of TCE0.01 in 100 in-
dependent macroreplications. Noticeable uncertainty about
the coverage probability remains, so the figure also shows
95% confidence limits for each coverage probability. We
see clearly that the rudimentary procedure yields extremely
poor coverage: one can not produce a meaningful confidence
interval while ignoring the statistical uncertainty generated
by one of the two levels of the simulation experiment. The
figure also shows that, at least for k≥ 1,000 risk factors, our
procedures give at least nominal coverage. The coverage of
the outer-level confidence level based on empirical likeli-
hood, even in the absence of inner-level uncertainty, is also
less than nominal for k ≤ 500 risk factors in experiments
reported by Baysal and Staum (2007). With so few risk
factors, we do not know of a nonparametric method for
generating a confidence interval for TCEp with adequate
coverage. With a large number of risk factors, our proce-
dures yield excessive coverage. This is similar to results
found by Lesnevski, Nelson, and Staum (2006): combatting
the natural bias of the problem with ranking-and-selection
tools, involving conservative probability inequalities, seems
to cause wide confidence intervals with excessive coverage.
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Figure 1: Coverage of fixed-k procedures with budget C =
16 million.

Figure 2 illustrates the effect of efficiency techniques
by comparing the plain and efficient fixed-k procedures with
computational budget C = 16 million payoffs. The picture
was similar for other values of C. The confidence interval
width attainable for the best choice of k is about three
times smaller for the efficient procedure than for the plain
procedure, corresponding to a variance reduction factor of
9. The efficient procedure is best with about k = 16,000 risk
factors for this budget, much more than the best value of k

3
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for the plain procedure. The efficient procedure can afford to
have more risk factors because it screens out many of them.
For k = 16,000, the plain procedure can only give 1,000
payoffs to each risk factor, resulting in large inner-level
uncertainty and confidence interval width so wide that it is
off the chart. We see that there is a fairly wide range of k for
which each procedure performs well, but an inappropriate
choice of the number of risk factors k given the budget C
can results in excessively wide confidence intervals. This
motivated the development of the adaptive procedure.
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Plain Procedure
Efficient Procedure

Figure 2: Confidence interval width of fixed-k procedures
with budget C = 16 million.

Figure 3 illustrates that the adaptive procedure yields
a confidence interval whose width is very close to that of
the efficient fixed-k procedure with the best choice of k,
the number of risk factors. This shows that the adaptive
procedure, using k0 = 4,000 risk factors initially, is able to
identify very well the total number of risk factors to use, for
the problem and range of budgets considered here. From
Figure 2, we saw that the best k for the efficient fixed-k
procedure is over 10,000 for budget C = 16 million. The
coverage of the adaptive procedure is the same as that of the
fixed procedure with the same choice of k. Because Figure 1
shows that the coverage of the fixed procedure was adequate
with C = 16 million and k = 10,000, we conclude that the
coverage of the adaptive procedure is adequate for C = 16
million. Analogous figures not published here support the
same conclusions for the larger budgets we tested.

The curves on the log-log plot in Figure 3 are nearly
linear with slope -0.25. This is unfavorable compared not
only with the usual O(C−1/2) order of convergence of
ordinary Monte Carlo, but even with the O(C−1/3) order of
convergence for a two-level simulation estimator of VaRp
found by Lee (1998). Experiments with budgets from C = 1
million to 128 million revealed that the number of risk factors
k chosen by the adaptive procedure increases roughly as
O(C1/2). The outer-level width in Equation (3) was thus
O(k−1/2) = O(C−1/4). We observed that the dominant term
in the inner-level width in Equation (3) was the one due to
the lower confidence limit, and its behavior was also similar
to O(C−1/4).
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Figure 3: Confidence interval width of adaptive procedure
vs. best fixed-k procedure.

4 PROOF

This section presents the elements of a proof that the fixed-k
procedure of Section 2.1 yields a confidence interval with
asymptotic coverage at least 1−α as k→ ∞. We use the
assumption that each payoff Xi j is normally distributed. In
reality and in the example on which our experiments are
run, payoffs are not normally distributed. However, sample
averages of payoffs are approximately normal because of the
central limit theorem if the sample sizes n0 and Ni are large
enough. Lesnevski, Nelson, and Staum (2006) studied the
coverage of the confidence interval produced by a related
procedure and found that a sample size of 30 was large
enough to provide adequate coverage unless the payoffs
are extremely far from normal. At the end of Section 4.2,
we also make use of an approximation that is good when
N := mini∈I Ni is large.

We are working within the framework of Lan, Nelson,
and Staum (2007): the two-level simulation confidence limits
in Equations (1)–(2) arise from an inner-level confidence
region V for the vector of true values V = (V1,V2, . . . ,Vk)
as

L̂ = min
v∈V ,w∈S

k

∑
i=1

w′ivπvi and Û = max
v∈V ,w∈S

k

∑
i=1

w′ivπvi . (4)

For any k-vector v, let πv be a permutation of
{1,2, . . . ,k} such that vπvi is nondecreasing in i. Our con-
fidence region V for V is defined as the set containing all
vectors v such that

∀i /∈ I, vi ≥ vπvlmax , (5)

∀i ∈ I, vi ≤ X̄i(Ni)+ zloSi(Ni)/
√

Ni, and (6)

max
w∈S

k

∑
i=1

w′ivπvi ≤ max
w∈S

lmax

∑
i=1

w′iX̄π1i(Ni)+ zhiB. (7)
4
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Notice that it does not matter whether we take the summa-
tions in Equation (7) from 1 to lmax or to |I| or to k, because
lmax≤ |I| ≤ k, and w′i = 0 if i > lmax and w∈S . The notation
merely emphasizes that π1i does not exist for i > |I| ≥ lmax,
because only |I| risk factors survived screening to reach the
second stage. Next we verify that Equations (1)–(2) follow
from Equations (4)–(7).

First consider L̂. Notice that ∑
k
i=1 w′ivπvi is nonincreasing

in v. The minimum over v in Equation (4) is attained by
taking each vi to be as large as possible. Equation (7) does not
provide a binding constraint. Take vi = +∞ for i /∈ I so that
Equation (5) is satisfied and ∑

k
i=1 w′ivπvi only depends on vi

for i ∈ I. For i ∈ I, take vi = X̄i(Ni)+ zloSi(Ni)/
√

Ni. Using
Equation (6) then shows that L̂ as defined in Equation (4)
satisfies Equation (1).

Next consider Û . Because of Equation (7), Equation (2)
is an upper bound for the maximum in Equation (4). This
upper bound is attained by taking vi = +∞ for i /∈ I and
vi = X̄i(Ni)− zhiB for i ∈ I. This choice of v makes πv = π1
and satisfies Equations (5)–(7).

If we plug in the true values V for v in the definition
of V , then the constraints defining V have the following
interpretations.

• Equation (5) is equivalent to correct screening:
γ := {πV 1,πV 2, . . . ,πV lmax} ⊆ I.

• Equation (6) implies that L̂≤minw∈S ∑
k
i=1 w′iVπVi ,

the outer-level lower confidence limit. Because
each πLi is in I, Equations (1) and (6) imply that
L̂ ≤ minw∈S ∑

lmax
i=1 w′iVπLi . This is bounded above

by minw∈S ∑
k
i=1 w′iVπVi because S is symmetric,

w′ ≤ 0, and {VπV 1 ,VπV 2 , . . . ,VπV lmax} contains the
lowest components of V.

• Equation (7) implies that Û ≥maxw∈S ∑
k
i=1 w′iVπVi ,

the outer-level upper confidence limit.

Baysal and Staum (2007) show that the asymptotic
probability that TCEp is contained in the outer-level confi-
dence interval is at least 1−αo as k→ ∞. By the results
of Lan, Nelson, and Staum (2007), it then suffices to show
that the probability that V ∈ V is at least 1−αi. By the
Bonferroni inequality, the probability that V /∈V is bounded
above by the sum of the probabilities

• that V does not satisfy Equation (5),
• that V does not satisfy Equation (6), and
• that V satisfies Equation (5) and does not satisfy

Equation (7).

In Section 4.1 we will show that the probability that V
does not satisfy Equation (5) is bounded above by αs. In
Section 4.2 we will show that the latter two probabilities are
bounded above by αlo and αhi respectively. This completes
the proof because αi = αs +αlo +αhi.
95
4.1 Screening

Here we show that the probability of correct screening
Pr{γ ⊆ I} ≥ 1−αs. Let

Bi j := 1{X̄i(n0) > X̄ j(n0)+dSi j(n0)/
√

n0}

be the indicator function which is 1 when Z j beats Zi. We
have

Pr{γ ⊆ I} = Pr

{
∀i ∈ γ, ∑

j 6=i
Bi j < lmax

}
≥ Pr

{
∀i ∈ γ, j /∈ γ, Bi j = 0

}
≥ 1−∑

i∈γ

∑
j/∈γ

Pr{Bi j = 1}

by the Bonferroni inequality. For i ∈ γ and j /∈ γ , Vi ≤Vj.
Therefore each

Pr{Bi j = 1} = Pr
{

X̄i(n0)− X̄ j(n0)
Si j(n0)/

√
n0

> d
}

≤ αs/(lmax(k− lmax)),

using d = tn0−1,1−αs/(k−lmax)lmax .

4.2 Confidence Region

In this section, we deal with the second-stage inner-level
simulation, after screening and restarting have occurred.
We can think of the first stage as randomly generating a
simulation problem which the second stage solves. The
first stage produces I and Ni for each i ∈ I. This is an
experimental design for the second stage, specifying which
risk factors to consider and how many payoffs to simulate
from each of them.

The probability that V does not satisfy Equation (6) is

Pr
{
∃i ∈ I 3Vi > X̄i(Ni)+

Si(Ni)√
Ni

zlo

}
= 1−∏

i∈I
Pr
{

Vi ≤ X̄i(Ni)+
Si(Ni)√

Ni
zlo

}
because sampling is independent at the second stage. This
is

1−
(
(1−αlo)1/|I|

)|I|
= αlo.

Finally, we consider the probability that V satisfies
Equation (5) and does not satisfy Equation (7). The following
argument will show that, conditional on any experimental
design such that correct screening occurs after the first stage
(that is, V satisfies Equation (5)), the probability that the
second-stage simulation causes V not to satisfy Equation (7)
5
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is bounded above by αhi. Consequently, the probability that
V satisfies Equation (5) and does not satisfy Equation (7)
is bounded above by αhi. Define

w∗ := arg max
w∈S

k

∑
i=1

w′iVπVi .

Then

max
w∈S

lmax

∑
i=1

w′iX̄π1i(Nπ1i)≥
lmax

∑
i=1

w∗i
′X̄π1i(Nπ1i).

By the optimality properties shown in Baysal and Staum
(2007), w∗i is nonincreasing in i, so w∗i

′ is nondecreasing.
Because X̄π1i(Nπ1i) is nondecreasing in i,

lmax

∑
i=1

w∗i
′X̄π1i(Nπ1i)≥

lmax

∑
i=1

w∗i
′X̄πi(Nπi)

for any permutation π of I. Because correct screening
occurred, that is, γ := {πV 1,πV 2, . . . ,πV lmax}⊆ I, there exists
a permutation π of I such that πi = πVi for i = 1,2, . . . , lmax.
Consequently,

max
w∈S

lmax

∑
i=1

w′iX̄π1i(Nπ1i)≥
lmax

∑
i=1

w∗i
′X̄πVi(NπVi).

Thus

Pr

{
max
w∈S

k

∑
i=1

w′iVπVi > max
w∈S

lmax

∑
i=1

w′iX̄π1i(Nπ1i)+ zhiB

}

≤ Pr

{
lmax

∑
i=1

w∗i
′VπVi >

lmax

∑
i=1

w∗i
′X̄πVi(NπVi)+ zhiB

}

= Pr

{
lmax

∑
i=1

w∗i
′ (X̄πVi(NπVi)−VπVi) <−zhiB

}
.

The weighted average A := ∑
lmax
i=1 w∗

′
i (X̄πVi(NπVi)−VπVi) is

normal with mean zero and variance ∑
lmax
i=1 (w∗i

′)2σ2
πVi

/NπVi ,
where σ2

i := Var[X |Zi]. Furthermore,

B2 = max
w∈S

lmax

∑
i=1

(wi
′)2S2

πSi
(NπSi)/NπSi

≥ max
w∈S

lmax

∑
i=1

(wi
′)2S2

πVi
(NπVi)/NπVi

≥
lmax

∑
i=1

(w∗i
′)2S2

πVi
(NπVi)/NπVi := S2.
The mean of S2 is E[S2] = ∑
lmax
i=1 (w∗i

′)2σ2
πVi

/NπVi . The vari-
ance of S2, based on the chi-squared distribution associated
with sample variances, is O(N−3). For large N, this is neg-
ligible compared to the variance of A2, which is O(N−2).
Therefore, where Φ represents the standard normal cumu-
lative distribution function,

Pr{A <−zhiB} =
1
2

Pr
{

A2 > z2
hiB

2}
≤ 1

2
Pr
{

A2 > z2
hiS

2}
≈ 1

2
Pr
{

A2 > z2
hiE[S2]

}
= Pr

{
A <−zhi

√
E[S2]

}

= Φ

 −zhi
√

E[S2]√
∑

lmax
i=1 (w∗′i )2σ2

πVi
/NπVi


= Φ(−zhi) = αhi.

5 CONCLUSIONS

We have presented and tested a new two-level simulation
procedure that creates a confidence interval for tail condi-
tional expectation given a fixed computational budget. The
outer level simulates risk factors and the inner level esti-
mates portfolio values conditional on those risk factors. We
are not aware of any research on confidence intervals gener-
ated by a simulation of this structure prior to Lan, Nelson,
and Staum (2007). We found extremely low coverage for
a confidence interval constructed by ignoring uncertainty
from the inner level of simulation and using previous find-
ings about the asymptotic variance of a point estimator for
tail conditional expectation. We found that our procedure’s
coverage is greater than nominal when at least 1,000 risk
factors were sampled, which enables the technique of em-
pirical likelihood to provide adequate coverage. However,
our procedure produces a rather wide confidence interval
unless the computational budget C allows many millions of
simulated payoffs, and we found that the width decreases
very slowly in the budget, roughly as O(C−1/4).

Using more advanced efficiency techniques could de-
crease the width of the confidence interval. We tested a
two-stage procedure without variance reduction techniques
other than common random numbers in screening. Multi-
stage screening, as used in Lesnevski, Nelson, and Staum
(2006), should significantly improve efficiency. Variance
reduction techniques applied to the inner level, such as
the control variates used in Lesnevski, Nelson, and Staum
(2006), will be helpful. Applying variance reduction tech-
niques at the outer level might help, but it would be more
difficult. Furthermore, some variance reduction techniques
at the outer level would add little benefit given the existing
956
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efficiency enhancements of our procedure. For example,
importance sampling is often used in risk management sim-
ulations to increase the number of simulated risk factors
that lead to large losses, but our procedure accomplishes
something similar by screening out those risk factors that
do not lead to large losses.

There may also be some ways to improve the speed
of the procedure. The computational budget is expressed
in terms of number of payoffs simulated, which should
be the dominant computational cost in realistic examples,
and ignores the time required to perform sorting, screening,
and certain optimizations. Potential improvements include
making screening faster and replacing the optimization that
defines the factor B appearing in the upper confidence
limit (2) with something simpler. When the inner-level
sample sizes Ni are large, it might be possible to retain
good coverage while replacing B with a quantity such as√√√√ 1

|I|∑i∈I

S2
i (Ni)
Ni

max
w∈S

lmax

∑
i=1

(w′i)
2

which would be easier to compute. Indeed,
maxw∈S ∑

lmax
i=1 (w′i)

2, which also features in the optimization
of Equation (3), could be tabled instead of performing an
optimization each time the simulation is run.

A greater potential improvement could come from tight-
ening the lower confidence limit, which is currently based
on controlling separately the difference of sample average
and mean for all risk factors that survive screening. By
contrast, the upper confidence limit is based on controlling
a single weighted average of differences between sample
averages and means. This would make the procedure less
conservative, reducing the confidence interval width and the
excessive coverage.
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E. Yücesan, 102–107.

Lee, S.-H. 1998. Monte Carlo computation of conditional
expectation quantiles. Dissertation, Dept. of Operations
Research, Stanford University.

Lesnevski, V., B. L. Nelson, and J. Staum. 2006. An adap-
tive procedure for estimating coherent risk measures
based on generalized scenarios. Working Paper 06-
05, Dept. of Industrial Engineering and Management
Sciences, Northwestern University.

Manistre, B. J., and G. H. Hancock. 2005. Variance of the
CTE estimator. North American Actuarial Journal 9:
129–154.

Owen, A. B. 2001. Empirical Likelihood. New York:
Chapman & Hall/CRC.

AUTHOR BIOGRAPHIES

HAI LAN is a Ph. D. student in the Department of In-
dustrial Engineering and Management Sciences at North-
western University. His email address is <h-lan@
northwestern.edu>.

BARRY L. NELSON is the Charles Deering McCormick
Professor of Industrial Engineering and Management Sci-
ences at Northwestern University. His research centers
on the design and analysis of computer simulation exper-
iments on models of stochastic systems, and he is Ed-
itor in Chief of Naval Research Logistics. Nelson has
held many positions for the Winter Simulation Confer-
ence, including Program Chair in 1997 and current mem-
bership on the Board of Directors. His e-mail and web
addresses are <nelsonb@northwestern.edu> and
<www.iems.northwestern.edu/˜nelsonb/>.

JEREMY STAUM is Associate Professor of Industrial
Engineering and Management Sciences at Northwestern
University. His research interests center on risk manage-
ment and simulation in financial engineering. Staum is
Associate Editor of ACM Transactions on Modeling and
Computer Simulation, Naval Research Logistics, and Oper-
ations Research, and is Risk Analysis track coordinator at
the 2007 Winter Simulation Conference. His e-mail address
is <j-staum@northwestern.edu> and his web page
is <www.iems.northwestern.edu/˜staum>.
57

mailto:h-lan@northwestern.edu
mailto:h-lan@northwestern.edu
mailto:nelsonb@northwestern.edu
http://www.iems.northwestern.edu/~nelsonb/
mailto:j-staum@northwestern.edu
http://www.iems.northwestern.edu/~staum

	INTRODUCTION
	PROCEDURE
	A Procedure with Fixed Number of Risk Factors k
	An Adaptive Procedure

	EXPERIMENTS
	PROOF
	Screening
	Confidence Region

	CONCLUSIONS

